The Assessment of Climate Change on Rainfall-Runoff Erosivity in the Chirchik–Akhangaran Basin, Uzbekistan
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Set
2.3. Methodology and Parameter Estimation
2.3.1. Determination of Soil Erosion Rate
2.3.2. Rainfall-Runoff Erosivity Factor (R)
2.3.3. Soil Erodibility Factor (K)
2.3.4. Slope Length and Steepness Factor LS
2.3.5. Cover Management Factor (C Factor)
2.3.6. Conservation Practice (P Factor)
2.4. Model Validation
3. Results
3.1. Future Precipitation Change
3.2. Rainfall Erosivity Change under Climate Change
3.3. Factors Affecting the Erosion Process
3.4. Rainfall Erosion in Recent Climate Change
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Xie, H.; Zhang, Y.; Wu, Z.; Lv, T. A Bibliometric Analysis on Land Degradation: Current Status, Development, and Future Directions. Land 2020, 9, 28. [Google Scholar] [CrossRef] [Green Version]
- Amundson, R.; Berhe, A.A.; Hopmans, J.W.; Olson, C.; Sztein, A.E.; Sparks, D.L. Soil and human security in the 21st century. Science 2015, 348, 1261071. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borrelli, P.; Robinson, D.A.; Fleischer, L.R.; Lugato, E.; Ballabio, C.; Alewell, C.; Meusburger, K.; Modugno, S.; Schütt, B.; Ferro, V. An assessment of the global impact of 21st century land use change on soil erosion. Nat. Commun. 2017, 8, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pereira, E.C.B.; Lopes, F.B.; Gomes, F.E.F.; de Almeida, A.M.M.; de Magalhães, A.C.M.; de Andrade, E.M. Determining the Soil Erodibility for an Experimental Basin in the Semi-Arid Region Using Geoprocessing. Am. J. Plant Sci. 2017, 8, 3174. [Google Scholar] [CrossRef] [Green Version]
- Wordofa, G. Soil Erosion Modeling Using GIS and RUSLE on the Eurajoki Watershed, Finland. 2011. Available online: https://www.semanticscholar.org/paper/Soil-erosion-modeling-using-GIS-and-RUSLE-on-the-%2C-Wordofa/6b91d2573652f8d38336df452bd6005bc73a5832 (accessed on 28 June 2011).
- Arora, K.R. Soil Mechanics and Foundation Engineering, 6th ed.; Standard Publishers: Delhi, India, 2003; Available online: https://ru.scribd.com/document/283580022/Soil-Mechanics-Foundation-Engineering-by-K-R-Arora-6th-Edition (accessed on 4 October 2015).
- Efthimiou, N. The importance of soil data availability on erosion modeling. CATENA 2018, 165, 551–566. [Google Scholar] [CrossRef]
- Hao, C.; Oguchi, T.; Pan, W. Assessment for soil loss by using a scheme of alterative sub-models based on the RUSLE in a Karst Basin of Southwest China. J. Integr. Agric. 2017, 16, 377–388. [Google Scholar] [CrossRef] [Green Version]
- Duulatov, E.; Chen, X.; Amanambu, A.C.O.; Ochege, U.O.; Orozbaev, R.; Issanova, G.; Omurakunova, G. Projected Rainfall Erosivity Over Central Asia Based on CMIP5 Climate Models. Water 2019, 11, 897. [Google Scholar] [CrossRef] [Green Version]
- Frankl, A.; Prêtre, V.; Nyssen, J.; Salvador, P.-G. The success of recent land management efforts to reduce soil erosion in northern France. Geomorphology 2018, 303, 84–93. [Google Scholar] [CrossRef]
- Ganasri, B.; Ramesh, H. Assessment of soil erosion by RUSLE model using remote sensing and GIS-A case study of Nethravathi Basin. Geosci. Front. 2016, 7, 953–961. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.B.; Saunders, P.; Finn, J.T. Rapid assessment of soil erosion in the Rio Lempa Basin, Central America, using the universal soil loss equation and geographic information systems. Environ. Manag. 2005, 36, 872–885. [Google Scholar] [CrossRef]
