A Multi-Risk Methodology for the Assessment of Climate Change Impacts in Coastal Zones
Abstract
:1. Introduction
- identifying a set of common metrics and operative steps for the assessment of multi-hazard risks in coastal areas, under current and future climate conditions;
- classifying the vulnerability of natural and human elements at risk to different types of hazards; and
- providing a relative ranking of hotspot multi-risk areas at the regional (sub-national) scale, employing Multi-Criteria Decision Analysis (MCDA).
2. The North Adriatic Coastal Area
2.1. North Adriatic Dataset for Multi-Risk Assessment
3. Multi-Risk Methodology for the Assessment of Natural and Climate-Related Impacts
- to identify multi-hazard risk and vulnerability indicators suitable for the assessment of current and future climate change impacts on vulnerable natural and human targets;
- to provide a relative ranking of areas and targets more heavily affected by multiple risks related to climate change at the regional (sub-national) scale, employing expert-based Multi-Criteria Decision Analysis (MCDA) tools; and
- to assist local communities and stakeholders (e.g., water, soil, and coastal management authorities) in the definition of sustainable climate adaptation and disaster risk reduction strategies.
3.1. Multi-Hazard Assessment
3.2. Exposure Assessment
3.3. Multi-Vulnerability Assessment
- vf = physical and environmental multi-vulnerability score of the investigated cell to the investigated impact(s).
- = set of physical and vulnerability factors weighted by the corresponding . They are related to all impact(s) and receptors present in the investigated cell c, i.e. .
- fi = ith generic factor f
3.4. Multi-Risk Assessment
- r = multi-risk score;
- hp = multi-hazard score with the associated probability (Equation (1));
- e = exposure score related to the union of the geographical area of the investigated receptors (Equation (2)); and
- vf = physical and environmental multi-vulnerability score of the investigated cell to the investigated impact(s) (Equation (3)).
4. Results
4.1. Multi-Hazard Maps
4.2. Exposure Map
4.3. Multi-Vulnerability Map
4.4. Multi-Risk Map
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Renn, O.; Lucas, K.; Haas, A.; Jaeger, C. Things are different today: The challenge of global systemic risks. J. Risk Res. 2019, 22, 401–415. [Google Scholar] [CrossRef]
- UNISDR. Hyogo Framework for Action 2005–2015: Building the Resilience of Nations and Communities to Disasters. Extract from the Final Report of the World Conference on Disaster Reduction. 2005. Available online: https://www.unisdr.org/2005/wcdr/intergover/official-doc/L-docs/Hyogo-framework-for-action-english.pdf (accessed on 24 April 2020).
- UNISDR. Sendai Framework for Disaster Risk Reduction 2015–2030. In UN Report UNISDR/GE/015; United Nations Office for Disaster Risk Reduction: Geneva, Switzerland, 2015. [Google Scholar]
- UN. Transforming Our World: The 2030 Agenda for Sustainable Development. 2015. Available online: https://sustainabledevelopment.un.org/post2015/transformingourworld/publication (accessed on 24 April 2020).
- EC. Commission Staff Working Document: Overview of Natural and Man-Made Disaster Risks in the European Union May Face; SWD: Bruxelles, Belgium, 2017. [Google Scholar] [CrossRef]
- IPCC. IPCC. IPCC Special Report 1.5—Summary for Policymakers. In Global Warming of 1.5 °C; An IPCC Special Report on the Impacts of Global Warming of 1.5 °C above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty; Masson-Delmotte, V., Zhai, P., Pörtner, H.-O., Roberts, D., Skea, J., Shukla, P.R., Pirani, A., Moufouma-Okia, W., Péan, C., Pidcock, R., et al., Eds.; World Meteorological Organization: Geneva, Switzerland, 2018; p. 32. ISBN 9789291691432. [Google Scholar]
