Identifying Dynamic Changes in Ecosystem Services Supply and Demand for Urban Sustainability: Insights from a Rapidly Urbanizing City in Central China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Research Framework
2.2.1. Classification of Land Use
2.2.2. Evaluation Matrix of Ecosystem Services Supply and Demand
2.2.3. Mapping the Budgets of ES Supply and Demand
2.2.4. Gradient Analysis
2.2.5. Spatial Autocorrelation Analysis
3. Results
3.1. Land Use Change in Zhengzhou
3.2. Spatiotemporal Evolution of ES Supply and Demand in Zhengzhou
3.3. Gradient Changes in ES Supply-and-Demand Budget in Zhengzhou
3.4. Hotspots of ES Supply-and-Demand Budget in Zhengzhou
4. Discussion
4.1. Matrix Method
4.2. Factors Affecting ES Supply and Demand
4.3. Ecological Management Zoning and Policy Implications
4.4. Limitations and Contributions of the Research
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- de Groot, R.S.; Alkemade, R.; Braat, L.; Hein, L.; Willemen, L. Challenges in integrating the concept of ecosystem services and values in landscape planning, management and decision making. Ecol. Complex. 2010, 7, 260–272. [Google Scholar] [CrossRef]
- Wei, H.; Liu, H.; Xu, Z.; Ren, J.; Lu, N.; Fan, W.; Zhang, P.; Dong, X. Linking ecosystem services supply, social demand and human well-being in a typical mountain-oasis-desert area, Xinjiang, China. Ecosyst. Serv. 2018, 31, 44–57. [Google Scholar] [CrossRef]
- Ou, W.; Wang, H.; Tao, Y. A land cover-based assessment of ecosystem services supply and demand dynamics in the Yangtze River Delta region. Acta Ecol. Sin. 2018, 38, 6337–6347. (In Chinese) [Google Scholar]
- Burkhard, B.; Kroll, F.; Nedkov, S.; Müller, F. Mapping ecosystem service supply, demand and budgets. Ecol. Indic. 2012, 21, 17–29. [Google Scholar] [CrossRef]
- Yan, Y.; Zhu, J.; Wu, G.; Zhan, Y. Review and prospective applications of demand, supply, and consumption of ecosystem services. Acta Ecol. Sin. 2017, 37, 2489–2496. (In Chinese) [Google Scholar]
- Kumar, P. The Economics of Ecosystems and Biodiversity: Ecological and Economic Foundations; Routledge: London, UK, 2012. [Google Scholar]
- Geijzendorffer, I.R.; Martín-López, B.; Roche, P.K. Improving the identification of mismatches in ecosystem services assessments. Ecol. Indic. 2015, 52, 320–331. [Google Scholar] [CrossRef]
- Ma, C.; Wang, X.; Zhang, Y.; Li, S. Emergy analysis of ecosystem services supply and flow in Beijing ecological conservation area. Acta Geogr. Sin. 2017, 72, 974–985. (In Chinese) [Google Scholar]
- Roces-Díaz, J.V.; Vayreda, J.; Banqué-Casanovas, M.; Díaz-Varela, E.; Bonet, J.A.; Brotons, L.; De-Miguel, S.; Herrando, S.; Martínez-Vilalta, J. The spatial level of analysis affects the patterns of forest ecosystem services supply and their relationships. Sci. Total Environ. 2018, 626, 1270–1283. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Li, G. The evaluation of the watershed ecological compensation standard of ecosystem service value: A case of Weihe watershed upstream. Acta Ecol. Sin. 2019, 39, 108–116. (In Chinese) [Google Scholar]
- Xie, G. Biodiversity and ecosystem services in city. Environ. Prot. 2015, 43, 25–28. (In Chinese) [Google Scholar]
