Implementation of E-Proctoring in Online Teaching: A Study about Motivational Factors
Abstract
:1. Introduction
2. Literature Review
3. Methodology
4. Results
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Pathak, B.K. Emerging online educational models and the transformation of traditional universities. Electron. Mark. 2016, 26, 315–321. [Google Scholar] [CrossRef]
- García-Peñalvo, F.J.; Fidalgo-Blanco, Á.; Sein-Echaluce, M.L. An adaptive hybrid MOOC model: Disrupting the MOOC concept in higher education. Telemat. Inform. 2018, 35, 1018–1030. [Google Scholar] [CrossRef]
- Beltrán Hernández de Galindo, M.; Ramírez-Montoya, M. Innovación en el diseño instruccional de cursos masivos abiertos (MOOC’s) para desarrollar competencias de emprendimiento en sustentabilidad energética. Educ. Knowl. Soc. 2019, 20, 15. [Google Scholar] [CrossRef] [Green Version]
- García-Peñalvo, F.J. Modelo de referencia para la enseñanza no presencial en universidades presenciales. Campus Virtuales 2020, 9, 41–56. [Google Scholar]
- Mato-Vázquez, D.; Álvarez-Seoane, D. La implementación de TIC y MDD en la práctica docente de Educación Primaria. Campus Virtuales 2019, 8, 73–84. [Google Scholar]
- Infante-Moro, A.; Infante-Moro, J.C.; Gallardo-Pérez, J. The Importance of ICTs for Students as a Competence for their Future Professional Performance: The Case of the Faculty of Business Studies and Tourism of the University of Huelva. J. New Approaches Educ. Res. 2019, 8, 201–213. [Google Scholar] [CrossRef] [Green Version]
- López Belmonte, J.; Pozo Sánchez, S.; Vicente Bújez, M.R.; Díaz Mohedo, M.T. Herramientas robóticas para la dinamización de nuevos espacios educativos. Campus Virtuales 2019, 8, 63–73. [Google Scholar]
- Morales Salas, R.E.; Infante-Moro, J.C.; Gallardo-Pérez, J. La mediación e interacción en un AVA para la gestión eficaz en el aprendizaje virtual. Campus Virtuales 2019, 8, 49–61. [Google Scholar]
- Rey Castillo, M.; Gómez Zermeño, M.G. Tendencias en investigación sobre Learning Management Systems. Int. J. Inf. Syst. Softw. Eng. Big Co. 2019, 6, 123–134. [Google Scholar]
- González-González, C.S.; Guzmán-Franco, M.D.; Infante-Moro, A. Tangible Technologies for Childhood Education: A Systematic Review. Sustainability 2019, 11, 2910. [Google Scholar] [CrossRef] [Green Version]
- De la Serna-Tuya, A.S.; González-Calleros, J.M.; Navarro, Y. Las Tecnológicas de Información y Comunicación en el preescolar: Una revisión bibliográfica. Campus Virtuales 2018, 7, 19–31. [Google Scholar]
- González González, C.S.; Herrera González, E.; Moreno Ruiz, L.; Reyes Alonso, N.; Hernández Morales, S.; Guzmán Franco, M.D.; Infante Moro, A. Computational Thinking and Down Syndrome: An Exploratory Study Using the KIBO Robot. Informatics 2019, 6, 25. [Google Scholar] [CrossRef] [Green Version]
- Mena Guacas, A.F.; Santoveña Casal, S.M. Whatsapp and Formulating Guidelines on Network Interaction during the Learning Process in the University Classroom. Int. J. Educ. Res. Innov. 2018, 13, 121–136. [Google Scholar]
- Infante-Moro, A.; Infante-Moro, J.C.; Torres-Díaz, J.C.; Martínez-López, F.J. Los MOOC como sistema de aprendizaje en la Universidad de Huelva (UHU). Ijeri: Int. J. Educ. Res. Innov. 2017, 7, 13–24. [Google Scholar]
- EdX. Online Proctoring Pioneer Joins Open edX Platform to Ensure Integrity of Online Testing. PR Newswire, 20 July 2017. [Google Scholar]
- Kantrowitz, T.M.; Dawson, C.R.; Fetzer, M.S. Computer adaptive testing (CAT): A faster, smarter, and more secure approach to pre-employment testing. J. Bus. Psychol. 2011, 26, 227–232. [Google Scholar] [CrossRef]
- Behrend, T.S. Online recruiting and selection: Innovations in talent acquisition. Pers. Psychol. 2010, 63, 804–806. [Google Scholar]
- Dew, J. Global, mobile, virtual, and social: The college campus of tomorrow. Futurist 2010, 44, 46–50. [Google Scholar]
- Blimpo, M.P. Team incentives for education in developing countries: A randomized field experiment in benin. Am. Econ. J. Appl. Econ. 2014, 6, 90–109. [Google Scholar] [CrossRef]