- EC. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions an EU Strategy on Adaptation to Climate Change COM; EC: Bruxelles, Belgium, 2013. [Google Scholar]
- EC. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. The European Green Deal. COM; EC: Bruxelles, Belgium, 2019. [Google Scholar]
- Scolobig, A.; Komendantova, N.; Mignan, A. Mainstreaming Multi-Risk Approaches into Policy. Geosciences 2017, 7, 129. [Google Scholar] [CrossRef] [Green Version]
- IPCC. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Field, C.B.V.R., Barros, D.J., Dokken, K.J., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014. [Google Scholar]
- IPCC. Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation—Special Report of the Working Groups I and II of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2012; ISBN 9781139177245. [Google Scholar]
- Ramieri, E.; Hartley, A.; Office, M.; Barbanti, A.; National, I.; Santos, F.D. Methods for assessing coastal vulnerability to climate change. ETC CCA Tech. Pap. 2011, 1, 1–93. [Google Scholar]
- Hinkel, J.; Klein, R.J.T. The DINAS-COAST project: Developing a tool for the dynamic and interactive assessment of coastal vulnerability. Glob. Environ. Chang. 2009, 19, 384–395. [Google Scholar] [CrossRef]
- Mcleod, E.; Poulter, B.; Hinkel, J.; Reyes, E.; Salm, R. Sea-level rise impact models and environmental conservation: A review of models and their applications. Ocean Coast. Manag. 2010, 53, 507–517. [Google Scholar] [CrossRef]
- Dilley, M.; Chen, R.S.; Deichmann, U.; Lerner-Lam, A.L.; Arnold, M. Natural Disaster Hotspots: A Global Risk Analysis; The World Bank and Columbia University: Washington, DC, USA, 2005; ISBN 0821359304. [Google Scholar]
- Gallina, V.; Torresan, S.; Critto, A.; Sperotto, A.; Glade, T.; Marcomini, A. A review of multi-risk methodologies for natural hazards: Consequences and challenges for a climate change impact assessment. J. Environ. Manag. 2016, 168, 123–132. [Google Scholar] [CrossRef]
- Tilloy, A.; Malamud, B.D.; Winter, H.; Joly-laugel, A. A review of quantification methodologies for multi-hazard. Earth Sci. Rev. 2019, 196, 102881. [Google Scholar] [CrossRef]
- Kappes, M.S.; Keiler, M.; von Elverfeldt, K.; Glade, T. Challenges of analyzing multi-hazard risk: A review. Nat. Hazards 2012, 64, 1925–1958. [Google Scholar] [CrossRef] [Green Version]
- Greiving, S.; Fleischhauer, M.; Lückenkötter, J. A methodology for an integrated risk assessment of spatially relevant hazards. J. Environ. Plan. Manag. 2006, 49, 1–19. [Google Scholar] [CrossRef]
- Olfert, A.; Greiving, S.; Batista, M.J. Regional multi-risk review, hazard weighting and spatial planning response to risk-Results from European case studies. Spec. Pap. Surv. Finl. 2006, 42, 125. [Google Scholar]
- Schmidt-Thomé, P. Natural and Technological Hazards and Risks Affecting the Spatial Development of European Regions; Geological survey of Finland Espoo: Espoo, Finland, 2006; Volume 42, ISBN 9516909442. [Google Scholar]
- Farrokh, N.; Zhongqiang, L.; Gordon, W.; Jochen, Z. Framework for multi-risk assessment, Deliverable D5.2. MATRIX Proj. 2013. Grant agreement ID: 265138. [Google Scholar]
- Kappes, M.S.; Gruber, K.; Frigerio, S.; Bell, R.; Keiler, M.; Glade, T. The MultiRISK platform: The technical concept and application of a regional-scale multihazard exposure analysis tool. Geomorphology 2012, 151–152, 139–155. [Google Scholar] [CrossRef]
- Liu, Z.; Nadim, F.; Garcia-Aristizabal, A.; Mignan, A.; Fleming, K.; Quan Luna, B. A three-level framework for multi-risk assessment. Georisk Assess. Manag. Risk Eng. Syst. Geohazards 2015, 9, 59–74. [Google Scholar] [CrossRef] [Green Version]
- Marzocchi, W.; Garcia-Aristizabal, A.; Gasparini, P.; Mastellone, M.L.; Di Ruocco, A. Basic principles of multi-risk assessment: A case study in Italy. Nat. Hazards 2012, 62, 551–573. [Google Scholar] [CrossRef]
