Testing of Commercial Inoculants to Enhance P Uptake and Grain Yield of Promiscuous Soybean in Kenya
Abstract
:1. Introduction
2. Materials and Methods
Greenhouse Experiment
3. Field Experiment
4. Results
4.1. Greenhouse Experiment
4.1.1. Root Colonization and Nodulation
4.1.2. P Uptake, Leaf Chlorophyll Index, and Biomass Production
4.2. Field Experiment
4.2.1. Plant Root Nodulation and AMF Colonization
4.2.2. Soybean Yield
5. Discussion
6. Conclusions
Author Contributions
Funding
Preparation
Acknowledgments
Conflicts of Interest
References
- Yaklich, R.W.; Vinyard, B.; Camp, M.; Douglass, S. Analysis of seed protein and oil from soybean northern and southern region uniform tests. Crop Sci. 2002, 42, 1504–1515. [Google Scholar] [CrossRef]
- USB (United Soybean Board). Product Guide [Online]. Available online: http://www.unitedsoybean.org/f_public.htm (accessed on 2 April 2013).
- Peoples, M.B.; Brockwel, J.; Herridge, D.F.; Rochester, I.J.; Alves, B.R.J.; Urquiaga, S.; Boddey, R.M.; Dakora, F.D.; Bhattarai, S.; Maskey, S.L.; et al. The contributions of nitrogen-fixing crop legumes to the productivity of agricultural systems. Symbiosis 2009, 48, 1–17. [Google Scholar] [CrossRef]
- Okalebo, J.R.; Gathua, K.W.; Woomer, P.L. Laboratory methods of soil and plant analysis. A working Manual; Marvel EPZ (K) Limited: Nairobi, Kenya, 2002. [Google Scholar]
- Ndung’u, K.W.; Okalebo, J.R.; Othieno, C.O.; Kifuko, M.N.; Kipkoech, A.K.; Kimenye, L.N. Residual effectiveness of Minjingu phosphate rock and improved fallows on crop yield and financial returns in western Kenya. Exp. Agric. 2006, 42, 323–336. [Google Scholar] [CrossRef]
- Sanchez, P.A. Soil fertility and hunger in Africa. Science 2002, 295, 2019–2020. [Google Scholar] [CrossRef] [Green Version]
- Stewart, Z.P.; Pierzynski, G.M.; Middendorf, B.J.; Prasad, P.V.V. Approaches to improve soil fertility in sub-Saharan Africa. J. Exp. Bot. 2020, 71, 632–641. [Google Scholar] [CrossRef] [Green Version]
- Stewart, Z.P.; Pierzynski, G.M.; Middendorf, B.J.; Prasad, P.V.V. Sub-Saharan Africa Soil Fertility Prioritization Report: III. Combined Summary©; Feed the Future Innovation Lab for Collaborative Research on Sustainable Intensification, Kansas State University: Manhattan, KS, USA, 2017. [Google Scholar]
- Foyer, C.H.; Siddique, K.H.M.; Tai, A.P.K.; Anders, S.; Fodor, N.; Wong, F.-L.; Luddi, N.; Chapman, M.A.; Ferguson, B.J.; Considine, M.J.; et al. Modelling predicts that soybean is poised to dominate crop production across Africa. Plant Cell Environ. 2018, 41, 373–385. [Google Scholar] [CrossRef]
- Fortin, J.A.; Plenchette, C.; Piché, Y. Les Mycorhizes: La Nouvelle Révolution Verte; Édition Multimondes: Québec, Canada, 2008; p. 138. [Google Scholar]
- Abaidoo, R.C.; Keyser, H.H.; Singleton, P.W.; Dashiell, K.E.; Sanginga, N. Population size, distribution and symbiotic characteristics of indigenous Bradyrhizobium spp. that nodulate TGx soybean genotypes in Africa. Appl. Soil Ecol. 2007, 35, 57–67. [Google Scholar] [CrossRef]