- Mujtaba, B.G.; Afza, T. Virtual leaps in distance education: A conversation with dr. naveed A. malik, founding rector of the virtual university of pakistan. J. Appl. Manag. Entrep. 2013, 18, 113–122. [Google Scholar] [CrossRef]
- Shanbari, H.; Blinn, N.; Issa, R.R.A. Using augmented reality video in enhancing masonry and roof component comprehension for construction management students. Eng. Constr. Archit. Manag. 2016, 23, 765–781. [Google Scholar] [CrossRef]
- Wagner, E.; Enders, J.; Pirie, M.; Thomas, D. Supporting academic integrity in a fully-online degree completion program through the use of synchronous video conferences. J. Inf. Syst. Educ. 2016, 27, 159–173. [Google Scholar]
- Hilgers, M.G.; Flachsbart, B.B.; Elrod, C.C. Collaborative international education: Reaching across borders. Multicult. Educ. Technol. J. 2012, 6, 45–56. [Google Scholar] [CrossRef]
- International Accrediting Body. International Accrediting Body for first time, approves online proctoring of critical examinations. PR Newswire, 7 December 2017. [Google Scholar]
- Indiana University. Indiana University selects proctoring platform to ensure integrity of online assessments. PR Newswire, 6 December 2017. [Google Scholar]
- Arbués, E. El desarrollo de competencias en el alumnado universitario. Nuevos retos metodológicos. Certiuni J. 2016, 2, 10–18. [Google Scholar]
- Navarro, P. How economics faculty can survive (and perhaps thrive) in a brave new online world. J. Econ. Perspect. 2015, 29, 155–176. [Google Scholar] [CrossRef] [Green Version]
- Collins, D.; Weber, J.; Zambrano, R. Teaching business ethics online: Perspectives on course design, delivery, student engagement, and assessment. J. Bus. Ethics 2014, 125, 513–529. [Google Scholar] [CrossRef]
- Jarvis, R.M. The law school admiralty exam. J. Marit. Law Commer. 2014, 45, 97–117. [Google Scholar]
- Al-yakoob, S.; Sherali, H.D.; Al-jazzaf, M. A mixed-integer mathematical modeling approach to exam timetabling. Comput. Manag. Sci. 2010, 7, 19–46. [Google Scholar] [CrossRef]
- ProctorU. ProctorU celebrates delivering 4 million online proctored exams. PR Newswire, 25 September 2017. [Google Scholar]
- Sánchez-Prieto, J.C.; Huang, F.; Olmos-Migueláñez, S.; García-Peñalvo, F.J.; Teo, T. Exploring the unknown: The effect of resistance to change and attachment on mobile adoption among secondary pre-service teachers. Br. J. Educ. Technol. 2019, 50, 2433–2449. [Google Scholar] [CrossRef]
- Arteaga, R. Factores Motivacionales que Influyen en la Aceptación de las Redes Sociales Online Para Comunicarse con las Entidades Financieras. Ph.D. Thesis, Universidad de Huelva, Huelva, España, 2013. [Google Scholar]
- Venkatesh, V.; Davis, F.D. A theoretical extension of the technology acceptance model: Four longitudinal field studies. Manag. Sci. 2000, 46, 186–204. [Google Scholar] [CrossRef] [Green Version]
- Marakas, G.M.; Yi, M.Y.; Johnson, R.D. The multilevel and multifaceted character of computer self-efficacy: Toward clarification of the construct and an integrative framework for research. Inf. Syst. Res. 1998, 9, 129–163. [Google Scholar] [CrossRef]
- Moore, G.C.; Benbasat, I. Development of an Instrument to Measure the Perceptions of Adopting an Information Technology Innovation. Inf. Syst. Res. 1991, 2, 192–222. [Google Scholar] [CrossRef]
- Bandura, A. Self-efficacy Mechanism in Human Agency. Am. Psychol. 1982, 37, 122–147. [Google Scholar] [CrossRef]
- Zolait, A.H.S.; Mattila, M.; Sulaiman, A. The effect of User’s Informational-Based Readiness on innovation acceptance. Int. J. Bank Mark. 2009, 27, 76–100. [Google Scholar] [CrossRef]
- Venkatesh, V.; Morris, M.G.; Davis, G.B.; Davis, F.D. User acceptance of information technology: Toward a unified view. MIS Q. 2003, 27, 425–478. [Google Scholar] [CrossRef] [Green Version]
- Venkatesh, V.; Morris, M.G. Why Don’t Men Ever Stop to Ask for Directions? Gender, Social Influence and their Role in Technology Acceptance and Usage Behavior. MIS Q. 2000, 24, 115–139. [Google Scholar] [CrossRef]
