Numerical Models of Subsurface Flow Constructed Wetlands: Review and Future Development
Abstract
:1. Introduction
2. Process-Based Sub-Models
2.1. Hydraulic Sub-Model
2.2. Reactive-Transport Sub-Model
2.3. Biochemical Sub-Model
2.4. Plants Sub-Model
2.5. Clogging Sub-Model
3. Comprehensive Model
3.1. HYDRUS Wetlands Module
3.2. BIO_PROE
3.3. CWM1-RETRASO Model
3.4. FITOVERT
3.5. CFD Model
4. Discussion of Model Structure and Sensitive Factors
4.1. Balance of Prediction Results and Model Structure
4.2. The Sensitive Factors
4.3. Improvement and Future Research
4.3.1. Species and Distribution of Bacteria in CWs
4.3.2. The Modification of Kinetic Mechanism of Biofilm
4.3.3. Quantitative Parameters and Computer Technology Development
4.3.4. Simplification
4.3.5. Emerging Pollutants Modeling in CWs
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kumar, J.L.; Zhao, Y.Q. A review on numerous modeling approaches for effective, economical and ecological treatment wetlands. J. Environ. Manag. 2011, 92, 400–406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meng, P.; Pei, H.; Hu, W.; Shao, Y.; Li, Z. How to increase microbial degradation in constructed wetlands: Influencing factors and improvement measures. Bioresour. Technol. 2014, 157, 316–326. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Zhang, J.; Ngo, H.H.; Guo, W.; Hu, Z.; Liang, S.; Fan, J.; Liu, H. A review on the sustainability of constructed wetlands for wastewater treatment: Design and operation. Bioresour. Technol. 2015, 175, 594–601. [Google Scholar] [CrossRef] [PubMed]
- Corbella, C.; Puigagut, J. Improving domestic wastewater treatment efficiency with constructed wetland microbial fuel cells: Influence of anode material and external resistance. Sci. Total Environ. 2018, 631–632, 1406–1414. [Google Scholar] [CrossRef] [PubMed]
- Tan, X.; Yang, Y.; Liu, Y.; Li, X.; Fan, X.; Zhou, Z.; Liu, C.; Yin, W. Enhanced simultaneous organics and nutrients removal in tidal flow constructed wetland using activated alumina as substrate treating domestic wastewater. Bioresour. Technol. 2019, 280, 441–446. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Liu, Y.S.; Deng, W.J.; Ying, G.G. Removal of steroid hormones and biocides from rural wastewater by an integrated constructed wetland. Sci. Total Environ. 2019, 660, 358–365. [Google Scholar] [CrossRef] [PubMed]
- Saeed, T.; Khan, T. Constructed wetlands for industrial wastewater treatment: Alternative media, input biodegradation ratio and unstable loading. J. Environ. Chem. Eng. 2019, 7, 103042. [Google Scholar] [CrossRef]
- Borin, M.; Politeo, M.; de Stefani, G. Performance of a hybrid constructed wetland treating piggery wastewater. Ecol. Eng. 2013, 51, 229–236. [Google Scholar] [CrossRef]
- Vymazal, J.; Brezinova, T. The use of constructed wetlands for removal of pesticides from agricultural runoff and drainage: A review. Environ. Int. 2015, 75, 11–20. [Google Scholar] [CrossRef]
- Flores, L.; Garcia, J.; Pena, R.; Garfi, M. Constructed wetlands for winery wastewater treatment: A comparative Life Cycle Assessment. Sci. Total Environ. 2019, 659, 1567–1576. [Google Scholar] [CrossRef]