- Lu, H.; Prosser, I.P.; Moran, C.J.; Gallant, J.C.; Priestley, G.; Stevenson, J.G. Predicting sheetwash and rill erosion over the Australian continent. Soil Res. 2003, 41, 1037–1062. [Google Scholar] [CrossRef]
- Shiferaw, A. Estimating soil loss rates for soil conservation planning in the Borena Woreda of South Wollo Highlands, Ethiopia. J. Sustain. Dev. Afr. 2011, 13, 87–106. [Google Scholar]
- Wang, X.; Pedram, S.; Liu, T.; Gao, R.; Li, F.; Luo, Y. Estimated grass grazing removal rate in a semiarid Eurasian steppe watershed as influenced by climate. Water 2016, 8, 339. [Google Scholar] [CrossRef] [Green Version]
- Nyssen, J.; Poesen, J.; Gebremichael, D.; Vancampenhout, K.; D’aes, M.; Yihdego, G.; Govers, G.; Leirs, H.; Moeyersons, J.; Naudts, J. Interdisciplinary on-site evaluation of stone bunds to control soil erosion on cropland in Northern Ethiopia. Soil Til. Res. 2007, 94, 151–163. [Google Scholar] [CrossRef] [Green Version]
- Delgado-Baquerizo, M.; Eldridge, D.J.; Travers, S.K.; Val, J.; Oliver, I.; Bissett, A. Effects of climate legacies on above-and belowground community assembly. Glob. Chang. Biol. 2018, 24, 4330–4339. [Google Scholar] [CrossRef] [Green Version]
- Raymond, P.A.; Hamilton, S.K. Anthropogenic influences on riverine fluxes of dissolved inorganic carbon to the oceans. Limnol. Oceanogr. Lett. 2018, 3, 143–155. [Google Scholar] [CrossRef]
- Anderson, J.; Clapp, C. Coupling free radical catalysis, climate change, and human health. Phys. Chem. Chem. Phys. 2018, 20, 10569–10587. [Google Scholar] [CrossRef] [Green Version]
- Bewket, W.; Teferi, E. Assessment of soil erosion hazard and prioritization for treatment at the watershed level: Case study in the Chemoga watershed, Blue Nile basin, Ethiopia. Land Degrad. Dev. 2009, 20, 609–622. [Google Scholar] [CrossRef]
- Xiong, M.; Sun, R.; Chen, L. Effects of soil conservation techniques on water erosion control: A global analysis. Sci. Total Environ. 2018, 645, 753–760. [Google Scholar] [CrossRef]
- Duishonakunov, M.; Imbery, S.; Narama, C.; Mohanty, A.; King, L. Recent glacier changes and their impact on water resources in Chon and Kichi Naryn Catchments, Kyrgyz Republic. Water Sci. Technol. Water Sup. 2014, 14, 444–452. [Google Scholar] [CrossRef]
- Shahgedanova, M.; Afzal, M.; Severskiy, I.; Usmanova, Z.; Saidaliyeva, Z.; Kapitsa, V.; Kasatkin, N.; Dolgikh, S. Changes in the mountain river discharge in the northern Tien Shan since the mid-20th Century: Results from the analysis of a homogeneous daily streamflow data set from seven catchments. J. Hydrol. 2018, 564, 1133–1152. [Google Scholar] [CrossRef]
- Chevallier, P.; Pouyaud, B.; Mojaïsky, M.; Bolgov, M.; Olsson, O.; Bauer, M.; Froebrich, J. River flow regime and snow cover of the Pamir Alay (Central Asia) in a changing climate. Hydrol. Sci. J. 2014, 59, 1491–1506. [Google Scholar] [CrossRef]
- Hagg, W.; Braun, L.N.; Kuhn, M.; Nesgaard, T.I. Modeling of hydrological response to climate change in glacierized Central Asian catchments. J. Hydrol. 2007, 332, 40–53. [Google Scholar] [CrossRef] [Green Version]
- Lioubimtseva, E. A multi-scale assessment of human vulnerability to climate change in the Aral Sea Basin. Environ. Earth Sci. 2015, 73, 719–729. [Google Scholar] [CrossRef]
- Lioubimtseva, E.; Henebry, G.M. Climate and environmental change in arid Central Asia: Impacts, vulnerability, and adaptations. J. Arid Environ. 2009, 73, 963–977. [Google Scholar] [CrossRef]
- Stulina, G. Soils of Chirchik-Ahangaran Basin. 2008. Available online: http://www.cawater-info.net/rivertwin/documents/pdf/soil_e.pdf (accessed on 23 January 2018).