- Baró, F.; Palomo, I.; Zulian, G.; Vizcaino, P.; Haase, D.; Gómez-Baggethun, E. Mapping ecosystem service capacity, flow and demand for landscape and urban planning: A case study in the Barcelona metropolitan region. Land Use Policy 2016, 57, 405–417. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Wang, Y.; Zhu, W.; Zhang, J.; Gao, Y.; Wang, Y.; Li, Y. Research framework of ecosystem services geography from spatial and regional perspectives. Acta Geogr. Sin. 2014, 69, 1628–1639. (In Chinese) [Google Scholar]
- Termansen, M.; McClean, C.J.; Jensen, F.S. Modelling and mapping spatial heterogeneity in forest recreation services. Ecol. Econ. 2013, 92, 48–57. [Google Scholar] [CrossRef]
- Shao, H.; Liu, M.; Shao, Q.; Sun, X.; Wu, J.; Xiang, Z.; Yang, W. Research on eco-environmental vulnerability evaluation of the Anning River Basin in the upper reaches of the Yangtze River. Environ. Earth Sci. 2014, 72, 1555–1568. [Google Scholar] [CrossRef]
- Tolessa, T.; Senbeta, F.; Kidane, M. The impact of land use/land cover change on ecosystem services in the central highlands of Ethiopia. Ecosyst. Serv. 2017, 23, 47–54. [Google Scholar] [CrossRef]
- Wei, H.; Fan, W.; Lu, N.; Xu, Z.; Liu, H.; Chen, W.; Ulgiati, S.; Wang, X.; Dong, X. Integrating Biophysical and Sociocultural Methods for Identifying the Relationships between Ecosystem Services and Land Use Change: Insights from an Oasis Area. Sustainability 2019, 11, 2598. [Google Scholar] [CrossRef] [Green Version]
- Wei, H.; Fan, W.; Wang, X.; Lu, N.; Dong, X.; Zhao, Y.; Ya, X.; Zhao, Y. Integrating supply and social demand in ecosystem services assessment: A review. Ecosyst. Serv. 2017, 25, 15–27. [Google Scholar] [CrossRef]
- Li, J.; Jiang, H.; Bai, Y.; Alatalo, J.M.; Li, X.; Jiang, H.; Liu, G.; Xu, J. Indicators for spatial-temporal comparisons of ecosystem service status between regions: A case study of the Taihu River Basin, China. Ecol. Indic. 2016, 60, 1008–1016. [Google Scholar] [CrossRef]
- Zhang, W.; Wu, X.; Yu, Y.; Cao, J. The changes of ecosystem services supply-demand and responses to rocky desertification in Xiaojiang Basin during 2005–2015. J. Soil Water Conserv. 2019, 33, 139–150. (In Chinese) [Google Scholar]
- Nedkov, S.; Burkhard, B. Flood regulating ecosystem services—Mapping supply and demand, in the Etropole municipality, Bulgaria. Ecol. Indic. 2012, 21, 67–79. [Google Scholar] [CrossRef]
- Palacios-Agundez, I.; Onaindia, M.; Barraqueta, P.; Madariaga, I. Provisioning ecosystem services supply and demand: The role of landscape management to reinforce supply and promote synergies with other ecosystem services. Land Use Policy 2015, 47, 145–155. [Google Scholar] [CrossRef]
- Peña, L.; Casado-Arzuaga, I.; Onaindia, M. Mapping recreation supply and demand using an ecological and a social evaluation approach. Ecosyst. Serv. 2015, 13, 108–118. [Google Scholar] [CrossRef]
- Scolozzi, R.; Morri, E.; Santolini, R. Delphi-based change assessment in ecosystem service values to support strategic spatial planning in Italian landscapes. Ecol. Indic. 2012, 21, 134–144. [Google Scholar] [CrossRef]
- Bicking, S.; Burkhard, B.; Kruse, M.; Müller, F. Mapping of nutrient regulating ecosystem service supply and demand on different scales in Schleswig-Holstein, Germany. One Ecosyst. 2018, 3, e22509. [Google Scholar] [CrossRef] [Green Version]