- Yalcuk, A.; Ugurlu, A. Comparison of horizontal and vertical constructed wetland systems for landfill leachate treatment. Bioresour. Technol. 2009, 100, 2521–2526. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.Q.; Zhao, X.H.; Babatunde, A.O. Use of dewatered alum sludge as main substrate in treatment reed bed receiving agricultural wastewater: Long-term trial. Bioresour. Technol. 2009, 100, 644–648. [Google Scholar] [CrossRef] [PubMed]
- Pálfy, T.G.; Gourdon, R.; Meyer, D.; Troesch, S.; Molle, P. Model-based optimization of constructed wetlands treating combined sewer overflow. Ecol. Eng. 2017, 101, 261–267. [Google Scholar] [CrossRef]
- Stein, O.R.; Biederman, J.A.; Hook, P.B.; Allen, W.C. Plant species and temperature effects on the k–C* first-order model for COD removal in batch-loaded SSF wetlands. Ecol. Eng. 2006, 26, 100–112. [Google Scholar] [CrossRef]
- Langergraber, G.; Šimůnek, J. Modeling Variably Saturated Water Flow and Multicomponent Reactive Transport in Constructed Wetlands. Vadose Zone J. 2005, 4, 924–938. [Google Scholar] [CrossRef] [Green Version]
- Ojeda, E.; Caldentey, J.; Saaltink, M.W.; García, J. Evaluation of relative importance of different microbial reactions on organic matter removal in horizontal subsurface-flow constructed wetlands using a 2D simulation model. Ecol. Eng. 2008, 34, 65–75. [Google Scholar] [CrossRef]
- Langergraber, G.; Rousseau, D.P.; Garcia, J.; Mena, J. CWM1: A general model to describe biokinetic processes in subsurface flow constructed wetlands. Water Sci. Technol. 2009, 59, 1687–1697. [Google Scholar] [CrossRef]
- Samsó, R.; Garcia, J. BIO_PORE, a mathematical model to simulate biofilm growth and water quality improvement in porous media: Application and calibration for constructed wetlands. Ecol. Eng. 2013, 54, 116–127. [Google Scholar] [CrossRef]
- Langergraber, G. Applying Process-Based Models for Subsurface Flow Treatment Wetlands: Recent Developments and Challenges. Water 2017, 9, 5. [Google Scholar] [CrossRef]
- Samsó, R.; Blázquez, J.; Agulló, N.; Grau, J.; Torres, R.; García, J. Effect of bacteria density and accumulated inert solids on the effluent pollutant concentrations predicted by the constructed wetlands model BIO_PORE. Ecol. Eng. 2015, 80, 172–180. [Google Scholar] [CrossRef] [Green Version]
- Llorens, E.; Saaltink, M.W.; García, J. CWM1 implementation in RetrasoCodeBright: First results using horizontal subsurface flow constructed wetland data. Chem. Eng. J. 2011, 166, 224–232. [Google Scholar] [CrossRef]
- Mburu, N.; Rousseau, D.P.; van Bruggen, J.J.; Thumbi, G.; Llorens, E.; Garcia, J.; Lens, P.N. Reactive transport simulation in a tropical horizontal subsurface flow constructed wetland treating domestic wastewater. Sci. Total Environ. 2013, 449, 309–319. [Google Scholar] [CrossRef] [PubMed]
- Meyer, D.; Chazarenc, F.; Claveau-Mallet, D.; Dittmer, U.; Forquet, N.; Molle, P.; Morvannou, A.; Pálfy, T.; Petitjean, A.; Rizzo, A.; et al. Modelling constructed wetlands: Scopes and aims—A comparative review. Ecol. Eng. 2015, 80, 205–213. [Google Scholar] [CrossRef] [Green Version]
- Yang, M.; Lu, M.; Bian, H.; Sheng, L.; He, C. Effects of clogging on hydraulic behavior in a vertical-flow constructed wetland system: A modelling approach. Ecol. Eng. 2017, 109, 41–47. [Google Scholar] [CrossRef]
- Tang, X.Y.; Yang, Y.; McBride, M.B.; Tao, R.; Dai, Y.N.; Zhang, X.M. Removal of chlorpyrifos in recirculating vertical flow constructed wetlands with five wetland plant species. Chemosphere 2019, 216, 195–202. [Google Scholar] [CrossRef]