- Stulina, G. Пoчвы Чирчик-Ахангаранскoгo бассейна. Available online: http://www.http://www.cawater-info.net/chirchik/papers.htm (accessed on 23 January 2018).
- Shoira, M. Application of Defecation Lime from Sugar Industry in Uzbekistan; KTH, School of Industrial Engineering and Management (ITM): Stockholm, Sweden, 2006. [Google Scholar]
- Mohan Kumar, S. Application of SWAT Model to the Nethravathi River Basin. Ph.D. Thesis, National Institute of Technology Karnataka, Surathkal, India, 2011. [Google Scholar] [CrossRef] [Green Version]
- Chembarisov, E.I.; Makhmudov, I.E.; Lesnik, T.Y. Вoднo-земельные прoблемы бассейна р.Чирчик Республики Узбекистан. 2009. Available online: http://www.cawater-info.net/chirchik/papers/chemb.pdf (accessed on 11 July 2018).
- Usmanov, S.; Mitani, Y.; Kusuda, T. An Integrated Hydrological Model for Water Balance Estimation in the Chirchik River Basin, Northern Uzbekistan. Comput. Water Energy Environ. Eng. 2016, 5, 87. [Google Scholar] [CrossRef] [Green Version]
- Alamanov, S.; Lelevkin, V.M.; Podrezov, O.A.; Podrezov, A.O. Climate Changes and Water Problems in Central Asia; United Nations Environment Program (UNEP) and World Wildlife Fund (WWF): Moscow/Bishkek, Russia, 2006. (In Russian) [Google Scholar]
- Stulina, G. Климатические изменения и их влияние на вoдные ресурсы Чирчик-Ахангаранскoгo гидрoлoгическoгo райoна. Available online: http://www.cawater-info.net/rivertwin/documents/pdf/climate_r.pdf (accessed on 23 January 2018).
- Chen, L.; Frauenfeld, O.W. Surface air temperature changes over the twentieth and twenty-first centuries in China simulated by 20 CMIP5 models. J. Clim. 2014, 27, 3920–3937. [Google Scholar] [CrossRef]
- Luo, M.; Liu, T.; Meng, F.; Duan, Y.; Bao, A.; Frankl, A.; De Maeyer, P. Spatiotemporal characteristics of future changes in precipitation and temperature in Central Asia. Int. J. Clim. 2019, 39, 1571–1588. [Google Scholar] [CrossRef]
- Riahi, K.; Rao, S.; Krey, V.; Cho, C.; Chirkov, V.; Fischer, G.; Kindermann, G.; Nakicenovic, N.; Rafaj, P. RCP 8.5—A scenario of comparatively high greenhouse gas emissions. Clim. Chang. 2011, 109, 33. [Google Scholar] [CrossRef] [Green Version]
- Luo, M.; Liu, T.; Frankl, A.; Duan, Y.; Meng, F.; Bao, A.; Kurban, A.; De Maeyer, P. Defining spatiotemporal characteristics of climate change trends from downscaled GCMs ensembles: How climate change reacts in Xinjiang, China. Int. J. Clim. 2018, 38, 2538–2553. [Google Scholar] [CrossRef]
- Pham, T.N.Y.; Dawen, K.S.O.; Taikan, M.K. Application of RUSLE model on global soil erosion estimate. Proc. Hydraul. Eng. 2001, 45, 811–816. [Google Scholar] [CrossRef]
- Wischmeier, W.H.; Smith, D.D. Predicting Rainfall Erosion Losses-a Guide to Conservation Planning; Publisher: Washington, USA, 1978. [Google Scholar]
- Yang, D.; Kanae, Sh.; Oki, T.; Koike, T.; Musiake, K. Global potential soil erosion with reference to land use and climate changes. Hydrol. Process. 2003, 17, 2913–2928. [Google Scholar] [CrossRef]