- Schirpke, U.; Candiago, S.; Egarter Vigl, L.; Jäger, H.; Labadini, A.; Marsoner, T.; Meisch, C.; Tasser, E.; Tappeiner, U. Integrating supply, flow and demand to enhance the understanding of interactions among multiple ecosystem services. Sci. Total Environ. 2019, 651, 928–941. [Google Scholar] [CrossRef] [PubMed]
- Burkhard, B.; Müller, A.; Müller, F.; Grescho, V.; Anh, Q.; Arida, G.; Bustamante, J.V.J.; Van Chien, H.; Heong, K.L.; Escalada, M. Land cover-based ecosystem service assessment of irrigated rice cropping systems in southeast Asia—An explorative study. Ecosyst. Serv. 2015, 14, 76–87. [Google Scholar] [CrossRef]
- Boithias, L.; Acuña, V.; Vergoñós, L.; Ziv, G.; Marcé, R.; Sabater, S. Assessment of the water supply: Demand ratios in a Mediterranean basin under different global change scenarios and mitigation alternatives. Sci. Total Environ. 2014, 470–471, 567–577. [Google Scholar] [CrossRef]
- Wu, A.; Zhao, Y.; Shen, H.; Qin, Y.; Liu, X. Spatio-temporal pattern evolution of ecosystem service supply and demand in Beijing-Tianjin-Hebei region. J. Ecol. Rural Environ. 2018, 34, 968–975. (In Chinese) [Google Scholar]
- Shi, Y.; Shi, D. Study on the balance of ecological service supply and demand in Dongting Lake ecological economic zone. Geogr. Res. 2018, 37, 1714–1723. (In Chinese) [Google Scholar]
- He, S.; Su, Y.; Shahtahmassebi, A.R.; Huang, L.; Zhou, M.; Gan, M.; Deng, J.; Zhao, G.; Wang, K. Assessing and mapping cultural ecosystem services supply, demand and flow of farmlands in the Hangzhou metropolitan area, China. Sci. Total Environ. 2019, 692, 756–768. [Google Scholar] [CrossRef]
- Stoll, S.; Frenzel, M.; Burkhard, B.; Adamescu, M.; Augustaitis, A.; Baeßler, C.; Bonet, F.J.; Carranza, M.L.; Cazacu, C.; Cosor, G.L. Assessment of ecosystem integrity and service gradients across Europe using the LTER Europe network. Ecol. Model. 2015, 295, 75–87. [Google Scholar] [CrossRef]
- Jacobs, S.; Burkhard, B.; Van Daele, T.; Staes, J.; Schneiders, A. ‘The Matrix Reloaded’: A review of expert knowledge use for mapping ecosystem services. Ecol. Model. 2015, 295, 21–30. [Google Scholar] [CrossRef]
- Goldenberg, R.; Kalantari, Z.; Cvetkovic, V.; Mörtberg, U.; Deal, B.; Destouni, G. Distinction, quantification and mapping of potential and realized supply-demand of flow-dependent ecosystem services. Sci. Total Environ. 2017, 593–594, 599–609. [Google Scholar] [CrossRef] [PubMed]
- Cai, W.; Gibbs, D.; Zhang, L.; Ferrier, G.; Cai, Y. Identifying hotspots and management of critical ecosystem services in rapidly urbanizing Yangtze River Delta Region, China. J. Environ. Manag. 2017, 191, 258–267. [Google Scholar] [CrossRef]
- Tao, Y.; Wang, H.; Ou, W.; Guo, J. A land-cover-based approach to assessing ecosystem services supply and demand dynamics in the rapidly urbanizing Yangtze River Delta region. Land Use Policy 2018, 72, 250–258. [Google Scholar] [CrossRef]
- Campagne, C.; Roche, P.; Gosselin, F.; Tschanz, L.; Tatoni, T. Expert-based ecosystem services capacity matrices: Dealing with scoring variability. Ecol. Indic. 2017, 79, 63–72. [Google Scholar] [CrossRef] [Green Version]