- Forquet, N.; Wanko, A.; Molle, P.; Mose, R.; Sadowski, A.G. Two-phase flow modelling for oxygen renewal estimation in vertical flow filter: Luxury or necessity? Water Sci. Technol. 2009, 59, 2311–2319. [Google Scholar] [CrossRef]
- Langergraber, G.; Šimůnek, J. Reactive Transport Modeling of Subsurface Flow Constructed Wetlands Using the HYDRUS Wetland Module. Vadose Zone J. 2012, 11. [Google Scholar] [CrossRef] [Green Version]
- Toscano, A.; Langergraber, G.; Consoli, S.; Cirelli, G.L. Modelling pollutant removal in a pilot-scale two-stage subsurface flow constructed wetlands. Ecol. Eng. 2009, 35, 281–289. [Google Scholar] [CrossRef]
- Llorens, E.; Saaltink, M.W.; Poch, M.; Garcia, J. Bacterial transformation and biodegradation processes simulation in horizontal subsurface flow constructed wetlands using CWM1-RETRASO. Bioresour. Technol. 2011, 102, 928–936. [Google Scholar] [CrossRef]
- Guo, W.; Zhang, H.; Huo, S. Organochlorine pesticides in aquatic hydrophyte tissues and surrounding sediments in Baiyangdian wetland, China. Ecol. Eng. 2014, 67, 150–155. [Google Scholar] [CrossRef]
- Hua, G.; Kong, J.; Ji, Y.; Li, M. Influence of clogging and resting processes on flow patterns in vertical flow constructed wetlands. Sci. Total Environ. 2018, 621, 1142–1150. [Google Scholar] [CrossRef]
- Langergraber, G. Modeling of Processes in Subsurface Flow Constructed Wetlands: A Review. Vadose Zone J. 2008, 7, 830–842. [Google Scholar] [CrossRef] [Green Version]
- Henze, M.; Gujer, W.; Mino, T.; van Loosedrecht, M. Activated Sludge Models ASM1, ASM2, ASM2d and ASM3. IWA Task Group on Mathematical Modelling for Design and Operation of Biological Wastewater Treatment; IWA Publishing: London, UK, 2015; p. 5. [Google Scholar]
- Chang, N.-B.; Jin, K.-R. Ecodynamic assessment of the submerged aquatic vegetation in lake okeechobee, florida under natural and anthropogenic stress. Int. J. Des. Nat. Ecodynamics. 2012, 7, 140–154. [Google Scholar] [CrossRef]
- Jin, K.-R.; Ji, Z.-G. An integrated environment model for a constructed wetland—Hydrodynamics and transport processes. Ecol. Eng. 2015, 84, 416–426. [Google Scholar] [CrossRef]
- Jin, Z.-G.J.K.-R. A long term calibration and verification of a submerged aquatic vegetation model for Lake Okeechobee. Ecol. Process. 2013, 2, 23. [Google Scholar] [CrossRef] [Green Version]
- Maltais-Landry, G.; Maranger, R.; Brisson, J.; Chazarenc, F. Nitrogen transformations and retention in planted and artificially aerated constructed wetlands. Water Res. 2009, 43, 535–545. [Google Scholar] [CrossRef] [PubMed]
- Pálfy, T.G.; Langergraber, G. The verification of the Constructed Wetland Model No. 1 implementation in HYDRUS using column experiment data. Ecol. Eng. 2014, 68, 105–115. [Google Scholar] [CrossRef]
- Dong, C.; Zhu, W.; Zhao, Y.Q.; Gao, M. Diurnal fluctuations in root oxygen release rate and dissolved oxygen budget in wetland mesocosm. Desalination 2011, 272, 254–258. [Google Scholar] [CrossRef] [Green Version]
- Lv, T.; Zhang, Y.; Zhang, L.; Carvalho, P.N.; Arias, C.A.; Brix, H. Removal of the pesticides imazalil and tebuconazole in saturated constructed wetland mesocosms. Water Res. 2016, 91, 126–136. [Google Scholar] [CrossRef]
- Langergraber, G. The role of plant uptake on the removal of organic matter and nutrients in subsurface flow constructed wetlands—A simulation study. Water Sci. Technol. 2005, 51, 213–223. [Google Scholar] [CrossRef]