- Thompson, R.L.; Higgins, C.A.; Howell, J.M. Personal Computing: Toward a Conceptual Model of Utilization. MIS Q. 1991, 15, 124–143. [Google Scholar] [CrossRef]
- Dwyer, C. Digital relationships in the MySpace generation: Results from a qualitative study. In Proceedings of the 40th Hawaii International Conference on System Sciences (HICSS), Waikoloa, HI, USA, 3–6 January 2007; p. 19. [Google Scholar]
- Dwyer, C.; Hiltz, S.; Passerini, K. Trust and privacy concern within social networking sites: A comparison of Facebook and MySpace. In Proceedings of the Thirteenth Americas Conference on Information Systems, Keystone, CO, USA, 10–12 August 2017; pp. 9–12. [Google Scholar]
- Acquisti, A.; Gross, R. Imagined communities: Awareness, information sharing, and privacy on the Facebook. In International Workshop on Privacy Enhancing Technologies, Montréal, Canada; Springer: Berlin/Heidelberg, Germany, 2006; pp. 36–58. [Google Scholar]
- Rogers, E.M. Diffusion of Innovations, 4th ed.; Collier Macmillan: New York, NY, USA, 1995. [Google Scholar]
- Tan, M.; Teo, T.S.H. Factors influencing the adoption of Internet banking. J. Assoc. Inf. Syst. 2000, 1, 5. [Google Scholar] [CrossRef] [Green Version]
- Davis, F.D.; Bagozzi, R.P.; Warshaw, P.R. User acceptance of computer technology: A comparison of two theoretical models. Manag. Sci. 1989, 35, 982–1003. [Google Scholar] [CrossRef] [Green Version]
- Chiu, Y.B.; Lin, C.P.; Tang, L.L. Gender differs: Assessing a model of online purchase intentions in e-tail service. Int. J. Serv. Ind. Manag. 2005, 16, 416–435. [Google Scholar] [CrossRef]
- Nysveen, H.; Pedersen, P.; Thornbjørnsen, H. Intentions to use mobile services: Antecedents and cross-service comparisons. J. Acad. Mark. Sci. 2005, 33, 330–346. [Google Scholar] [CrossRef]
- Muñoz, F. La adopción de una Innovación Basada en la Web. Análisis y Modelización de los Mecanismos Generadores de Confianza; Universidad de Granada: Granada, Spain, 2008. [Google Scholar]
- Willis, T. An Evaluation of the Technology Acceptance Model as a Means of Understanding Online Social Networking Behavior; University of South Florida: Tampa, FL, USA, 2008. [Google Scholar]
- Ajzen, I. The theory of planned behavior. Organ. Behav. Hum. Decis. Process 1991, 50, 179–211. [Google Scholar] [CrossRef]
- Ajzen, I.; Fishbein, M. Understanding Attitudes and Predicting Social Behaviour; Prentice-Hall: Englewood Cliffs, NJ, USA, 1980. [Google Scholar]
- Taylor, S.; Todd, P. Decomposition and cross over effects in the theory of planned behaviour: A study of consumer adoption intentions. Int. J. Res. Mark. 1995, 12, 137–155. [Google Scholar] [CrossRef]
- Maridueña, M.R.; Leyva, M.; Febles, A. Modelado y análisis de indicadores de ciencia y tecnología mediante mapas cognitivos difusos. Cienc. De La Inf. 2016, 47, 17–24. [Google Scholar]
- Papageorgiou, E.I.; Markinos, A.T.; Gemtos, T. Application of fuzzy cognitive maps for cotton yield management in precision farming. Expert Syst. Appl. 2009, 36, 12399–12413. [Google Scholar] [CrossRef]
- Papageorgiou, E.I.; Salmerón, J.L. A Review of Fuzzy Cognitive Maps Research During the Last Decade. IEEE Trans. Fuzzy Syst. 2013, 21, 66–79. [Google Scholar] [CrossRef]
- Curia, L.; Lavalle, A. Estrategias de decisión en sistemas dinámicos—Aplicando mapas cognitivos difusos aplicación a un ejemplo socio-económico. J. Inf. Syst. Technol. Manag. 2011, 8, 663–680. [Google Scholar] [CrossRef]
- Codara, L. Le Mappe Cognitive; Carocci Editore: Roma, Italy, 1998. [Google Scholar]
- Özesmi, U.; Özesmi, S.L. Ecological models based on people’s knowledge: A multistep Fuzzy Cognitive Mapping approach. Ecol. Model. 2004, 176, 43–64. [Google Scholar] [CrossRef] [Green Version]
- Solana Gutierrez, J.; Rincón Sanz, G.; Alonso González, C.; Garcia De Jalon Lastra, D. Utilización de Mapas de Conocimiento Difuso (MCD) en la asignación de prioridades de la restauración fluvial: Aplicación al río Esla. Cuad. De La Soc. Española De Cienc. For. 2015, 41, 367–380. [Google Scholar]