- Deaker, R.; Roughley, R.; Kennedy, I.R. Legume seed inoculation technology—A review. Soil Biol. Biochem. 2004, 36, 1275–1288. [Google Scholar] [CrossRef]
- Alves, R.B.J.; Boddey, M.R.; Urquiaga, S. The success of BNF in soybean in Brazil. Plant Soil 2003, 252, 1–9. [Google Scholar] [CrossRef]
- Mpepereki, S.; Javaheri, F.; Davis, P.; Giller, K.E. Soybeans and sustainable agriculture: Promiscuous soybeans in southern Africa. Field Crop Res. 2000, 65, 137–149. [Google Scholar] [CrossRef]
- Thuita, M.; Pieter, P.; Herrmann, L.; Okalebo, R.J.; Othieno, C.; Muema, E.; Lesueur, D. Commercial rhizobial inoculants significantly enhance growth and nitrogen fixation of a promiscuous soybean variety in Kenyan soils. Biol. Fert. Soils 2012, 2012. 48, 87–96. [Google Scholar] [CrossRef]
- Marschner, H. Marschner’s Mineral Nutrition of Higher Plants; Academic press: Amsterdam, The Netherlands, 2012; Volume 89. [Google Scholar]
- Jansa, J.; Frossard, E.; van der Heijden, M.G.A. Can Arbuscular Mycorrhizal Fungi Reduce the Growth of Agricultural Weeds? PLoS ONE 2011, 6, e27825. [Google Scholar] [CrossRef]
- Verma, P.; Yadav, A.N.; Kazy, S.K.; Saxena, A.K.; Suman, A. Elucidating the diversity and plant growth promoting attributes of wheat (Triticum aestivum) associated acidotolerant bacteria from southern hills zone of India. Nat. J. Life Sci. 2013, 10, 219–226. [Google Scholar]
- Goltapeh, E.M.; Danesh, R.Y.; Prasad, R.; Varma, A. Mycorrhal fungi: What We Know and What We Should Know. In Mycorrhiza, Genetic and Molecular Biology; Eco-Function, Biotechnology, Eco-Physiology, Structure and Systematic, 3rd ed.; Varma, A., Ed.; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Smith, S.E.; Read, D.J. Mycorrhizal Symbiosis, 3rd ed.; Academic Press: London, UK, 2008. [Google Scholar]
- Frazer, T.; Nayyar, A.; Ellouze, W.; Perez, J.; Hanson, K.; Germida, J.; Bouzid, Z.; Hamel, C. Arbuscular Mycorrhizae: Where Nature and Industry Meet; NRC Research Press Chap 5: Ottawa, ON, Canada, 2009; pp. 71–86. [Google Scholar]
- Gilbert, N. The disappearing nutrient. Nature 2009, 461, 8. [Google Scholar] [CrossRef] [PubMed]
- Naheeda, B.; Cheng, Q.; Muhammad, A.A.; Saijad, R.; Mouhannad, I.K.; Muhammad, A.; Nadeem, A.; Lixin, Z. Role of Arbuscular Mycorrhizal Fungi in Plant Growth Regulation: Implications in Abiotic Stress Tolerance. Front. Plant Sci. 2019. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Zhao, H.; Zou, C.; Li, Y.; Chen, Y.; Wang, Z. Combined Inoculation with multiple arbuscular mycorrhizal fungi improves growth, nutrient uptake and photosynthesis in cucumber seedlings. Front. Microbiol. 2017, 8, 2516. [Google Scholar] [CrossRef]
- Mitra, D.; Navendra, U.; Panneerselvam, U.; Ansuman, S.; Ganeshamurthy, A.N.; Divya, J. Role of mycorrhiza and its associated bacteria on plant growth promotion and nutrient management in sustainable agriculture. Int. J. Life Sci. 2019, 1, 1–10. [Google Scholar]