- Williams, J.B. Phytoremediation in Wetland Ecosystems: Progress, Problems, and Potential. Crit. Rev. Plant Sci. 2002, 21, 607–635. [Google Scholar] [CrossRef]
- Rajabzadeh, A.R.; Legge, R.L.; Weber, K.P. Multiphysics modelling of flow dynamics, biofilm development and wastewater treatment in a subsurface vertical flow constructed wetland mesocosm. Ecol. Eng. 2015, 74, 107–116. [Google Scholar] [CrossRef]
- Hua, G.F.; Li, L.; Zhao, Y.Q.; Zhu, W.; Shen, J.Q. An integrated model of substrate clogging in vertical flow constructed wetlands. J. Environ. Manag. 2013, 119, 67–75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, Y.Q.; Sun, G.; Allen, S.J. Anti-sized reed bed system for animal wastewater treatment: A comparative study. Water Res. 2004, 38, 2907–2917. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giraldi, D.; de Michieli Vitturi, M.; Iannelli, R. FITOVERT: A dynamic numerical model of subsurface vertical flow constructed wetlands. Environ. Model. Softw. 2010, 25, 633–640. [Google Scholar] [CrossRef]
- Zhao, J.; Mo, F.; Wu, J.; Hu, B.; Chen, Y.; Yang, W. Clogging Simulation of Horizontal Subsurface-Flow Constructed Wetland. Environ. Eng. Sci. 2017, 34, 343–349. [Google Scholar] [CrossRef]
- Zeng, M.; Soric, A.; Roche, N. Calibration of hydrodynamic behavior and biokinetics for TOC removal modeling in biofilm reactors under different hydraulic conditions. Bioresour. Technol. 2013, 144, 202–209. [Google Scholar] [CrossRef]
- Petitjean, A.; Forquet, N.; Wanko, A.; Laurent, J.; Molle, P.; Mose, R.; Sadowski, A. Modelling aerobic biodegradation in vertical flow sand filters: Impact of operational considerations on oxygen transfer and bacterial activity. Water Res. 2012, 46, 2270–2280. [Google Scholar] [CrossRef]
- Acero, P.; Ayora, C.; Carrera, J.; Saaltink, M.W.; Olivella, S. Multiphase flow and reactive transport model in vadose tailings. Appl. Geochem. 2009, 24, 1238–1250. [Google Scholar] [CrossRef]
- Rezaei, M.; Sanz, E.; Raeisi, E.; Ayora, C.; Vázquez-Suñé, E.; Carrera, J. Reactive transport modeling of calcite dissolution in the fresh-salt water mixing zone. J. Hydrol. 2005, 311, 282–298. [Google Scholar] [CrossRef]
- Garcia, J.; Aguirre, P.; Mujeriego, R.; Huang, Y.; Ortiz, L.; Bayona, J.M. Initial contaminant removal performance factors in horizontal flow reed beds used for treating urban wastewater. Water Res. 2004, 38, 1669–1678. [Google Scholar] [CrossRef] [PubMed]
- Wiessner, A.; Kappelmeyer, U.; Kuschk, P.; Kastner, M. Sulphate reduction and the removal of carbon and ammonia in a laboratory-scale constructed wetland. Water Res. 2005, 39, 4643–4650. [Google Scholar] [CrossRef] [PubMed]
- Langergraber, G.; Tietz, A.; Haberl, R. Comparison of measured and simulated distribution of microbial biomass in subsurface vertical flow constructed wetlands. Water Sci. Technol. 2007, 56, 233–240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boano, F.; Rizzo, A.; Samso, R.; Garcia, J.; Revelli, R.; Ridolfi, L. Changes in bacteria composition and efficiency of constructed wetlands under sustained overloads: A modeling experiment. Sci. Total Environ. 2018, 612, 1480–1487. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Šimůnek, J.; Šejna, M.; van Genuchten, M.T. The HYDRUS Software Package for Simulating the Two- and Three-Dimensional Movement of Water, Heat, and Multiple Solutes in Variably-Saturated Media. In Technical Manual, Version 2.0; PC-Progress: Prague, Czech Republic, 2011; p. 25. [Google Scholar]