- Mouratiadou, I.; Moran, D. Mapping public participation in the Water Framework Directive: A case study of the Pinios River Basin, Greece. Ecol. Econ. 2007, 62, 66–76. [Google Scholar] [CrossRef]
- Banini, G.A.; Bearman, R.A. Application of fuzzy cognitive maps to factors affecting slurry rheology. Int. J. Miner. Process. 1998, 52, 233–244. [Google Scholar] [CrossRef]
- FCMappers. Available online: http://www.fcmappers.net (accessed on 15 February 2020).
- Özesmi, U.; Özesmi, S.L. A participatory approach to ecosystem conservation: Fuzzy cognitive maps and stakeholder group analysis in Uluabat Lake, Turkey. Environ. Manag. 2003, 31, 0518–0531. [Google Scholar] [CrossRef] [PubMed]
- Howlett, B.; Hewett, B. Securing and proctoring online tests. In Online Assessment and Measurement: Foundations and Challenges; IGI Global: Hershey, PA, USA, 2005; pp. 300–329. [Google Scholar]
- Sutton, H. Minimize online cheating through proctoring, consequences. Recruit. Retaining Adult Learn. 2019, 21, 1–5. [Google Scholar] [CrossRef]
- Bandyopadhyay, K.; Barnes, C.; Bandyopadhyay, S. An investigation of the factors that influence the use of proctoring in online courses. In Proceedings of the Association of Collegiate Marketing Educators (2015); ACME: Prairie View, TX, USA, 2015; pp. 49–50. [Google Scholar]
- Atoum, Y.; Chen, L.; Liu, A.X.; Hsu, S.D.; Liu, X. Automated online exam proctoring. IEEE Trans. Multimed. 2017, 19, 1609–1624. [Google Scholar] [CrossRef]
- Davis, A.B.; Rand, R.; Seay, R. Remote proctoring: The effect of proctoring on grades. In Advances in Accounting Education: Teaching and Curriculum Innovations; Emerald Group Publishing Limited: Bingley, UK, 2016; pp. 23–50. [Google Scholar]
- OReilly, G.; Creagh, J. A categorization of online proctoring. In Global Learn; Association for the Advancement of Computing in Education (AACE): Jacksonville, FL, USA, 2016; pp. 542–552. [Google Scholar]
- Kayser, M.N. Online Proctoring Success Factors & Best Practices; Minnesota eLearning Summit: Saint Paul, MN, USA, 2016. [Google Scholar]
Quality Management (QM) |
This factor would be the extent of satisfaction when using a new technological tool, but only in terms of whether quality is perceived in its use [34] and whether it provides demonstrable and tangible results [35,36,37] |
Available Information (AI) |
This factor would be the tendency to adopt and use a new technological tool with the available information [38]. |
External Conditioning (EC) |
This factor would be the influence that potential users receive from the environment to use a new technological tool. This influence can be positive or negative, and some examples of these external conditioning factors can be seen in the comments or suggestions of important people for the user and in the help that is found to learn how this new tool works [39,40,41]. |
Trust (T) |
This factor would be the extent of security and privacy that users of a new technological tool expect to have when using it [42,43,44]. |
Perceived Compatibility (PC) |
This factor would be the extent of perception of compatibility of a technological product by the user, based on their values and personality [36,45]. Studies such as Tan and Teo’s [46] confirm that perceived compatibility influences users when adopting and motivating the use of technological products. |
Perceived Usefulness (PU) |
This factor would be the perception that the use of a technological product would increase the performance of its user [47]. Studies such as that of Chiu, Lin, and Tang [48] or that of Nysveen, Pedersen, and Thornbjørnsen [49] confirm that perceived utility influences users when adopting and motivating the use of technological products. All of this depending on whether this use helps to achieve the expected task and whether its use provides advantages over the traditional method [50,51]. |
Attitude (A) |
