Selected Insect Pests of Economic Importance to Brassica oleracea, Their Control Strategies and the Potential Threat to Environmental Pollution in Africa
Abstract
:1. Introduction
2. The Biological Cycle of Brassica Species and Their Common Insect Pests in Africa
2.1. Propagation and Biological Cycle Length of Selected Brassica Species
2.2. The Common Insect Pests Affecting Cabbages in Africa
2.2.1. Cabbage Looper (Trichoplusia ni)
2.2.2. Cabbage Webworm (Hellula undalis)
2.2.3. Diamondback month (Plutella xyllostela)
2.2.4. The Cabbage Aphids, (Brevicoryne brassicae)
2.2.5. The Green Peach Aphids (Myzus persicae)
2.2.6. Brassica oleracea Insect Pests with Insecticides’ Resistance
3. The Biological Life Cycle and Common Practices Used to Control Cabbage Insect Pests
3.1. The Biological Life Cycle of Brassica Species Insect Pests
3.2. Common Practices Used to Control Cabbage Insect Pests
3.2.1. Chemical Pesticides
3.2.2. Cultural Methods
3.2.3. Biological Control
3.2.4. Botanical Pesticides
4. The Fate of Pesticides Used to Control Cabbage Insect Pests in African Smallholder Farmers
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Baidoo, P.; Mochiah, M. Comparing the effectiveness of garlic (Allium sativum L.) and hot pepper (Capsicum frutescens L.) in the management of the major pests of cabbage Brassica oleracea (L.). Sustain. Agric. Res. 2016, 5, 83–91. [Google Scholar] [CrossRef] [Green Version]
- Gyanoba, M.S.C. Bio-Efficacy of Newer Insecticides against Diamondback Moth (Plutella xylostella L.) and Their Residues in Cabbage; Mahatma Phule Krishi Vidyapeeth Rahuri: Maharashtra, India, 2018. [Google Scholar]
- Mudzingwa, S.; Muzemu, S.; Chitamba, J. Pesticidal efficacy of crude aqueous extracts of Tephrosia vogelii L., Allium sativum L. and Solanum incanum L. in controlling aphids (Brevicoryne brassicae L.) in rape (Brassica napus L.) n controlling aphids (Brevicoryne brassicae L.) in rape (Brassica napus L.). J. Agric. Res. 2013, 2, 157–163. [Google Scholar]
- Norman, C.; Shealy, M. Illustrated Encyclopedia of Healing Remedies; Elements Book Inc.: Toledo, OH, USA, 2007. [Google Scholar]
- Steinbrecher, A.; Linseisen, J. Dietary intake of individual glucosinolates in participants of the EPIC-Heidelberg cohort study. Ann. Nutr. Metab. 2009, 54, 87–96. [Google Scholar] [CrossRef] [PubMed]
- Kusznierewicz, B.; Bartoszek, A.; Wolska, L.; Drzewiecki, J.; Gorinstein, S.; Namieśnik, J. Partial characterization of white cabbages (Brassica oleracea var. capitata f. alba) from different regions by glucosinolates, bioactive compounds, total antioxidant activities and proteins. LWT Food Sci. Technol. 2008, 41, 1–9. [Google Scholar] [CrossRef]
- Baidoo, P.; Adam, J. The Effects of Extracts of Lantana camara (L.) and Azadirachta indica (A. Juss) on the Population Dynamics of Plutella xylostella, Brevicoryne brassicae and Hellula undalis on Cabbage. Sustain. Agric. Res. 2012, 1, 229–234. [Google Scholar] [CrossRef] [Green Version]
- Furlong, M.J.; Wright, D.J.; Dosdall, L.M. Diamondback moth ecology and management: Problems, progress, and prospects. Annu. Rev. Entomol. 2013, 58, 517–541. [Google Scholar] [CrossRef] [PubMed]
- Grzywacz, D.; Rossbach, A.; Rauf, A.; Russell, D.; Srinivasan, R.; Shelton, A. Current control methods for diamondback moth and other brassica insect pests and the prospects for improved management with lepidopteran-resistant Bt vegetable brassicas in Asia and Africa. Crop. Prot. 2010, 29, 68–79. [Google Scholar] [CrossRef]
- Labou, B.; Brévault, T.; Sylla, S.; Diatte, M.; Bordat, D.; Diarra, K. Spatial and temporal incidence of insect pests in farmers’ cabbage fields in Senegal. Int. J. Trop. Insect Sci. 2017, 37, 225–233. [Google Scholar] [CrossRef]
- Timbilla, J.; Nyarko, K. A survey of cabbage production and constraints in Ghana. Ghana J. Agric. Sci. 2004, 37, 93–101. [Google Scholar] [CrossRef]
- Weinberger, K.; Srinivasan, R. Farmers’ management of cabbage and cauliflower pests in India and their approaches to crop protection. J. Asia Pac. Entomol. 2009, 12, 253–259. [Google Scholar] [CrossRef]