- Faye, A.; Dalpé, Y.; Ndung’u-Magiroi, K.; Jefwa, J.; Ndoye, I.; Diouf, M.; Lesueur, D. Evaluation of commercial arbuscular mycorrhizal inoculants. Can. J. Plant Sci. 2013, 93, 1–8. [Google Scholar] [CrossRef]
- Meghvansi, M.K.; Prasad, K.; Harwani, D.; Mahna, S.K. Response of soybean cultivars toward inoculation with three arbuscular mycorrhizal fungi and Bradyrhizobium japonicum in the alluvial soil. Eur. J. Soil Biol. 2008, 44, 316–323. [Google Scholar] [CrossRef]
- Corkidi, L.; Allen, E.B.; Merhaut, D.; Allen, M.F.; Downer, J.; Bohn, J.; Evans, M. Assessing the infectivity of commercial mycorrhizal inoculants in plant conditions. J. Environ. Hortic. 2004, 22, 149–154. [Google Scholar]
- Smith, S.E.; Smith, F.A.; Jakobsen, I. Functional diversity in arbuscular mycorrhizal (AM) symbioses: The contribution of the mycorrhizal P uptake pathway is not correlated with mycorrhizal responses in growth or total P uptake. New Phytol. 2004, 162, 511–524. [Google Scholar] [CrossRef]
- Lehmann, A.; Barto, E.K.; Powell, J.R.; Rillig, M.C. Mycorrhizal responsiveness trends in annual crop plants and their wild relatives: A meta-analysis on studies from 1981 to 2010. Plant Soil 2012, 355, 231–250. [Google Scholar] [CrossRef]
- Lesueur, D.; Yattara, I.; Louppe, D.; Sougoufara, B.; Gnahoua, G.M.; Ouattara, N.; Kolou, O.; Yossi, H.; Mallet, B. Fixation symbiotique de l’azote au sein de jachères améliorées à Acacia mangium et Aca- cia auriculiformis en Côte d’Ivoire, au Mali et au Sénégal. In La Jachère en Afrique Tropicale; Floret, C., Pontanier, R., Eds.; Jonh Libbey Eurotext: Paris, France, 2000; pp. 664–674. [Google Scholar]
- Lesueur, D.; Duponnois, R. Relations between Rhizobial Nodulation and Root Colonization of Acacia Crassicarpa Provenances by an Arbuscular Mycorrhizal Fungus, Glomus Intraradices Schenk and Smith or an Ectomycorrhizal Fungus, Pisolithus Tinctorius Coker & Couch. Annals of Forest Science; Springer: Berlin/Heidelberg, Germany, 2005; Volume 62, pp. 467–474. [Google Scholar]
- Mortimer, P.E.; Samantha, C.K.; Qiaohong, L.; Heng, G.; Xueqing, Y.; Xuefei, Y.; Jun, H.; Lei, Y.; Jiayu, G.; Huili, L.; et al. Prized edible Asian mushrooms: Ecology, conservation and sustainability. Fungal Divers. 2012, 56, 31–47. [Google Scholar] [CrossRef]
- IUSS Working Group, W.R.B. World Reference Base for Soil Resources, a Framework for International Classification Correlation and Communication, 2nd Ed. ed; FAO: Rome, Italy, 2006. [Google Scholar]
- Dalpé, Y.; Hamel, C. Arbuscular mycorrhizae. In Manual of Soil Sampling and Methods of Analysis, 4th ed.; Canadian Society of Soil Science; Lewis Publication of CRC Press: Boca Raton, FL, USA, 2007; pp. 355–377. [Google Scholar]
- Kueneman, E.A.; Root, W.R.; Dashiell, K.E.; Hohenberg, J. Breeding soybean for the tropics capable of nodulating effectively with indigenous Rhizobium spp. Plant Soil 1984, 82, 387–396. [Google Scholar] [CrossRef]