- Kappes, M.S. Multi-Hazard Risk Analyses: A Concept and Its Implementation; na: Wien, Austria, 2011. [Google Scholar]
- Terzi, S.; Torresan, S.; Schneiderbauer, S.; Critto, A.; Zebisch, M.; Marcomini, A. Multi-risk assessment in mountain regions: A review of modelling approaches for climate change adaptation. J. Environ. Manag. 2019, 232, 759–771. [Google Scholar] [CrossRef]
- Sperotto, A.; Molina, J.L.; Torresan, S.; Critto, A.; Marcomini, A. Reviewing Bayesian Networks potentials for climate change impacts assessment and management: A multi-risk perspective. J. Environ. Manag. 2017, 202, 320–331. [Google Scholar] [CrossRef]
- Zscheischler, J.; Westra, S.; Van Den Hurk, B.J.J.M.; Seneviratne, S.I.; Ward, P.J.; Pitman, A.; Aghakouchak, A.; Bresch, D.N.; Leonard, M.; Wahl, T.; et al. Future climate risk from compound events. Nat. Clim. Chang. 2018, 8, 469–477. [Google Scholar] [CrossRef]
- Gambolati, G.; Teatini, P.; Gonella, M. GIS simulations of the inundation risk in the coastal lowlands of the Northern Adriatic Sea. Math. Comput. Model. 2002, 35, 963–972. [Google Scholar] [CrossRef]
- Thorne, C.; Thorne, C.R.; Evans, E.P.; Penning-Rowsell, E.C. Future Flooding and Coastal Erosion Risks; Thomas Telford: London, UK, 2007; ISBN 0727734490. [Google Scholar]
- Lionello, P.; Cogo, S.; Galati, M.B.; Sanna, A. The Mediterranean surface wave climate inferred from future scenario simulations. Glob. Planet. Chang. 2008, 63, 152–162. [Google Scholar] [CrossRef]
- Hinkel, J.; Brown, S.; Exner, L.; Nicholls, R.J.; Vafeidis, A.T.; Kebede, A.S. Sea-level rise impacts on Africa and the effects of mitigation and adaptation: An application of DIVA. Reg. Environ. Chang. 2012, 12, 207–224. [Google Scholar] [CrossRef]
- Torresan, S. Development of a Regional Risk Assessment Methodology for Climate Change Impact Assessment and Management in Coastal Zones; Università Ca’ Foscari Venezia: Venice, Italy, 2011. [Google Scholar]
- Torresan, S.; Gallina, V.; Gualdi, S.; Bellafiore, D.; Umgiesser, G.; Carniel, S.; Sclavo, M.; Benetazzo, A.; Giubilato, E.; Critto, A. Assessment of climate change impacts in the North Adriatic coastal area. Part I: A multi-model chain for the definition of climate change hazard scenarios. Water 2019, 11, 1157. [Google Scholar] [CrossRef] [Green Version]
- Gallina, V.; Torresan, S.; Zabeo, A.; Rizzi, J.; Carniel, S.; Sclavo, M.; Pizzol, L.; Marcomini, A.; Critto, A. Assessment of climate change impacts in the North Adriatic coastal area. Part II: Consequences for coastal erosion impacts at the regional scale. Water 2019, 11, 1300. [Google Scholar] [CrossRef] [Green Version]
- Torresan, S.; Critto, A.; Rizzi, J.; Marcomini, A. Assessment of coastal vulnerability to climate change hazards at the regional scale: The case study of the North Adriatic Sea. Nat. Hazards Earth Syst. Sci. 2012, 12, 2347–2368. [Google Scholar] [CrossRef]
- Pirazzoli, P.A. A review of possible eustatic, isostatic and tectonic contributions in eight late-Holocene relative sea-level histories from the Mediterranean area. Quat. Sci. Rev. 2005, 24, 1989–2001. [Google Scholar] [CrossRef]
- Ferrarin, C.; Chiggiato, J.; Bajo, M.; Schroeder, K.; Zaggia, L.; Benettazzo, A. VENEZIA: L’acqua Alta Eccezionale Del 12/11/2019. Analisi Preliminare dei Dati E Descrizione Della Fenomenologia; CNR: Venice, Italy, 2019; pp. 1–6. [Google Scholar]
- Sperotto, A.; Torresan, S.; Gallina, V.; Coppola, E.; Critto, A.; Marcomini, A. A multi-disciplinary approach to evaluate pluvial floods risk under changing climate: The case study of the municipality of Venice (Italy). Sci. Total Environ. 2015, 562, 1031–1043. [Google Scholar] [CrossRef]