- Simon, S.; Komlan, F.A.; Adjaïto, L.; Mensah, A.; Coffi, H.K.; Ngouajio, M.; Martin, T. Efficacy of insect nets for cabbage production and pest management depending on the net removal frequency and microclimate. Int. J. Pest. Manag. 2014, 60, 208–216. [Google Scholar] [CrossRef]
- Labou, B.; Brévault, T.; Bordat, D.; Diarra, K. Determinants of parasitoid assemblages of the diamondback moth, Plutella xylostella, in cabbage farmer fields in Senegal. Crop. Prot. 2016, 89, 6–11. [Google Scholar] [CrossRef]
- Kapeleka, J.A.; Sauli, E.; Sadik, O.; Ndakidemi, P.A. Biomonitoring of Acetylcholinesterase (AChE) Activity among Smallholder Horticultural Farmers Occupationally Exposed to Mixtures of Pesticides in Tanzania. Int. J. Environ. Res. Public Health 2019, 2019, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Mkenda, P.; Mwanauta, R.; Stevenson, P.C.; Ndakidemi, P.; Mtei, K.; Belmain, S.R. Extracts from field margin weeds provide economically viable and environmentally benign pest control compared to synthetic pesticides. PLoS ONE 2015, 10, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Mkindi, A.; Mpumi, N.; Tembo, Y.; Stevenson, P.C.; Ndakidemi, P.A.; Mtei, K.; Machunda, R.; Belmain, S.R. Invasive weeds with pesticidal properties as potential new crops. Ind. Crops Prod. 2017, 110, 113–122. [Google Scholar] [CrossRef]
- Angbanyere, M.A.; Baidoo, P.K. The effect of pollinators and pollination on fruit set and fruit yields of okra (Abelmoschus esculentus (L) Moench) in the forest region of Ghana. Am. J. Exp. Agric. 2014, 4, 985–995. [Google Scholar] [CrossRef]
- Kasina, M.A.; Kraemer, M.; Holm-Mueller, K. Economic Benefit of Crop Pollination by Bees: A case of Kakamega Small-holder Farming in Western Kenya. J. Econ. Entomol. 2009, 102, 467–473. [Google Scholar]
- Ondieki, J.J. The current state of pesticide management in Sub-Saharan Africa. Sci. Total Environ. 1996, 188, 30–34. [Google Scholar] [CrossRef]
- Amoabeng, B.W.; Gurr, G.M.; Gitau, C.W.; Stevenson, P.C. Cost: Benefit analysis of botanical insecticide use in cabbage: Implications for smallholder farmers in developing countries. Crop Prot. 2014, 57, 71–76. [Google Scholar] [CrossRef]
- Koona, P.; Dorn, S. Extracts from Tephrosia vogelii for the protection of stored legume seeds against damage by three bruchid species. Ann. Appl. Biol. 2005, 147, 43–48. [Google Scholar] [CrossRef]
- Fening, K.; Amoabeng, B.; Adama, I.; Mochiah, M.; Braimah, H.; Owusu-Akyaw, M.; Narveh, E.; Ekyem, S. Sustainable management of two key pests of cabbage, Brassica oleracea var. capitata L.(Brassicaceae), using homemade extracts from garlic and hot pepper. Org. Agric. 2013, 3, 163–173. [Google Scholar] [CrossRef]
- Amoabeng, B.W.; Gurr, G.M.; Gitau, C.W.; Nicol, H.I.; Munyakazi, L.; Stevenson, P.C. Tri-trophic insecticidal effects of African plants against cabbage pests. PLoS ONE 2013, 8, 1–10. [Google Scholar] [CrossRef]
- Begna, F.; Damtew, T. Evaluation of four botanical insecticides against Diamondback Moth, Plutella Xylostella L.(Lepidoptera: Plutellidae) on head cabbage in the central rift valley of Ethiopia. Sky J. Agric. Res. 2015, 4, 97–105. [Google Scholar]
- Zaki, F. Field application of plant extracts against the aphid, B. brassicae and the whitefly, B. abaci and their side effects on their predators and parasites. Arch. Phytopathol. Pflanzenschutz. 2008, 41, 462–466. [Google Scholar] [CrossRef]
- Basak, H.; Biswas, B.; Azad, M.; Arifuzzaman, M.; Sharmeen, F. Micropropagation of Mustard (Brassica spp.) from Leaf Explants. Thai J. Agric. Sci. 2012, 45, 75–81. [Google Scholar]
- Singh, S.; Cheema, G.; Bhatia, D. Evaluation of Plant Regeneration and Somaclonal Variation in Brassica Juncea L (Coss and Czern); World Vegetable Center: Tainan, Taiwan, 2001. [Google Scholar]
- Zhang, F.; Takahata, Y.; Xu, J. Plant regeneration from cotyledonary explants of Chinese cabbage cultured in vitro. Hort. Sin. 2002, 29, 348–352. [Google Scholar]