- Kilinc, M.Y.; Richardson, E.V. Mechanics of Soil Erosion from Overland Flow Generated by Simulated Rainfall; Hydrology Papers (Colorado State University) No. 63; Colorado State University: Fort Collins, CO, USA, 1973. [Google Scholar]
- Gulizia, C.; Camilloni, I. Comparative analysis of the ability of a set of CMIP3 and CMIP5 global climate models to represent precipitation in South America. Int. J. Climatol. 2015, 35, 583–595. [Google Scholar] [CrossRef]
- Fu, G.; Chen, S.; McCool, D.K. Modeling the impacts of no-till practice on soil erosion and sediment yield with RUSLE, SEDD, and ArcView GIS. Soil Tillage Res. 2006, 85, 38–49. [Google Scholar] [CrossRef]
- Kouli, M.; Soupios, P.; Vallianatos, F. Soil erosion prediction using the revised universal soil loss equation (RUSLE) in a GIS framework, Chania, Northwestern Crete, Greece. Environ. Geol. 2009, 57, 483–497. [Google Scholar] [CrossRef]
- Parysow, P.; Wang, G.; Gertner, G.; Anderson, A.B. Spatial uncertainty analysis for mapping soil erodibility based on joint sequential simulation. CATENA 2003, 53, 65–78. [Google Scholar] [CrossRef]
- Yan, R.; Zhang, X.; Yan, S.; Chen, H. Estimating soil erosion response to land use/cover change in a catchment of the Loess Plateau, China. Int. Soil Water Conserv. Res. 2018, 6, 13–22. [Google Scholar] [CrossRef]
- Zhang, H.; Wei, J.; Yang, Q.; Baartman, J.E.M.; Gai, L.; Yang, X.; Li, S.; Yu, J.; Ritsema, C.J.; Geissen, V. An improved method for calculating slope length (λ) and the LS parameters of the Revised Universal Soil Loss Equation for large watersheds. Geoderma 2017, 308, 36–45. [Google Scholar] [CrossRef]
- Lieskovský, J.; Kenderessy, P. Modeling the effect of vegetation cover and different tillage practices on soil erosion in vineyards: A case study in Vráble (Slovakia) using WATEM/SEDEM. Land Degrad. Dev. 2014, 25, 288–296. [Google Scholar] [CrossRef]
- Nearing, M.; Jetten, V.; Baffaut, C.; Cerdan, O.; Couturier, A.; Hernandez, M.; Le Bissonnais, Y.; Nichols, M.H.; Nunes, J.P.; Renschler, C.S. Modeling response of soil erosion and runoff to changes in precipitation and cover. CATENA 2005, 61, 131–154. [Google Scholar] [CrossRef]
- Panagos, P.; Borrelli, P.; Poesen, J.; Ballabio, C.; Lugato, E.; Meusburger, K.; Montanarella, L.; Alewell, C. The new assessment of soil loss by water erosion in Europe. Environ. Sci. Policy 2015, 54, 438–447. [Google Scholar] [CrossRef]
- Zhou, P.; Luukkanen, O.; Tokola, T.; Nieminen, J. Effect of vegetation cover on soil erosion in a mountainous watershed. CATENA 2008, 75, 319–325. [Google Scholar] [CrossRef]
- Mandal, U.K. Geo-Information-Based Soil Erosion Modeling for Sustainable Agriculture Development in Khadokhola Watershed, Nepal, in Land Cover Change and Its Eco-environmental Responses in Nepal; Springer: Gateway East, Singapore, 2017; pp. 223–241. [Google Scholar]
- Mehri, A.; Salmanmahiny, A.; Tabrizi, A.R.M.; Mirkarimi, S.H.; Sadoddin, A. Investigation of likely effects of land use planning on reduction of soil erosion rate in river basins: Case study of the Gharesoo River Basin. CATENA 2018, 167, 116–129. [Google Scholar] [CrossRef]