- Fox, R.L.; Kamprath, E.J. Phosphorus sorption isotherms for evaluating the phosphate requirement of soils. Soil Sci. Soc. Am. J. 1970, 34, 902–907. [Google Scholar] [CrossRef]
- Phillips, J.M.; Hayman, D.S. Improving procedures for clearing roots and staining parasitic and vesicles of arbuscular mycorrhizal fungi for rapid assessment of infection. Trans. Br. Mycol. Soc. 1970, 55, 157–160. [Google Scholar] [CrossRef]
- McGonigle, T.P.; Miller, M.H.; Evans, D.G.; Fairchild, G.L.; Swan, J.A. A new method which gives an objective measure of colonization of roots by vesicular arbuscular mycorrhizal fungi. New Phytol. 1990, 115, 495–501. [Google Scholar] [CrossRef]
- SAS. SES/STAT User’s Guide: Statistics; SAS Institute Inc.: Cary, NC, USA, 1999. [Google Scholar]
- Pedersen, P.; Kumudini, S.; Board, J.; Conley, S. Soybean Growth and Development; Iowa State University, University Extension: Ames, IA, USA, 2004. [Google Scholar]
- Tarbell, T.J.; Koske, R.E. Evaluation of commercial arbuscular mycorrhizal inocula in a sand/peat medium. Mycorrhiza 2007, 18, 51–56. [Google Scholar] [CrossRef]
- Jefwa, J.; Vanlauwe, B.; Coyne, D.; van Asten, P.; Gaidashova, S.; Rurangwa, E.; Mwashasha, M.; Elsen, A. Benefits and potential use of arbuscular mycorrhizal fungi (AMF) in banana and plantain (Musa spp.) systems in Africa. Proc. IC on Banana & Plantain in Africa Eds. Dubois, T. 2009. Acta Hortic. 2009, 879, 479–486. [Google Scholar]
- Schreiner, R.P. Effects of native and non-native arbuscular mycorrhizal fungi on growth and nutrient uptake of ‘Pinot noir’ (Vitis vinifera L.) in two soils with contrasting levels of phosphorus. Appl. Soil Ecol. 2007, 36, 205–215. [Google Scholar] [CrossRef]
- Gadkar, V.; David-Schwartz, R.; Kunik, T.; Kapulnik, Y. Arbuscular Mycorrhizal Fungal Colonization. Factors Involved in Host Recognition. Plant Physiol. 2001, 127, 1493–1499. [Google Scholar] [CrossRef] [PubMed]
- Graham, J.H.; Eissenstat, D.M.; Drouillard, D.L. On the relationship between a plant’s mycorrhizal dependency and rate of vesicular-arbuscular myccorhizal colonization. Funct. Ecol. 1991, 5, 773–779. [Google Scholar] [CrossRef]
- Chabot, R.; Beauchamp, C.J.; Kloepper, J.W.; Antoun, H. Effect of phosphorus on root colonization and growth promotion of maize by 120 bioluminescent mutants of phosphate-solubilizing Rhizobium leguminosarum biovar phaseoli. Soil Biol. Biochem. 1998, 30, 1615–1618. [Google Scholar] [CrossRef]
- Fabrício, H.M.; Salgadoátima, M.; José, O.S.; Rcardo, B.; Helder, B.P.; Marco, A.C.C. Arbuscular mycorrhizal fungi and colonization stimulant in cotton and maiz. Ciência Rural 2017, 47, 47–59. [Google Scholar]
- Mûllru-Samann, K.M.; Kotschi, J. Encouraging and using natural symbionts. In Sustaining Growth: Soil Fertility Management in Tropical Smallholding; CTA GTZ edition/439–486; Margraf: Chiampo, Italy, 1995. [Google Scholar]