- Pesce, M.; Critto, A.; Torresan, S.; Giubilato, E.; Santini, M.; Zirino, A.; Ouyang, W.; Marcomini, A. Modelling climate change impacts on nutrients and primary production in coastal waters. Sci. Total Environ. 2018, 628–629, 919–937. [Google Scholar] [CrossRef]
- Rizzi, J.; Torresan, S.; Critto, A.; Zabeo, A.; Brigolin, D.; Carniel, S.; Pastres, R.; Marcomini, A. Climate change impacts on marine water quality: The case study of the Northern Adriatic sea. Mar. Pollut. Bull. 2016, 102, 271–282. [Google Scholar] [CrossRef]
- Bondesan, M.; Castiglioni, G.B.; Elmis, C.; Gabbianellis, G.; Marocco, R.; Pirazzolift, P.A.; Tomasin, A. Coastal areas at risk from storm surges and sea-level rise in northeastern Italy. J. Coast. Res. 1995, 11, 1354–1379. [Google Scholar]
- Ferretti, O.; Delbono, I.; Furia, S.; Barsanti, M. Elementi Di Gestione Costiera-Parte I Tipi morfo-sedimentologici dei litorali italiani. Rapp. Tec. ENEA RT/2003/42/CLIM 2003, 42, 146. [Google Scholar]
- Umgiesser, G.; Anderson, J.B.; Artale, V.; Breil, M.; Gualdi, S.; Lionello, P.; Marinova, N.; Orlic, M.; Pirazzoli, P.; Rahmstorf, S. From Global to regional: Local Sea Level Rise Scenarios. Focus on the Mediterranean Sea and the Adriatic Sea. In Proceedings of the Workshop Report: UNESCO, Venice, Italy, 2–6 July 2011; Volume 1. [Google Scholar]
- Antonioli, F.; Anzidei, M.; Amorosi, A.; Lo Presti, V.; Mastronuzzi, G.; Deiana, G.; De Falco, G.; Fontana, A.; Fontolan, G.; Lisco, S.; et al. Sea-level rise and potential drowning of the Italian coastal plains: Flooding risk scenarios for 2100. Quat. Sci. Rev. 2017, 158, 29–43. [Google Scholar] [CrossRef] [Green Version]
- Marsico, A.; Lisco, S.; Lo Presti, V.; Antonioli, F.; Amorosi, A.; Anzidei, M.; Deiana, G.; De Falco, G.; Fontana, A.; Fontolan, G.; et al. Flooding scenario for four italian coastal plains using three relative sea level rise models. J. Maps 2017, 13, 961–967. [Google Scholar] [CrossRef] [Green Version]
- Ministero Dell’Ambiente. Seventh National Communication under the UN Framework Convention on Climate Change; Ministero dell’Ambiente: Rome, Italy, 2017. [Google Scholar]
- Cecconi, G.; Ardone, V. La protezione dei litorali con ripascimento delle spiagge. L’esperienza dei litorali di Cavallino e Pellestrina. Proc. La Progett. Ambient. Nei Sist. Costieri Cura M Pietrobelli Atti X Semin. Roma Italy 1998, 10, 20–32. [Google Scholar]
- Caniglia, G.; Casetta, D.; Nascimbeni, P.; Pizzinato, C. Aspetti del dinamismo della vegetazione nell’edificazione di un sistema dunoso artificiale (Venezia–Cavallino). La Progett. Ambient. Nei Sist. costieri Cura M Pietrobelli Atti X Semin. Roma 1998, 10, 42–47. [Google Scholar]
- Cecconi, G.; Ardone, V. La fonte di approvvigionamento della sabbia nel ripascimento dei litorali veneti. Interv. Alla Present Della Costa Ligure Reg Liguria Genova 2000, 1, 2–4. [Google Scholar]
- Visintini Romanin, M.; Rismondo, A.; Scarton, F.; Leita, L. Interventi per il recupero morfologico della laguna di Venezia. La Barena Fossei Est Laguna Sud. Quad. Trimest 2000, 3, 3–35. [Google Scholar]
- Region, F.V.G. Piano di gestione del SIC IT3320037 Laguna di Grado e Marano. Cart. Delle Aree Di Tutela E Di Interv. Scala 2008, 1, 50000. [Google Scholar]
- Cecconi, G. The Venice Lagoon mobile barriers Sea level rise and impact of barrier closures. In Proceedings of the Italian Days of Coastal Engineering, Venice, Italy, 16 May 1997. International Debate-PIC 97. [Google Scholar]
- UNEP-MAP-RAC/SPA. Impact of Climate Change on Marine and Coastal Biodiversity in the Mediterranean Sea: Current State of Knowledge; Ben Haj, S., Limam, A., Eds.; United Nations Environnement Programme (UNEP) Mediterranean Action Plan (MAP) Regional Activity Centre for Specially Protected Areas (RAC/SPA): Tunis, Tunisia, 2010. [Google Scholar]