- Wang, G.; Gertner, G.; Singh, V.; Shinkareva, S.; Parysow, P.; Anderson, A. Spatial and temporal prediction and uncertainty of soil loss using the revised universal soil loss equation: A case study of the rainfall–runoff erosivity R factor. Ecol. Model. 2002, 153, 143–155. [Google Scholar] [CrossRef]
- Li, Z.; Fang, H. Impacts of climate change on water erosion: A review. Earth-Sci. Rev. 2016, 163, 94–117. [Google Scholar] [CrossRef]
- Mukanov, Y.; Chen, Y.; Baisholanov, S.; Amanambu, A.C.; Issanova, G.; Abenova, A.; Fang, G.; Abayev, N. Estimation of annual average soil loss using the Revised Universal Soil Loss Equation (RUSLE) integrated in a Geographical Information System (GIS) of the Esil River basin (ERB), Kazakhstan. Acta Geophys. 2019, 67, 921–938. [Google Scholar] [CrossRef]
- Parsons, A.J. How reliable are our methods for estimating soil erosion by water? Sci. Total Environ. 2019, 676, 215–221. [Google Scholar] [CrossRef]
- García-Ruiz, J.M. The effects of land uses on soil erosion in Spain: A review. CATENA 2010, 81, 1–11. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, Y.; Liu, B.; Wang, Z.; Zhang, S. Rill and gully erosion on unpaved roads under heavy rainfall in agricultural watersheds on China’s Loess Plateau. Agric. Ecosyst. Environ. 2019, 284, 106580. [Google Scholar] [CrossRef]
- Charlson, R.J.; Lovelock, J.E.; Andreae, M.O.; Warren, S.G. Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate. Nature 1987, 326, 655. [Google Scholar] [CrossRef]
- Jiang, C.; Zhang, H.; Wang, X.; Feng, Y.; Labzovskii, L. Challenging the land degradation in China’s Loess Plateau: Benefits, limitations, sustainability, and adaptive strategies of soil and water conservation. Ecol. Eng. 2019, 127, 135–150. [Google Scholar] [CrossRef]
- Dai, A.; Wigley, T. Global patterns of ENSO-induced precipitation. Geophys. Res. Lett. 2000, 27, 1283–1286. [Google Scholar] [CrossRef] [Green Version]
- Ma, J.; Xie, S.-P. Regional patterns of sea surface temperature change: A source of uncertainty in future projections of precipitation and atmospheric circulation. J. Clim. 2013, 26, 2482–2501. [Google Scholar] [CrossRef] [Green Version]
- Jiang, L.; Bao, A.; Jiapaer, G.; Guo, H.; Zheng, G.; Gafforov, Kh.; Kurban, A.; De Maeyer, P. Monitoring land sensitivity to desertification in Central Asia: Convergence or divergence? Sci. Total Environ. 2019, 658, 669–683. [Google Scholar] [CrossRef]
- Wang, B.; Zhang, M.; Wei, J.; Wang, S.; Li, S.; Ma, Q.; Li, X.; Pan, S. Changes in extreme events of temperature and precipitation over Xinjiang, northwest China, during 1960–2009. Quat. Int. 2013, 298, 141–151. [Google Scholar] [CrossRef]
- Panagos, P.; Ballabio, C.; Meusburger, K.; Spinoni, J.; Alewell, Ch.; Borrelli, P. Towards estimates of future rainfall erosivity in Europe based on REDES and WorldClim datasets. J. Hydrol. 2017, 548, 251–262. [Google Scholar] [CrossRef]
- Maeda, E.E.; Pellikka, P.K.E.; Siljander, M.; Clark, B.J.F. Potential impacts of agricultural expansion and climate change on soil erosion in the Eastern Arc Mountains of Kenya. Geomorphology 2010, 123, 279–289. [Google Scholar] [CrossRef]