- Zurqani, H.; Post, C.; Mikhailova, E.; Allen, J. Mapping urbanization trends in a forested landscape using google earth engine. Remote Sens. Earth Syst. Sci. 2019, 2, 173–182. [Google Scholar] [CrossRef]
- Wu, K.; Fang, C.; Huang, H.; Wang, J. Comprehensive delimitation and ring identification on urban spatial radiation of regional central cities: Case study of Zhengzhou. J. Urban Plan. Dev. 2013, 139, 258–273. [Google Scholar] [CrossRef]
- Mu, B.; Mayer, A.L.; He, R.; Tian, G. Land use dynamics and policy implications in Central China: A case study of Zhengzhou. Cities 2016, 58, 39–49. [Google Scholar] [CrossRef]
- Li, T.; Lu, Y. A review on the progress of modeling techniques in ecosystem services. Acta Ecol. Sin. 2018, 38, 5287–5296. (In Chinese) [Google Scholar]
- Millennium Ecosystem Assessment (MA). Ecosystem and Human Wellbeing: Current State and Trends; Island Press: Washington, DC, USA, 2005. [Google Scholar]
- Chen, J.; Zhang, Y.; Yu, Y. Effect of MAUP in spatial autocorrelation. Acta Geogr. Sin. 2011, 66, 1597–1606. [Google Scholar]
- Chen, J.; Jiang, B.; Bai, Y.; Xu, X.; Alatalo, J.M. Quantifying ecosystem services supply and demand shortfalls and mismatches for management optimisation. Sci. Total Environ. 2019, 650, 1426–1439. [Google Scholar] [CrossRef] [PubMed]
- Guan, Q.; Hao, J.; Xu, Y.; Ren, G.; Kang, L. Zoning of agroecological management based on the relationship between supply and demand of ecosystem services. Resour. Sci. 2019, 41, 1359–1373. (In Chinese) [Google Scholar]
- Li, Q.; Li, T.; Yang, M.; Ying, W. Spatiotemporal variation of ecosystem services value based on gradient analysis in Wuhan: 2000–2010. Acta Ecol. Sin. 2017, 37, 2118–2125. (In Chinese) [Google Scholar]
- Radford, K.G.; James, P. Changes in the value of ecosystem services along a rural-urban gradient: A case study of Greater Manchester, UK. Landsc. Urban Plan. 2013, 109, 117–127. [Google Scholar] [CrossRef]
- Lei, J.; Chen, Z.; Wu, T.; Li, L.; Yang, Q.; Chen, X. Spatial autocorrelation pattern analysis of land use and the value of ecosystem services in northeast Hainan island. Acta Ecol. Sin. 2015, 39, 2366–2377. (In Chinese) [Google Scholar]
- Chen, S.; Sleipness, O.R.; Christensen, K.M.; Feldon, D.; Xu, Y. Environmental justice and park quality in an intermountain west gateway community: Assessing the spatial autocorrelation. Landsc. Ecol. 2019, 34, 2323–2335. [Google Scholar] [CrossRef]
- Zhao, X.; Zhou, W.; Han, L.; Locke, D. Spatiotemporal variation in PM2.5 concentrations and their relationship with socioeconomic factors in China’s major cities. Environ. Int. 2019, 133, 105145. [Google Scholar] [CrossRef]
- Burkhard, B.; Kandziora, M.; Hou, Y. Ecosystem service potentials, flows and demands-concepts for spatial localisation, indication and quantification. Landsc. Online 2014, 34, 1–32. [Google Scholar] [CrossRef]
- Bai, Y.; Wang, M.; Li, H.; Huang, S.; Juha, M.A. Ecosystem service supply and demand: Theory and management application. Acta Ecol. Sin. 2017, 37, 5846–5852. (In Chinese) [Google Scholar]
- Kienast, F.; Bolliger, J.; Potschin, M.; de Groot, R.S.; Verburg, P.H.; Heller, I.; Wascher, D.; Haines-Young, R. Assessing landscape functions with broad-scale environmental data: Insights gained from a prototype development for Europe. Environ. Manag. 2009, 44, 1099–1120. [Google Scholar] [CrossRef] [Green Version]