- Rizzi, J. Gis-Based Regional Risk Assessment and Its Implementation in A Decision Support Systems for Studying Coastal Climate Change Impacts; Università Ca’ Foscari Venezia: Venice, Italy, 2014. [Google Scholar]
- Torresan, S.; Rizzi, J.; Zabeo, A.; Critto, A.; Gallina, V.; Furlan, E.; Marcomini, A. Assessing environmental impacts of climate change at the regional scale to provide adaptation services: The DEcision support SYstem for COastal climate change impact assessment (DESYCO). In Proceedings of the First Annual Conference SISC on Climate Change and Its Implications on Ecosystem and Society, Venice, Italy, 23–24 September 2013; pp. 468–476. [Google Scholar]
- Rizzi, J.; Torresan, S.; Zabeo, A.; Critto, A.; Tosoni, A.; Tomasin, A.; Marcomini, A. Assessing storm surge risk under future sea-level rise scenarios: A case study in the North Adriatic coast. J. Coast. Conserv. 2017, 21, 453–471. [Google Scholar] [CrossRef]
- Umgiesser, G.; Canu, D.M.; Cucco, A.; Solidoro, C. A finite element model for the Venice Lagoon. Development, set up, calibration and validation. J. Mar. Syst. 2004, 51, 123–145. [Google Scholar] [CrossRef]
- Carniel, S.; Warner, J.C.; Chiggiato, J.; Sclavo, M. Investigating the impact of surface wave breaking on modeling the trajectories of drifters in the northern Adriatic Sea during a wind-storm event. Ocean Model. 2009, 30, 225–239. [Google Scholar] [CrossRef]
- Ronco, P.; Bullo, M.; Torresan, S.; Critto, A.; Olschewski, R.; Zappa, M.; Marcomini, A. KULTURisk regional risk assessment methodology for water-related natural hazards-Part 2: Application to the Zurich case study. Hydrol. Earth Syst. Sci. 2015, 19, 1561–1576. [Google Scholar] [CrossRef] [Green Version]
- Pasini, S.; Torresan, S.; Rizzi, J.; Zabeo, A.; Critto, A.; Marcomini, A. Climate change impact assessment in Veneto and Friuli Plain groundwater. Part II: A spatially resolved regional risk assessment. Sci. Total Environ. 2012, 440, 219–235. [Google Scholar] [CrossRef] [PubMed]
- Carminati, E.; Martinelli, G. Subsidence rates in the Po Plain, northern Italy: The relative impact of natural and anthropogenic causation. Eng. Geol. 2002, 66, 241–255. [Google Scholar] [CrossRef]
- Carbognin, L.; Teatini, P.; Tomasin, A.; Tosi, L. Global change and relative sea level rise at Venice: What impact in term of flooding. Clim. Dyn. 2010, 35, 1039–1047. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2007: Impacts, Adaptation and Vulnerability: Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Parry, M.L., Canziani, O.F., Palutikof, J.P., van der Linden, P.J., Hanson, C.E., Eds.; Cambridge University Press: Cambridge, UK, 2007; ISBN 0521880106. [Google Scholar]
- IPCC. Long-Term Climate Change: Projections, Commitments and Irreversibility. Clim. Chang. 2013 Phys. Sci. Basis. Contrib. Work. Gr. I to Fifth Assess. Rep. Intergov. Panel Clim. Chang; Collins, M., Knutti, R., Arblaster, J., Dufresne, J.-L., Fichefet, T., Friedlingstein, P., Gao, X., Gutowski, W.J., Johns, T., Krinner, G., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; pp. 1029–1136. [Google Scholar]
- Cattiaux, J.; Douville, H.; Peings, Y. European temperatures in CMIP5: Origins of present-day biases and future uncertainties. Clim. Dyn. 2013, 41, 2889–2907. [Google Scholar] [CrossRef]
- Knutti, R.; Sedláček, J. Robustness and uncertainties in the new CMIP5 climate model projections. Nat. Clim. Chang. 2013, 3, 369. [Google Scholar] [CrossRef]
- Pantusa, D.; D’Alessandro, F.; Riefolo, L.; Principato, F.; Tomasicchio, G.R. Application of a coastal vulnerability index. A case study along the Apulian Coastline, Italy. Water 2018, 10, 1218. [Google Scholar] [CrossRef] [Green Version]
- McLaughlin, S.; Andrew, J.; Cooper, G. A multi-scale coastal vulnerability index: A tool for coastal managers? Environ. Hazards 2010, 9, 233–248. [Google Scholar] [CrossRef]