- Amanambu, A.C.; Li, L.; Egbinola, C.N.; Obarein, O.A.; Mupenzi, C.; Chen, D. Spatio-temporal variation in rainfall-runoff erosivity due to climate change in the Lower Niger Basin, West Africa. CATENA 2019, 172, 324–334. [Google Scholar] [CrossRef]
- Segura, C.; Sun, G.; McNulty, S.; Zhang, Y. Potential impacts of climate change on soil erosion vulnerability across the conterminous United States. J. Soil Water Conserv. 2014, 69, 171–181. [Google Scholar] [CrossRef]
- Litschert, S.E.; Theobald, D.M.; Brown, T.C. Effects of climate change and wildfire on soil loss in the Southern Rockies Ecoregion. CATENA 2014, 118, 206–219. [Google Scholar] [CrossRef]
Model | Institution | Country | Abbreviation |
---|---|---|---|
ACCESS1–3 (RCP 4.5) | Commonwealth Scientific and Industrial Research Organization | Australia | ACCESS1–3 |
ACCESS1–3 (RCP 8.5) | |||
bcc-csm1–1-m (RCP 4.5) | Beijing Climate Center (BCC), China Meteorological Administration | China | bcc-csm1–1-m |
bcc-csm1–1-m (RCP 8.5) | |||
CanESM2 (RCP 4.5) | Canadian Center for Climate Modeling and Analysis, Victoria, BC | Canada | CanESM2 |
CanESM2 (RCP 8.5) | |||
CSIRO-Mk3-6-0 (RCP 4.5) | Commonwealth Scientific and Industrial Research Organization | Australia | CSIRO-Mk3-6-0 |
CSIRO-Mk3-6-0 (RCP 8.5) | |||
GISS-E2-R (RCP 4.5) | “NASA/GISS” Goddard Institute for Space Studies, New York, NY | USA | GISS-E2-R |
GISS-E2-R (RCP 8.5) |
LULC Type | P Factor | Area (ha) | Area % |
---|---|---|---|
Cropland | 0.5 | 4969.6 | 22.5 |
Forest | 1 | 1396.4 | 6.3 |
Grassland | 0.5 | 10092.9 | 45.6 |
Shrubland | 1 | 13.2 | 0.1 |
Bareland | 1 | 781.0 | 3.5 |
Built-up land | 1 | 1696.9 | 7.7 |
Wetland | 1 | 62.3 | 0.3 |
Bare rock gravel | 1 | 2823.4 | 12.8 |
Waterbody | 0 | 106.6 | 0.5 |
Permanent Glacier Snow | 0 | 178.6 | 0.8 |
Climate Models | Precipitation, mm | Rainfall Erosivity (MJ mm ha−1hr−1year−1) | Change (%) | Average Erosion (tha−1yr−1) | Change (%) | Erosivity Density | Change (%) |
---|---|---|---|---|---|---|---|
Baseline | |||||||
ACCESS1–3 | 498.8 | 1001.0 | 0.0 | 630.3 | 0.0 | 2.0 | 0.0 |
bcc-csm1–1-m | 409.3 | 776.7 | 0.0 | 552.4 | 0.0 | 1.9 | 0.0 |
CanESM2 | 291.5 | 581.3 | 0.0 | 318.5 | 0.0 | 2.0 | 0.0 |
CSIRO-Mk3-6-0 | 363.3 | 686.7 | 0.0 | 596.8 | 0.0 | 1.9 | 0.0 |
GISS-E2 | 346.6 | 658.5 | 0.0 | 302.2 | 0.0 | 1.9 | 0.0 |
2030s (2020–2039) | |||||||
ACCESS1-3 - 4.5 | 660.4 | 1572.9 | 36.0 | 736.4 | 14.4 | 2.38 | 3.0 |
ACCESS1-3 - 8.5 | 699.7 | 1744.6 | 43.0 | 810.6 | 22.2 | 2.49 | 7.4 |
bcc-csm1-1-m - 4.5 | 478.3 | 943.7 | 18.0 | 597.9 | 2.7 | 1.97 | 3.7 |
bcc-csm1-1-m - 8.5 | 475.1 | 935.3 | 17.0 | 585.7 | 5.7 | 1.97 | 3.5 |
CanESM2 - 4.5 | 660.4 | 1572.9 | 36.0 | 692.3 | 54.0 | 2.38 | 3.0 |
CanESM2 - 8.5 | 699.7 | 1744.6 | 43.0 | 756.5 | 57.9 | 2.49 | 7.4 |
CSIRO-Mk3-6-0 - 4.5 | 351.6 | 666.7 | –3.0 | 605.7 | 1.5 | 1.9 | 0.3 |
CSIRO-Mk3-6-0 - 8.5 | 328.7 | 630.7 | –9.0 | 577.4 | –3.4 | 1.92 | 1.5 |
GISS-E2-R - 4.5 | 175.8 | 500.4 | –32.0 | 353.7 | 4.2 | 2.85 | 33.3 |