- Haines-Young, R.; Potschin, M.; Kienast, F. Indicators of ecosystem service potential at European scales: Mapping marginal changes and trade-offs. Ecol. Indic. 2012, 21, 39–53. [Google Scholar] [CrossRef]
- Liu, s.; Yang, Y.; Wang, Y. Mapping supply and demand differentiation of hydrological regulation service based on matrix analysis: A case study of Jiaxing City, Zhejiang Province. Acta Ecol. Sin. 2019, 39, 1189–1202. (In Chinese) [Google Scholar]
- Sun, J.; Liu, L.; Müller, K.; Zander, P.; Ren, G.; Yin, G.; Hu, Y. Surplus or Deficit? Spatiotemporal Variations of the Supply, Demand, and Budget of Landscape Services and Landscape Multifunctionality in Suburban Shanghai, China. Sustainability 2018, 10, 3752. [Google Scholar] [CrossRef] [Green Version]
- Kaiser, G.; Burkhard, B.; Römer, H.; Sangkaew, S.; Graterol, R.; Haitook, T.; Sterr, H.; Sakuna-Schwartz, D. Mapping tsunami impacts on land cover and related ecosystem service supply in Phang Nga, Thailand. Nat. Hazard Earth Syst. Sci. 2013, 13, 3095–3111. [Google Scholar] [CrossRef] [Green Version]
- Kandziora, M.; Burkhard, B.; Müller, F. Interactions of ecosystem properties, ecosystem integrity and ecosystem service indicators—A theoretical matrix exercise. Ecol. Indic. 2013, 28, 54–78. [Google Scholar] [CrossRef]
- Hou, Y.; Burkhard, B.; Müller, F. Uncertainties in landscape analysis and ecosystem service assessment. J. Environ. Manag. 2013, 127, S117–S131. [Google Scholar] [CrossRef]
- Huang, A.; Xu, Y.; Liu, C.; Lu, L.; Zhang, Y.; Sun, P.; Zhou, G.; Du, T.; Xiang, Y. Simulated town expansion under ecological constraints: A case study of Zhangbei County, Heibei Province, China. Habitat Int. 2019, 91, 101986. [Google Scholar] [CrossRef]
- Pulaer, M.; Haimiti, Y. Ecosystem services sensitivity to land-use change: A case study of the keriya oasis. J. Nat. Resour. 2014, 29, 1849–1858. (In Chinese) [Google Scholar]
Land Use Type | Corresponding CORINE Land Use Type | Land Use Type | Corresponding CORINE Land Use Type |
---|---|---|---|
Dry land | Nonirrigated arable land | Low coverage grassland | Natural grassland, pastures |
Paddy fields | Permanently irrigated land, rice fields | Rivers and channels | Water courses |
Forest land | Agro-forestry areas, broad-leaved forest, coniferous forest, and others | Reservoirs and ponds | Water bodies |
Sparse woodland | Bottomland | Dunes, intertidal flats, marshes, and others | |
Shrub forest | Transitional woodland/shrub | Urban land | Continuous urban fabric |
Other woodland | Orchards, vineyards, olive groves | Rural settlements | Discontinuous urban fabric |
High coverage grassland | Natural grassland, pastures | Other construction land | Airports, mineral extraction sites, dump sites, and others |
Moderate coverage grassland | Unused land | Salines, bare rocks, and others |
Land Cover Types | Provisioning Services | Crops | Fodder | Capture Fisheries | Timber | Energy | Freshwater | Regulating Services | Local Climate Regulation | Flood Protection | Ground Water Recharge | Air Quality Regulation | Erosion Regulation | Nutrient Regulation | Water Purification | Pollination | Cultural Services | Landscape Aesthetics | Recreation & Eco-tourism | Knowledge Systems | Natural Heritage |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dry land | 9 | 4 | 3 | 0 | 0 | 2 | 0 | 15 | 2 | 1 | 1 | 2 | 3 | 2 | 1 | 3 | 10 | 2 | 1 | 3 | 4 |