- Hereher, M.E. Coastal vulnerability assessment for Egypt’s Mediterranean coast. Geomat. Nat. Hazards Risk 2015, 6, 342–355. [Google Scholar] [CrossRef] [Green Version]
- UNISDR. Technical Guidance for Monitoring and Reporting on Progress in Achieving the Global Targets of the Sendai Framework for Disaster Risk Reduction; United Nations: Geneva, Switzerland, 2018; pp. 1–180. [Google Scholar]
- Crozier, M.J.; Glade, T. Landslide hazard and risk: Issues, concepts and approach. Landslide Hazard Risk 2005, 8, 1–40. [Google Scholar]
- Santoro, F.; Tonino, M.; Torresan, S.; Critto, A.; Marcomini, A. Involve to improve: A participatory approach for a Decision Support System for coastal climate change impacts assessment. The North Adriatic case. Ocean Coast. Manag. 2013, 78, 101–111. [Google Scholar] [CrossRef]
- Torresan, S.; Critto, A.; Rizzi, J.; Zabeo, A.; Furlan, E.; Marcomini, A. DESYCO: A decision support system for the regional risk assessment of climate change impacts in coastal zones. Ocean Coast. Manag. 2016, 120, 49–63. [Google Scholar] [CrossRef]
- Gallina, V. An Advanced Methodology for the Multi-Risk Assessment: An Application for Climate Change Impacts in the North Adriatic Case Study (Italy); Università Ca’ Foscari Venezia: Venice, Italy, 2015. [Google Scholar]
- Tebaldi, C.; Knutti, R. The use of the multi-model ensemble in probabilistic climate projections. Philos. Trans. R. Soc. Lond. A Math. Phys. Eng. Sci. 2007, 365, 2053–2075. [Google Scholar] [CrossRef] [PubMed]
- Woodroffe, C.D.; Murray-Wallace, C. V Sea-level rise and coastal change: The past as a guide to the future. Quat. Sci. Rev. 2012, 54, 4–11. [Google Scholar] [CrossRef]
- Tebaldi, C.; Strauss, B.H.; Zervas, C.E. Modelling sea level rise impacts on storm surges along US coasts. Environ. Res. Lett. 2012, 7, 14032. [Google Scholar] [CrossRef]
- EC. Directive 2007/60/EC of the European Parliament and of the Council of 23 October 2007 on the Assessment and Management of Flood Risks; EU: Bruxelles, Belgium, 2007. [Google Scholar]
- Ronco, P.; Gallina, V.; Torresan, S.; Zabeo, A.; Semenzin, E.; Critto, A.; Marcomini, A. The KULTURisk Regional Risk Assessment methodology for water-related natural hazards - Part 1: Physical-environmental assessment. Hydrol. Earth Syst. Sci. 2014, 18, 5399–5414. [Google Scholar] [CrossRef] [Green Version]
- Giannini, V.; Bellucci, A.; Torresan, S. Sharing skills and needs between providers and users of climate information to create climate services: Lessons from the Northern Adriatic case study. Earth Perspect. 2016, 3, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Wade, T.; Sommer, S. A to Z GIS, An Illustrated Dictionary of Geographic Information Systems; Esri Press: Redlands, CA, USA, 2006; ISBN 1589481402. [Google Scholar]
- Da Lio, C.; Teatini, P.; Strozzi, T.; Tosi, L. Understanding land subsidence in salt marshes of the Venice Lagoon from SAR Interferometry and ground-based investigations. Remote Sens. Environ. 2018, 205, 56–70. [Google Scholar] [CrossRef]
- Tosi, L.; Da Lio, C.; Teatini, P.; Strozzi, T. Land subsidence in coastal environments: Knowledge advance in the Venice coastland by TerraSAR-X PSI. Remote Sens. 2018, 10, 1191. [Google Scholar] [CrossRef] [Green Version]
- Teatini, P.; Tosi, L.; Strozzi, T. Quantitative evidence that compaction of Holocene sediments drives the present land subsidence of the Po Delta, Italy. J. Geophys. Res. Solid Earth 2011, 116, 1–10. [Google Scholar] [CrossRef]
- Da Lio, C.; Tosi, L. Vulnerability to relative sea-level rise in the Po river delta (Italy). Estuar. Coast. Shelf Sci. 2019, 228, 106379. [Google Scholar] [CrossRef]
- Da Lio, C.; Tosi, L. Land subsidence in the Friuli Venezia Giulia coastal plain, Italy: 1992–2010 results from SAR-based interferometry. Sci. Total Environ. 2018, 633, 752–764. [Google Scholar] [CrossRef] [PubMed]