- Samso, R.; Garcia, J. Bacteria distribution and dynamics in constructed wetlands based on modelling results. Sci. Total Environ. 2013, 461–462, 430–440. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Ramos, D.; Agullo, N.; Samso, R.; Garcia, J. Effect of key design parameters on bacteria community and effluent pollutant concentrations in constructed wetlands using mathematical models. Sci. Total Environ. 2017, 584–585, 374–380. [Google Scholar] [CrossRef] [Green Version]
- Boog, J.; Nivala, J.; Aubron, T.; Wallace, S.; van Afferden, M.; Muller, R.A. Hydraulic characterization and optimization of total nitrogen removal in an aerated vertical subsurface flow treatment wetland. Bioresour. Technol. 2014, 162, 166–174. [Google Scholar] [CrossRef]
- Bezbaruah, A.N.; Zhang, T.C. Quantification of oxygen release by bulrush (Scirpus validus) roots in a constructed treatment wetland. Biotechnol. Bioeng. 2005, 89, 308–318. [Google Scholar] [CrossRef]
- Langergraber, G.; Haberl, R.; Laber, J.A. Pressl. Evaluation of substrate clogging processes in vertical flow constructed wetlands. Water Sci. Technol. 2003, 48, 25–34. [Google Scholar] [CrossRef]
- Ye, J.; Xu, Z.; Chen, H.; Wang, L.; Benoit, G. Reduction of clog matter in constructed wetlands by metabolism of Eisenia foetida: Process and modeling. Environ. Pollut. 2018, 238, 803–811. [Google Scholar] [CrossRef]
- Saaltink, M.W.; Batlle, F.; Ayora, C.; Carrera, J.; Olivella, S. RETRASO, a code for modelling reactive transport in saturated and unsaturated porous media. Geol. Acta. 2004, 2, 235–251. [Google Scholar]
- Zhao, X.H.; Zhao, Y.Q.; Kearney, P. Transformation of beneficially reused aluminium sludge to potential P and Al resource after employing as P-trapping material for wastewater treatment in constructed wetland. Chem. Eng. J. 2011, 174, 206–212. [Google Scholar] [CrossRef] [Green Version]
- Bolton, L.; Joseph, S.; Greenway, M.; Donne, S.; Munroe, P.; Marjo, C.E. Phosphorus adsorption onto an enriched biochar substrate in constructed wetlands treating wastewater. Ecol. Eng. X 2019, 1, 100005. [Google Scholar] [CrossRef]
- Palfy, T.G.; Gribovszki, Z.; Langergraber, G. Design-support and performance estimation using HYDRUS/CW2D: A horizontal flow constructed wetland for polishing SBR effluent. Water Sci. Technol. 2015, 71, 965–970. [Google Scholar] [CrossRef]
- Galvao, A.; Pisoeiro, J.; Pinheiro, H. Storage mechanisms in constructed wetlands: Should we modify heterotrophic bacteria modelling? Sci. Total Environ. 2019, 658, 830–835. [Google Scholar] [CrossRef]
- Murphy, C.; Rajabzadeh, A.R.; Weber, K.P.; Nivala, J.; Wallace, S.D.; Cooper, D.J. Nitrification cessation and recovery in an aerated saturated vertical subsurface flow treatment wetland: Field studies and microscale biofilm modeling. Bioresour. Technol. 2016, 209, 125–132. [Google Scholar] [CrossRef]
- Pisoeiro, J.; Galvão, A.; Pinheiro, H.M.; Ferreira, F.; Matos, J. Determining stoichiometric parameters of detached biomass from a HSSF-CW using respirometry. Ecol. Eng. 2017, 98, 388–393. [Google Scholar] [CrossRef]