Paddy field | 6 | 4 | 1 | 0 | 0 | 1 | 0 | 11 | 3 | 1 | 0 | 2 | 2 | 2 | 0 | 1 | 10 | 2 | 1 | 3 | 4 |
Woodland | 3 | 0 | 0 | 0 | 2 | 1 | 0 | 29 | 5 | 4 | 2 | 5 | 5 | 3 | 4 | 1 | 14 | 3 | 3 | 4 | 4 |
Sparse woodland | 3 | 0 | 0 | 0 | 2 | 1 | 0 | 28 | 5 | 3 | 2 | 5 | 5 | 3 | 4 | 1 | 14 | 3 | 3 | 4 | 4 |
Shrubbery | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 20 | 2 | 2 | 2 | 4 | 4 | 3 | 2 | 1 | 14 | 3 | 3 | 4 | 4 |
Other woodland | 3 | 1 | 0 | 0 | 2 | 0 | 0 | 22 | 3 | 2 | 2 | 4 | 4 | 2 | 2 | 3 | 13 | 3 | 4 | 4 | 2 |
High coverage grassland | 3 | 0 | 3 | 0 | 0 | 0 | 0 | 17 | 2 | 1 | 1 | 2 | 4 | 3 | 3 | 1 | 8 | 4 | 3 | 0 | 1 |
Medium coverage grassland | 2 | 0 | 2 | 0 | 0 | 0 | 0 | 17 | 2 | 1 | 1 | 2 | 4 | 3 | 3 | 1 | 8 | 4 | 3 | 0 | 1 |
Low coverage grassland | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 10 | 1 | 0 | 1 | 1 | 3 | 2 | 1 | 1 | 5 | 1 | 3 | 0 | 1 |
River and channel | 8 | 0 | 0 | 3 | 0 | 1 | 4 | 17 | 1 | 4 | 3 | 2 | 0 | 3 | 4 | 0 | 13 | 3 | 4 | 3 | 3 |
Reservoirs and ponds | 6 | 0 | 0 | 3 | 0 | 0 | 3 | 14 | 3 | 3 | 3 | 1 | 0 | 2 | 2 | 0 | 9 | 2 | 4 | 2 | 1 |
Bottomland | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 6 | 2 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 8 | 2 | 1 | 3 | 2 |
Urban land | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Rural settlements | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Other construction sites | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Unused land | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 1 | 0 | 1 | 1 |
Land Cover Types | Provisioning Services | Crops | Fodder | Capture Fisheries | Timber | Energy | Freshwater | Regulating Services | Local Climate Regulation | Flood Protection | Ground Water Recharge | Air Quality Regulation | Erosion Regulation | Nutrient Regulation | Water Purification | Pollination | Cultural Services | Landscape Aesthetics | Recreation & Eco-tourism | Knowledge Systems | Natural Heritage |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dry land | 7 | 0 | 0 | 0 | 0 | 2 | 5 | 14 | 2 | 2 | 0 | 1 | 3 | 3 | 0 | 3 | 1 | 0 | 0 | 1 | 0 |
Paddy field | 6 | 0 | 0 | 0 | 0 | 1 | 5 | 19 | 2 | 2 | 2 | 1 | 2 | 3 | 5 | 2 | 1 | 0 | 0 | 1 | 0 |
Woodland | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Sparse woodland | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Shrubbery | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Other woodland | 6 | 0 | 0 | 0 | 1 | 2 | 3 | 12 | 2 | 1 | 0 | 1 | 1 | 1 | 3 | 3 | 0 | 0 | 0 | 0 | 0 |
High coverage grassland | 2 | 0 | 2 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Medium coverage grassland | 2 | 0 | 2 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Low coverage grassland | 2 | 0 | 2 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
River and channel | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 | 1 | 2 | 0 | 0 | 1 | 0 | 0 | 3 | 0 | 3 | 0 | 0 |
Reservoirs and ponds | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 | 1 | 2 | 0 | 0 | 1 | 0 | 0 | 3 | 0 | 3 | 0 | 0 |