- European Commission. Towards an EU Research and Innovation Policy Agenda for Nature-Based Solutions & Re-Naturing Cities. Final Report of the Horizon 2020 Expert Group on “Nature-Based Solutions and Re-Naturing Cities” (Full Version); European Commission: Bruxelles, Belgium, 2015; ISBN 978-92-79-46051-7. [Google Scholar]
- Lung, T.; Lavalle, C.; Hiederer, R.; Dosio, A.; Bouwer, L.M. A multi-hazard regional level impact assessment for Europe combining indicators of climatic and non-climatic change. Glob. Environ. Chang. 2013, 23, 522–536. [Google Scholar] [CrossRef]
- Makinen, K.; Prutsch, A.; Karali, E.; Leitner, M.; Voller, S.; Lyytimaki, J.; Pringle, P.; Vanneuville, W. Indicators for Adaptation to Climate Change at National Level—Lessons from Emerging Practice in Europe; Technical paper 2018/3; European Topic Centre on Climate Change impacts, Vulnerability and Adaptation (ETC/CCA): Copenhagen, Denmark, 2018; pp. 1–68. [Google Scholar]
- Mysiak, J.; Torresan, S.; Bosello, F.; Mistry, M.; Amadio, M.; Marzi, S.; Furlan, E.; Sperotto, A. Climate risk index for Italy. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2018, 376, 20170305. [Google Scholar] [CrossRef]
- Bai, J.; Cui, B.; Chen, B.; Zhang, K.; Deng, W.; Gao, H.; Xiao, R. Spatial distribution and ecological risk assessment of heavy metals in surface sediments from a typical plateau lake wetland, China. Ecol. Modell. 2011, 222, 301–306. [Google Scholar] [CrossRef]
- Bateman, I.; Agarwala, M.; Binner, A.; Coombes, E.; Day, B.; Ferrini, S.; Fezzi, C.; Hutchins, M.; Lovett, A.; Posen, P. Spatially explicit integrated modeling and economic valuation of climate driven land use change and its indirect effects. J. Environ. Manag. 2016, 181, 172–184. [Google Scholar] [CrossRef]
- Chen, S.; Chen, B.; Fath, B.D. Assessing the cumulative environmental impact of hydropower construction on river systems based on energy network model. Renew. Sustain. Energy Rev. 2015, 42, 78–92. [Google Scholar] [CrossRef]
- Hobbs, T.J.; Neumann, C.R.; Meyer, W.S.; Moon, T.; Bryan, B.A. Models of reforestation productivity and carbon sequestration for land use and climate change adaptation planning in South Australia. J. Environ. Manag. 2016, 181, 279–288. [Google Scholar] [CrossRef]
- Tervonen, T.; Sepehr, A.; Kadziński, M. A multi-criteria inference approach for anti-desertification management. J. Environ. Manag. 2015, 162, 9–19. [Google Scholar] [CrossRef]
- Marignani, M.; Bruschi, D.; Garcia, D.A.; Frondoni, R.; Carli, E.; Pinna, M.S.; Cumo, F.; Gugliermetti, F.; Saatkamp, A.; Doxa, A. Identification and prioritization of areas with high environmental risk in Mediterranean coastal areas: A flexible approach. Sci. Total Environ. 2017, 590, 566–578. [Google Scholar] [CrossRef]
- Satta, A.; Snoussi, M.; Puddu, M.; Flayou, L.; Hout, R. An index-based method to assess risks of climate-related hazards in coastal zones: The case of Tetouan. Estuar. Coast. Shelf Sci. 2016, 175, 93–105. [Google Scholar] [CrossRef]
- Wolff, C.; Vafeidis, A.T.; Lincke, D.; Marasmi, C.; Wolff, C. Effects of Scale and Input Data on Assessing the Future Impacts of Coastal Flooding: An Application of DIVA for the Emilia-Romagna Coast. Front. Marine Sci. 2016, 3, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Sperotto, A.; Molina, J.L.; Torresan, S.; Critto, A.; Pulido-Velazquez, M.; Marcomini, A. A Bayesian Networks approach for the assessment of climate change impacts on nutrients loading. Environ. Sci. Policy 2019, 100, 21–36. [Google Scholar] [CrossRef]
- Furlan, E.; Slanzi, D.; Torresan, S.; Critto, A.; Marcomini, A. Multi-scenario analysis in the Adriatic Sea: A GIS-based Bayesian network to support maritime spatial planning. Sci. Total Environ. 2020, 703, 134972. [Google Scholar] [CrossRef] [PubMed]