- Sieverding, E.; Saif, S.R. VA-Mycorrhiza Management—A Low Cost Biological Technology for Crop and Pasture Production on Infertile Soils: Discussion Paper, Prepared for CIAT, Annual Review, February 1984; CIAT: Cali, Colombia, 1994. [Google Scholar]
- Schweinsberg-Mickan, M.S.; Müller, T. Impact of effective microorganisms and other biofertilizers inoculants on soil microbial characteristics, organic-matter decomposition, and plant growth. J. Plant Nutr. Soil Sci. 2009, 172, 704–712. [Google Scholar] [CrossRef]
- Thies, J.E.; Singleton, P.W.; Bohlool, B.B. Influence of the size of indigenous rhizobial populations on establishment and symbiotic performance of introduced Rhizobia on field-grown legumes. Appl. Environ. Microbiol. 1991, 57, 19–28. [Google Scholar] [CrossRef] [Green Version]
- Thonar, C.; Erb, A.; Jansa, J. Real-time PCR to quantify composition of arbuscular mycorrhizal fungal communities-marker design, verification, calibration and field validation. Mol. Ecol. Resour. 2011, VL-12. [Google Scholar] [CrossRef]
- Herrmann, L.; Atieno, O.M.; Okalebo, J.; Lesueur, D. Molecular identification of the strains in commercial products for improving agriculture in Africa. In Proceedings of the 13th International Symposium on Microbial Ecology, Seattle, WA, USA, 22–27 August 2010. [Google Scholar]
Soil Characteristics | Coastal Sandy Soil (Kilifi) | Central Clay Soil (Chuka) |
---|---|---|
pH (1:2.5 soil: H2O) | 7.30 | 5.83 |
Organic C (%) * | 0.98 | 2.63 |
Total N (%) ** | 0.08 | 0.23 |
Olsen P (mg P kg−1 soil) | 18.3 | 4.27 |
Exchangeable K (cmol kg−1) *** | 0.64 | 1.73 |
Exchangeable Ca (cmol kg−1) *** | 9.48 | 12.7 |
Exchangeable Mg (cmol kg−1) *** | 3.42 | 3.28 |
Water holding capacity (%) β | 18.7 | 29.5 |
Indigenous AMF spore number (100g dry soil−1) | 10.7 | 12 |
Sand (%) § | 78 | 53 |
Silt (%) § | 10 | 24 |
Clay (%) § | 12 | 23 |
Texture class | Sandy loam | Sandy clay-loam |
Soil class | Rhodic Ferralsol | Humic Nitisol |
Product Name /Producer | Asserted Active Ingredients |
---|---|
(In. 1) Endorize standard /Agrauxine (France) | Glomus spp |
(In. 2) Endorize premium/Agrauxine (France) | G. spp |
(In. 3) Myco Apply Endo/Mycorrhizal Applications, Inc. (USA) | G. intraradices, G. mosseae, G. aggregatum and G. Etunicatum |
(In. 4) Myco Apply Endo plus /Mycorrhizal Applications, Inc. (USA) | G. intraradices, G. mosseae, G. aggregatum and G. etunicatum,Trichoderma konigii and T. harzianum |
(In. 5) Myco Apply Maxx /Mycorrhizal Applications, Inc. (USA) | G. intraradices, G. mosseae, G. aggregatum, G. etunicatum, Rhizopogon villosullus, R. luteolus, R. amyopogon, R. fulvigleba, Pisolithus tinctorius, Scleroderma ceap and S. citrinum T. koningii and T. harzianum, Bacillus licheniformis, B. pumilis, B. amyloliquefaciens and B. megaterium |
(In. 6) Myco Apply Soluble Endo /Mycorrhizal Applications, Inc. (USA) | G. intraradices, G. mosseae, G. aggregatum and G. etunicatum |