This factor would be the perception of a user about whether a new technological tool favors the behavior it performs or not [52]. Studies such as that of Ajzen and Fishbein [53] confirm that the attitude influences the behavior of users when adopting and motivating the use of any product. |
Intention (I) |
This factor would be the motivational elements that make a user use a new technological tool or not [48]. Studies such as that of Taylor and Todd [54] or that of Ajzen [52] confirm that intention influences the behavior of users when adopting and motivating the use of any product. |
Variable | Definition | Keywords |
---|---|---|
QUALITY MANAGEMENT | The extent of satisfaction when using a new technological tool, but only in terms of whether quality is perceived in its use and whether it provides demonstrable and tangible results. | Quality |
AVAILABLE INFORMATION | The tendency to adopt and use a new technological tool with the available information. | Available information on its use |
EXTERNAL CONDITIONING | The influence that potential users receive from the environment to use a new technological tool. | External influences |
TRUST | The degree of security and privacy that users of a new technological tool expect to have when using it. | Trust |
PERCEIVED COMPATIBILITY | The extent of perception of compatibility of a technological product by the user, based on their values and personality. | Compatibility with your activity |
PERCEIVED USEFULNESS | The perception that the use of a technological product would increase the performance of its user. | Usefulness |
ATTITUDE | The perception of a user about whether a new technological tool favors the behavior it performs or not. | Attitude |
INTENTION | The existence of motivational elements that make a user use a new technological tool or not. | Intention |
Value | Semantic Relation |
---|---|
1 | Very strong positive |
0.9 | |
0.8 | Strong positive |
0.7 | |
0.6 | Medium positive |
0.5 | |
0.4 | Weak positive |
0.3 | |
0.2 | Very weak positive |
0.1 | |
0 | There is no relationship |
−0.1 | |
−0.2 | Very weak negative |
−0.3 | |
−0.4 | Weak negative |
−0.5 | |
−0.6 | Medium negative |
−0.7 | |
−0.8 | Strong negative |
−0.9 | |
−1 | Very strong negative |
Quality Management (QM) | Available Information (AI) | External Conditioning (EC) | Trust (T) | Perceived Compatibility (PC) | Perceived Usefulness (PU) | Attitude (A) | Intention (I) | |
---|---|---|---|---|---|---|---|---|
Quality Management (QM) | 0.70 | 0.70 | 0.90 | 0.70 | 0.30 | 0.90 | 0.90 | |
Available Information (AI) | 0.30 | 0.50 | 0.90 | 0.64 | 0.80 | 0.82 | 0.90 | |
External Conditioning (EC) | 0 | 0.70 | 0.90 | 0.35 | 0.40 | 0.63 | 0.58 | |
Trust (T) | 0.20 | 0.60 | 0.80 | 0.41 | 0.41 | 0.90 | 0.90 | |
Perceived Compatibility (PC) | 0.60 | 0 | 0.60 | 0.80 | 0.80 | 0.90 | 0.90 | |
Perceived Usefulness (PU) | 0.30 | 0.80 | 0.70 | 0.90 | 0.70 | 0.90 | 0.90 | |
Attitude (A) | 0.40 | 0.70 | 0.70 | 0.80 | 0.60 | 0.60 | 0.72 | |
Intention (I) | 0.25 | 0.70 | 0.70 | 0.80 | 0.50 | 0.34 | 0.64 |
Centrality | Outdegree | Indegree |
---|---|---|
Trust (T) | Perceived Usefulness (PU) | Trust (T) |
Attitude (A) | Quality Management (QM) | Intention (I) |
Intention (I) | Available Information (AI) | Attitude (A) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
González-González, C.S.; Infante-Moro, A.; Infante-Moro, J.C. Implementation of E-Proctoring in Online Teaching: A Study about Motivational Factors. Sustainability 2020, 12, 3488. https://doi.org/10.3390/su12083488
González-González CS, Infante-Moro A, Infante-Moro JC. Implementation of E-Proctoring in Online Teaching: A Study about Motivational Factors. Sustainability. 2020; 12(8):3488. https://doi.org/10.3390/su12083488
Chicago/Turabian StyleGonzález-González, Carina S., Alfonso Infante-Moro, and Juan C. Infante-Moro. 2020. "Implementation of E-Proctoring in Online Teaching: A Study about Motivational Factors" Sustainability 12, no. 8: 3488. https://doi.org/10.3390/su12083488