GISS-E2-R - 8.5 | 186.0 | 503.1 | –31.0 | 378.9 | 11.9 | 2.71 | 29.8 |
Average | 451.6 | 1081.5 | 11.8 | 574.6 | 17.1 | 2.3 | 14.1 |
2050s (2040–2069) | |||||||
ACCESS1-3 - 4.5 | 723.4 | 1854.3 | 46.0 | 868.4 | 27.4 | 2.56 | 9.9 |
ACCESS1-3 - 8.5 | 742.8 | 1947.4 | 49.0 | 905.8 | 30.4 | 2.62 | 11.9 |
bcc-csm1-1-m - 4.5 | 424.7 | 810.5 | 4.0 | 522.7 | –5.7 | 1.91 | 0.4 |
bcc-csm1-1-m - 8.5 | 442.1 | 851.2 | 9.0 | 558.3 | 1.1 | 1.93 | 1.3 |
CanESM2 - 4.5 | 723.4 | 1854.3 | 46.0 | 807.5 | 60.6 | 2.56 | 9.9 |
CanESM2 - 8.5 | 742.8 | 1947.4 | 49.0 | 841.4 | 62.1 | 2.62 | 11.9 |
CSIRO-Mk3-6-0 - 4.5 | 354.5 | 671.5 | –2.0 | 585.8 | –1.9 | 1.89 | –0.3 |
CSIRO-Mk3-6-0 - 8.5 | 377.1 | 711.8 | 4.0 | 626.4 | 4.7 | 1.89 | –0.6 |
GISS-E2-R - 4.5 | 185.8 | 503.0 | –31.0 | 377.2 | 13.4 | 2.71 | 29.8 |
GISS-E2-R - 8.5 | 175.7 | 500.3 | –32.0 | 357.5 | 13.2 | 2.85 | 33.3 |
Average | 463.9 | 1165.2 | 14.1 | 608.2 | 20.5 | 2.4 | 15.4 |
2070s (2060–2099) | |||||||
ACCESS1-3 - 4.5 | 727.5 | 1873.8 | 47.0 | 877.6 | 28.2 | 2.58 | 10.3 |
ACCESS1-3 - 8.5 | 796.0 | 2218.4 | 55.0 | 1059.5 | 40.5 | 2.79 | 17.1 |
bcc-csm1-1-m - 4.5 | 477.3 | 941.1 | 17.0 | 605.6 | 8.8 | 1.97 | 3.6 |
bcc-csm1-1-m - 8.5 | 403.1 | 763.4 | –2.0 | 506.5 | –9.1 | 1.89 | –0.3 |
CanESM2 - 4.5 | 727.5 | 1873.8 | 47.0 | 815.8 | 61.0 | 2.58 | 10.3 |
CanESM2 - 8.5 | 796.0 | 2218.4 | 55.0 | 987.3 | 67.7 | 2.79 | 17.1 |
CSIRO-Mk3-6-0 - 4.5 | 375.8 | 709.5 | 3.0 | 581.6 | –2.6 | 1.89 | –0.6 |
CSIRO-Mk3-6-0 - 8.5 | 377.3 | 712.2 | 4.0 | 634.5 | 5.9 | 1.89 | –0.7 |
GISS-E2-R - 4.5 | 188.2 | 503.8 | –31.0 | 365.3 | 14.1 | 2.68 | 29.0 |
GISS-E2-R - 8.5 | 179.3 | 501.2 | –31.0 | 361.8 | 18.8 | 2.8 | 32.0 |
Average | 477.2 | 1231.6 | 16.3 | 636.6 | 23.3 | 2.4 | 16.3 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gafforov, K.S.; Bao, A.; Rakhimov, S.; Liu, T.; Abdullaev, F.; Jiang, L.; Durdiev, K.; Duulatov, E.; Rakhimova, M.; Mukanov, Y. The Assessment of Climate Change on Rainfall-Runoff Erosivity in the Chirchik–Akhangaran Basin, Uzbekistan. Sustainability 2020, 12, 3369. https://doi.org/10.3390/su12083369
Gafforov KS, Bao A, Rakhimov S, Liu T, Abdullaev F, Jiang L, Durdiev K, Duulatov E, Rakhimova M, Mukanov Y. The Assessment of Climate Change on Rainfall-Runoff Erosivity in the Chirchik–Akhangaran Basin, Uzbekistan. Sustainability. 2020; 12(8):3369. https://doi.org/10.3390/su12083369
Chicago/Turabian StyleGafforov, Khusen Sh., Anming Bao, Shavkat Rakhimov, Tie Liu, Farkhod Abdullaev, Liangliang Jiang, Khaydar Durdiev, Eldiiar Duulatov, Moldir Rakhimova, and Yerbolat Mukanov. 2020. "The Assessment of Climate Change on Rainfall-Runoff Erosivity in the Chirchik–Akhangaran Basin, Uzbekistan" Sustainability 12, no. 8: 3369. https://doi.org/10.3390/su12083369
APA StyleGafforov, K. S., Bao, A., Rakhimov, S., Liu, T., Abdullaev, F., Jiang, L., Durdiev, K., Duulatov, E., Rakhimova, M., & Mukanov, Y. (2020). The Assessment of Climate Change on Rainfall-Runoff Erosivity in the Chirchik–Akhangaran Basin, Uzbekistan. Sustainability, 12(8), 3369. https://doi.org/10.3390/su12083369