(In. 7) Myco Apply Root Dip Gel /Mycorrhizal Applications, Inc. (USA) | G. intraradices, G. mosseae, G. aggregatum, G. monosporum, G. cralum, G. deserticola, Gi. margarita, Gi. brasilianum, Gi. etunicatum, R. vilosullus, R. lutelolus, R. amylopogon, R. fulvigleba, Pisolithus tinctorius, Scleroderma Cepa, S. cirtrinum propagules. |
(In. 8) Myco Apply Soluble Maxx /Mycorrhizal Applications, Inc. (USA) | G. intraradices, G. mosseae, G. aggregatum, G. etunicatum G. clarum, G. deserticola, Gi. margarita, Gi. brasilianum, Gi. monosporum, R. villosullus, R. luteolus, R. amylopogon, R. fulvigleba, Pisolithus tictorius, Laccaria bicolr and L. laccata, Scleroderma cepa and Sc. citrinum, Suillus granulates and Su. puctatapies, T. harzin and T. konigii, Bacillus licheniformis, B. azotoformans, B. megaterium, B. coagulans, B. pumilis, B. thuringiensis, B. stearothermiphilis, Paenibacillus polymyxa, Pa. durum, Pa. florescecne, Pa. gordonae, Azotobacter polymyxa, Az. chroococcum, Sacchromyces cervisiae, Pseudomonas aureofaceans |
(In. 9) Mycor/Iftech (France) | G. intraradices |
(In. 10) Rhizatech /Dudutech (K) Ltd. (Kenya) | Spores and mycelial fragments of AMF (mainly G. intraradices) |
(In. 11) Vam-Tech /Nutri-Tech Solutions P/L (Australia) | Glomus intraradices |
(In. 12) Zander Mycorrhiza /Zander Middle East LLC, United Arab Emirates | Beneficial arbuscular mycorrhizal fungi from arid zones |
Sites | |||
---|---|---|---|
Soil Characteristics | Bondo | Bungoma | Chuka |
Soil pH (1:2.5 soil: H2O) | 6.48 | 5.26 | 5.60 |
Organic C (%) * | 2.71 | 1.04 | 3.30 |
Total N (%) ** | 0.12 | 0.08 | 0.92 |
Olsen P (mg P kg−1 soil) | 8.00 | 9.63 | 11.27 |
Exchangeable K (cmol kg−1) *** | 2.99 | 0.29 | 1.07 |
Exchangeable Ca (cmol kg−1) *** | 8.73 | 2.75 | 3.12 |
Exchangeable Mg (cmol kg−1) *** | 0.84 | 0.77 | 9.45 |
Cation exchange capacity (cmol kg−1) β | 15.1 | 7 | 21.35 |
Indigenous AMF spores number (soil g−1) | 8.3 | 8 | 6.5 |
Clay (%) § | 59 | 20 | 45 |
Sand (%) § | 11 | 67 | 15 |
Silt (%) § | 30 | 13 | 40 |
Textural Class | Sandy clay loam | Loamy sand | Sandy clay |
Soil Class | Vertisol | Orthic Ferralsol | Rhodic Nitisol |
Sources of Variation | Plant P Uptake | Root Colonization | Biomass Production | Nodules Fresh Weight | Leaf Chlorophyll Index |
---|---|---|---|---|---|
Inoculants alone | p = 0.2787 | p < 0.001 | p = 0.6449 | p = 0.560 | p = 0.1356 |
Inoculants-Soil Type | p = 0.0926 | p < 0.0001 | p = 0.0557 | p = 0.2877 | p = 0.2709 |
Inoculants-P Source | p = 0.1559 | p < 0.0001 | p = 0.1188 | p = 0.0357 | p = 0.8580 |
Nodules FW (g Plant−1) | Root Mycorrhizal Colonization (%) | ||||||
---|---|---|---|---|---|---|---|
Inoculant-P Source | Inoculant | Inoculant-Soil Type Interaction | Inoculant-P Source Interaction | ||||
AMF Inoculants | Rock P | Water Soluble Mineral P | Sandy Coastal Soil | Clay Central Soil | Rock P | Water Soluble Mineral P | |
Control | 1.38a | 1.27ab | 22.2d | 13.0c | 31.8de | 15.5e | 29.3ab |
In. *1 | 1.81a | 1.41ab | 30.3cd | 33.3abc | 27.3de | 26.7cde | 34.0ab |