- Ji, B.; Kang, P.; Wei, T.; Zhao, Y.Q. Challenges of aqueous per- and polyfluoroalkyl substances (PFASs) and their foreseeable removal strategies. Chemosphere 2020, 250, 126316. [Google Scholar] [CrossRef]
- Gorito, A.M.; Ribeiro, A.R.; Almeida, C.M.R.; Silva, A.M.T. A review on the application of constructed wetlands for the removal of priority substances and contaminants of emerging concern listed in recently launched EU legislation. Environ. Pollut. 2017, 227, 428–443. [Google Scholar] [CrossRef]
- Christofilopoulos, S.; Kaliakatsos, A.; Triantafyllou, K.; Gounaki, I.; Venieri, D.; Kalogerakis, N. Evaluation of a constructed wetland for wastewater treatment: Addressing emerging organic contaminants and antibiotic resistant bacteria. New Biotechnol. 2019, 52, 94–103. [Google Scholar] [CrossRef]
Model | HYDRUS-CW2D | HYDRUS-CWM1 | BIO_PORE | CWM1-RETRASO | FITOVERT | CFD |
---|---|---|---|---|---|---|
Software | HYDRUS | COMAOL MultiphysicsTM | RetrasoCodeBright | MATLAB | COMSOL Multiphysics | |
Types | VF and HF | HF | HF | VF | VF | |
Hydraulic | Saturated and unsaturated (Richard’s equation) | Saturated (Darcy’s equation) | Saturated and unsaturated | Saturated and unsaturated (Richard’s equation) | Saturated (Brinkman’s equation) | |
Reactive-transport | Advection-dispersion equations | Fick’s law and attachment and detachment rates | Darcy’s law and Fick’s law | Bresler’s equation and numerical analysis | Advection-dispersion equations | |
Bio-chemical | CW2D | CWM1 | Modified version of CWM1 | CWM1 | ASM1 | ASM1 |
Plant | oxygen release and solute uptake | oxygen release and nutrients uptake | - | - | - | |
Clogging | - | - | - | - | bacteria growth and accumulation of particulate components | microbial growth and biofilm detachment |
Process | aerobic and anoxic processes (9) | aerobic, anaerobic, and anoxic processes (17) | aerobic, anaerobic, and anoxic processes (19) | aerobic, anaerobic, and anoxic processes (19) | aerobic, anaerobic, and anoxic processes (8) | aerobic, anaerobic, and anoxic processes (8) |
Components | SO, CR, CS, CI, XH, XANs, XANb, NH4N, NO3N, N2, PO4P | SO, SF, SA, SI, SNH, SNO, SSO4, SH2S, XS, XI, XH, XA, XFB, XAMB, XASRB, XSOB | SO, SF, SA, SI, SNH, SNO, SSO4, SH2S, XSf, XSm, XIf, XIm, XH, XA, XFB, XAMB, XASRB, XSOB | SO, SF, SA, SI, SNH, SNO, SSO4, SH2S, XS, XI, XHF, XHA, XA, XFB, XAMB, XASRB, XSOB | SI, SS, XI, XS, XB,A, XP, SNO, SNH, SND, XND, SALK | SI, SS, XI, XS, XB,A, XP, SNO, SNH, SND, XND, SALK |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, C.; Huang, T.; Zhao, X.; Zhao, Y. Numerical Models of Subsurface Flow Constructed Wetlands: Review and Future Development. Sustainability 2020, 12, 3498. https://doi.org/10.3390/su12083498
Yuan C, Huang T, Zhao X, Zhao Y. Numerical Models of Subsurface Flow Constructed Wetlands: Review and Future Development. Sustainability. 2020; 12(8):3498. https://doi.org/10.3390/su12083498
Chicago/Turabian StyleYuan, Chunbo, Ting Huang, Xiaohong Zhao, and Yaqian Zhao. 2020. "Numerical Models of Subsurface Flow Constructed Wetlands: Review and Future Development" Sustainability 12, no. 8: 3498. https://doi.org/10.3390/su12083498
APA StyleYuan, C., Huang, T., Zhao, X., & Zhao, Y. (2020). Numerical Models of Subsurface Flow Constructed Wetlands: Review and Future Development. Sustainability, 12(8), 3498. https://doi.org/10.3390/su12083498