Bottomland | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 | 3 | 0 | 0 | 0 | 1 | 0 | 0 | 2 | 0 | 2 | 0 | 0 |
Urban land | 24 | 5 | 1 | 5 | 3 | 5 | 5 | 27 | 5 | 5 | 2 | 5 | 2 | 2 | 5 | 1 | 18 | 5 | 4 | 5 | 4 |
Rural settlements | 24 | 5 | 3 | 4 | 3 | 4 | 5 | 29 | 5 | 5 | 4 | 5 | 2 | 2 | 5 | 1 | 18 | 5 | 4 | 5 | 4 |
Other construction sites | 13 | 3 | 1 | 1 | 1 | 4 | 3 | 17 | 4 | 4 | 1 | 3 | 1 | 1 | 2 | 1 | 7 | 4 | 1 | 2 | 0 |
Unused land | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Land Use Type | 1995 | 2005 | 2015 | Rate of Change | |||||
---|---|---|---|---|---|---|---|---|---|
Area hm2 | Proportion % | Area hm2 | Proportion % | Area hm2 | Proportion % | 1995–2005 | 2005–2015 | 1995–2015 | |
Dry land | 484,701.87 | 65.10% | 448,541.56 | 60.24% | 419,108.51 | 56.29% | −4.86% | −3.95% | −8.81% |
Paddy fields | 30,031.94 | 4.03% | 27,316.01 | 3.67% | 13,103.53 | 1.76% | −0.36% | −1.91% | −2.27% |
Woodland | 31,222.74 | 4.19% | 34,564.76 | 4.64% | 37,119.14 | 4.99% | 0.45% | 0.35% | 0.80% |
Sparse woodland | 18,926.33 | 2.54% | 13,579.22 | 1.82% | 3439.18 | 0.46% | −0.72% | −1.36% | −2.08% |
Shrubbery | 16,917.35 | 2.27% | 15,785.72 | 2.12% | 9213.89 | 1.24% | −0.15% | −0.88% | −1.03% |
Other woodland | 15,926.45 | 2.14% | 10,175.30 | 1.37% | 5310.97 | 0.71% | −0.77% | −0.66% | −1.43% |
High coverage grassland | 7208.63 | 0.97% | 34,503.20 | 4.63% | 24,186.38 | 3.25% | 3.66% | −1.38% | 2.28% |
Medium coverage grassland | 38,311.00 | 5.15% | 29,572.01 | 3.97% | 11,083.65 | 1.49% | −1.18% | −2.48% | −3.66% |
Low coverage grassland | 6380.78 | 0.86% | 3495.06 | 0.47% | 3137.16 | 0.42% | −0.39% | −0.05% | −0.44% |
River and channel | 3359.56 | 0.45% | 8798.60 | 1.18% | 9902.51 | 1.33% | 0.73% | 0.15% | 0.88% |
Reservoirs and ponds | 6437.55 | 0.86% | 12,134.06 | 1.63% | 13,284.12 | 1.78% | 0.77% | 0.15% | 0.92% |
Bottomland | 9563.11 | 1.28% | 5495.10 | 0.74% | 6778.28 | 0.91% | −0.54% | 0.17% | −0.37% |
Urban land | 21,644.92 | 2.91% | 39,358.41 | 5.29% | 72,542.92 | 9.74% | 2.38% | 4.45% | 6.83% |
Rural settlements | 46,473.59 | 6.24% | 50,044.74 | 6.72% | 95,423.01 | 12.82% | 0.48% | 6.10% | 6.58% |
Other construction sites | 7415.96 | 1.00% | 10,911.12 | 1.47% | 20,966.76 | 2.82% | 0.47% | 1.35% | 1.82% |
Unused land | 78.21 | 0.01% | 325.13 | 0.04% | 13,103.53 | 1.76% | 0.03% | 1.72% | 1.75% |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ji, Z.; Xu, Y.; Wei, H. Identifying Dynamic Changes in Ecosystem Services Supply and Demand for Urban Sustainability: Insights from a Rapidly Urbanizing City in Central China. Sustainability 2020, 12, 3428. https://doi.org/10.3390/su12083428
Ji Z, Xu Y, Wei H. Identifying Dynamic Changes in Ecosystem Services Supply and Demand for Urban Sustainability: Insights from a Rapidly Urbanizing City in Central China. Sustainability. 2020; 12(8):3428. https://doi.org/10.3390/su12083428
Chicago/Turabian StyleJi, Zhengxin, Yueqing Xu, and Hejie Wei. 2020. "Identifying Dynamic Changes in Ecosystem Services Supply and Demand for Urban Sustainability: Insights from a Rapidly Urbanizing City in Central China" Sustainability 12, no. 8: 3428. https://doi.org/10.3390/su12083428