- International Risk Governance Center (IRGC). The Governance of Decision-Making Algorithms; Ecole Polytechnique Fédérale de Lausanne (EPFL): Lausanne, Switzerland, 2018; Volume 1, pp. 1–32. [Google Scholar]
- International Risk Governance Center (IRGC). Guidelines for the Governance of Systemic Risks; Ecole Polytechnique Fédérale de Lausanne (EPFL): Lausanne, Switzerland, 2018; Volume 1, pp. 1–182. [Google Scholar]
- Kulp, S.A.; Strauss, B.H. Vulnerability to sea-level rise and coastal flooding. Nat. Commun. 2019, 10, 1–12. [Google Scholar]
Single Hazard Map | Description | Technical Features |
---|---|---|
Sea-level rise (source: [35]) | Maps of inundated areas (cm) according to projected sea-level rise scenarios for the year 2100 (spatial resolution 25 m). |
|
Storm surge (source: [58]) | Maps of inundated areas (cm) according to different storm surge return periods and sea-level rise scenarios (spatial resolution 25 m). |
|
Coastal erosion (source: [36]) | Maps of seasonal coastal erosion hazard for the thirty-year period 2070–2100 (spatial domain: 1 km from the shoreline, spatial resolution 25 m). |
|
Dataset | Spatial Domain | Reference |
---|---|---|
Land cover Map (1:10,000) | VE | VE Region, 2009 |
Monitoring Land Use/Cover Dynamics (MOLAND) (1:25,000) | FVG | FVG Region, 2000 |
Digital Elevation Model (DEM) (5 m) | VE | VE Region, 2007 |
Digital Elevation Model (DEM) (10 m) | FVG | FVG Region, 2006a |
Natural reserves, Regional Parks, Sites of Community Importance (SIC)/ Special Protection Areas (ZPS) (1:150,000) | VE | VE Region, 2005 |
VE | VE Region, 2008 | |
VE | VE Region, 2006 | |
FVG | FVG Region, 2007 | |
FVG | FVG Region, 2008 | |
Soil type, Geologic map (1:100,000) | VE | VE Region, 2009 |
Soil type, Geologic map (1:150,000) | FVG | FVG Region, 2006b |
Population and Housing Census | VE | ISTAT, 2001 |
FVG | ISTAT, 2001 |
Multi-Vulnerability Matrix | |||||||
---|---|---|---|---|---|---|---|
Beaches | River Mouths | Wetlands | Protected Areas | Natural and Semi-Natural Systems | Agricultural Areas | Urban Areas | |
Storm surge | Slope angle | Slope angle | Slope angle | Slope angle | Slope angle | Slope angle | Slope angle |
Vegetation cover | Vegetation cover | Wetland typology | Vegetation cover | Vegetation cover | Agricultural use | ||
Coastal typology | Wetland extent | ||||||
Vegetation cover | |||||||
Coastal Erosion | Slope angle | Slope angle | Shoreline evolution | Slope angle | Slope angle | Slope angle | Slope angle |
Coastal typology | Shoreline evolution | Wetland extent | Shoreline evolution | Vegetation cover | Agricultural use | % of urbanization | |
Shoreline evolution | Mouth typology | Vegetation cover | Vegetation cover | ||||
Dunes | Vegetation cover | ||||||
Vegetation cover |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gallina, V.; Torresan, S.; Zabeo, A.; Critto, A.; Glade, T.; Marcomini, A. A Multi-Risk Methodology for the Assessment of Climate Change Impacts in Coastal Zones. Sustainability 2020, 12, 3697. https://doi.org/10.3390/su12093697
Gallina V, Torresan S, Zabeo A, Critto A, Glade T, Marcomini A. A Multi-Risk Methodology for the Assessment of Climate Change Impacts in Coastal Zones. Sustainability. 2020; 12(9):3697. https://doi.org/10.3390/su12093697
Chicago/Turabian StyleGallina, Valentina, Silvia Torresan, Alex Zabeo, Andrea Critto, Thomas Glade, and Antonio Marcomini. 2020. "A Multi-Risk Methodology for the Assessment of Climate Change Impacts in Coastal Zones" Sustainability 12, no. 9: 3697. https://doi.org/10.3390/su12093697
APA StyleGallina, V., Torresan, S., Zabeo, A., Critto, A., Glade, T., & Marcomini, A. (2020). A Multi-Risk Methodology for the Assessment of Climate Change Impacts in Coastal Zones. Sustainability, 12(9), 3697. https://doi.org/10.3390/su12093697