In. 2 | 1.33a | 1.19ab | 48.2ab | 40.5a | 55.8ab | 48.7ab | 47.7a |
In. 3 | 1.46a | 1.56ab | 30.0cd | 20.0abc | 22.7e | 17.5de | 19.0b |
In. 4 | 1.21a | 1.58ab | 51.2 a | 36.8ab | 65.5a | 61.1a | 40.8ab |
In. 5 | 1.50a | 1.89a | 30.8cd | 31.8abc | 29.8de | 24.7cde | 37.0ab |
In. 6 | 0.92a | 1.54ab | 29.3cd | 18.5bc | 40.0bcde | 26.5cde | 32.0ab |
In. 7 | 1.41a | 1.78ab | 21.3d | 13.8c | 46.2abcd | 23.7cde | 42.5ab |
In. 8 | 1.31a | 0.80a | 31.3cd | 28.0abc | 34.7cde | 24.8cde | 37.8ab |
In. 9 | 1.20a | 1.36ab | 33.4cd | 28.5abc | 38.3bcde | 24.7cde | 42.7ab |
In. 10 | 1.46a | 1.56ab | 40.3abc | 27.0abc | 53.7abc | 33.7bcd | 47.0a |
In. 11 | 2.05a | 1.18ab | 34.6bcd | 32.5abc | 36.7bcde | 38.5bc | 30.7ab |
In. 12 | 1.54a | 0.98ab | 33.9bcd | 37.8ab | 30.0de | 38.0bc | 29.8ab |
Bungoma | Bondo | Chuka | ||||
---|---|---|---|---|---|---|
Inoculations | Root AMF Colonization (%) | Nodule FW Plant−1 | Root AMF Colonization (%) | Nodule FW Plant−1 | Root AMF Colonization (%) | Nodule FW Plant−1 |
Legumefix | 37.8b | 18.4a | 21.6c | 7.6a | 6.7a | 28.9b |
Legumefix+ DAP | 22.2c | 11.4b | 19.0c | 1.4b | 6.7a | 11.6c |
Endorize Premium (In. 2) +Legumefix | 35.6b | 14.6b | 32.3b | 3.3b | 9.7a | 27.5b |
Rhizatech (In. 10) +Legumefix | 53.3a | 14.7b | 41.8a | 1.4b | 8.7a | 49.3a |
Myco Apply Maxx (In. 5) +Legumefix | 23.3c | 17.4a | 32.0b | 2.1b | NA | NA |
Grain Yield (t ha−1) | |||
---|---|---|---|
Inoculation | Bungoma | Bondo | Chuka |
Legumefix | 0.46a | 0.69a | 0.71a |
Control (Legumefix + DAP) | 0.62a | 0.82a | 0.57a |
Endorize premium (In. 2) + Legumefix | 0.53a | 0.76a | NA |
Rhizatech (In. 10) + Legumefix | 0.65a | 0.64a | 0.61a |
Myco Apply Maxx (In. 5) + Legumefix | 0.53a | 0.83a | NA |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Faye, A.; Stewart, Z.P.; Ndung’u-Magiroi, K.; Diouf, M.; Ndoye, I.; Diop, T.; Dalpé, Y.; Prasad, P.V.V.; Lesueur, D. Testing of Commercial Inoculants to Enhance P Uptake and Grain Yield of Promiscuous Soybean in Kenya. Sustainability 2020, 12, 3803. https://doi.org/10.3390/su12093803
Faye A, Stewart ZP, Ndung’u-Magiroi K, Diouf M, Ndoye I, Diop T, Dalpé Y, Prasad PVV, Lesueur D. Testing of Commercial Inoculants to Enhance P Uptake and Grain Yield of Promiscuous Soybean in Kenya. Sustainability. 2020; 12(9):3803. https://doi.org/10.3390/su12093803
Chicago/Turabian StyleFaye, A., Z.P. Stewart, K. Ndung’u-Magiroi, M. Diouf, I. Ndoye, T. Diop, Y. Dalpé, P.V.V. Prasad, and D. Lesueur. 2020. "Testing of Commercial Inoculants to Enhance P Uptake and Grain Yield of Promiscuous Soybean in Kenya" Sustainability 12, no. 9: 3803. https://doi.org/10.3390/su12093803
APA StyleFaye, A., Stewart, Z. P., Ndung’u-Magiroi, K., Diouf, M., Ndoye, I., Diop, T., Dalpé, Y., Prasad, P. V. V., & Lesueur, D. (2020). Testing of Commercial Inoculants to Enhance P Uptake and Grain Yield of Promiscuous Soybean in Kenya. Sustainability, 12(9), 3803. https://doi.org/10.3390/su12093803