- Msikita, W.; Wilkinson, H.; Skirvin, R. Propagation of Tronchuda (Brassica oleracea var. tronchuda Bailey) from Cuttings. Hort. Sci. 1992, 27, 1036–1038. [Google Scholar] [CrossRef] [Green Version]
- Eapen, S.; Abraham, V.; Gerdemann, M.; Schieder, O. Direct somatic embryogenesis, plant regeneration and evaluation of plants obtained from mesophyll protoplasts of Brassica juncea. Ann. Bot. 1989, 63, 369–372. [Google Scholar] [CrossRef]
- Sharma, M.; Gupta, S. Effective Callus Induction and Plant Regeneration in Brassica napus (L.) Var Dgs-1. J. Cell Tissue Res. 2012, 12, 3229–3234. [Google Scholar]
- Dubey, S.K.; Gupta, A.K. Callus induction and shoot proliferation from seedling explants of different mustard genotypes. Int. J. Curr. Microbiol. App. Sci. 2014, 3, 858–864. [Google Scholar]
- Hachey, J.E.; Sharma, K.K.; Moloney, M.M. Efficient shoot regeneration of Brassica campestris using cotyledon explants cultured in vitro. Plant Cell Rep. 1991, 9, 549–554. [Google Scholar] [CrossRef] [PubMed]
- Smartt, J.; Simmonds, N.W. Evolution of Crop Plants, 2nd ed.; Longman Scientific & Technical: Harlow, UK, 1995; pp. 82–86. [Google Scholar]
- Krishnamoorthy, A. Biological control of diamondback moth Plutella xylostella (L.), an Indian scenario with reference to past and future strategies. In Proceedings of the International Symposium, Montpellier, France, 21–24 October 2002; Kirk, A.A., Bordat, D., Eds.; CIRAD: Montpellier, France, 2004. [Google Scholar]
- Waiganjo, M.; Waturu, C.; Mureithi, J.; Muriuki, J.; Kamau, J.; Munene, R. Use of entomopathogenic fungi and neem bio-pesticides for Brassica pests control and conservation of their natural enemies. East Afric. Agric. For. J. 2011, 77, 545–549. [Google Scholar]
- Ahouangninou, C.; Fayomi, B.E.; Martin, T. Assessing health and environmental risks as regards pesticide practices of vegetable growers in the rural city of Tori-Bossito in southern Benin. Cah. Agric. 2011, 20, 216–222. [Google Scholar] [CrossRef]
- Ngowi, A.; Mbise, T.; Ijani, A.; London, L.; Ajayi, O. Smallholder vegetable farmers in Northern Tanzania: Pesticides use practices, perceptions, cost and health effects. Crop Prot. 2007, 26, 1617–1624. [Google Scholar] [CrossRef] [Green Version]
- Lingren, P.; Green, G. Suppression and Management of Cabbage Looper Populations; Agricultural Research Service: Washington, DC, USA, 1984. [Google Scholar]
- Chomchalow, N. Protection of stored products with special reference to Thailand. AU J. 2003, 7, 34–47. [Google Scholar]
- Capinera, J. Handbook of Vegetable Pests; Academic Press: Cambridge, MA, USA, 2001. [Google Scholar]
- Isman, M.B. Botanical insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated world. Annu. Rev. Entomol. 2006, 51, 45–66. [Google Scholar] [CrossRef] [Green Version]
- Sivapragasam, A.; Aziz, A. Cabbage webworm on crucifers in Malaysia. In Diamondback Moth and Other Crucifer Pests, Proceedings of the Second International Workshop, Tainan, Taiwan, 10–14 December 1990; Talekar, N.S., Ed.; Asian Vegetable Research and Development Center: Taipei, Taiwan, 1992. [Google Scholar]
- Pérez-Lucas, G.; Vela, N.; El Aatik, A.; Navarro, S. Environmental Risk of Groundwater Pollution by Pesticide Leaching through the Soil Profile. In Pesticides, Anthropogenic Activities and the Health of Our Environment; IntechOpen: London, UK, 2018. [Google Scholar]
- Ebenebe, A.A.; Achari, S.R.; Chand, N.; Krishna, A.A.; Baleisuva, S. The cabbage webworm (Hellula undalis) on tickweed (Cleome viscosa) in Samoa. South Pac. J. Nat. Appl. Sci. 2011, 29, 1–6. [Google Scholar] [CrossRef]
- Waterhouse, D.F.; Sands, D.P.A. Classical Biological Control of Arthropods in Australia; Australian Centre for International Agricultural Research: Bruce Town, Australia, 2001. [Google Scholar]
- Shine, C.; Reaser, J.; Gutierrez, A. Invasive Alien Species in the Australa; Global Invasive Species Programme; National Reports & Directory of Resources: Cape Town, South Africa, 2003. [Google Scholar]
- Waterhouse, D.F.; Norris, K.R. Biological Control: Pacific Prospects; Inkata Press: Melbourne, Australia, 1987. [Google Scholar]
- Li, Z.; Feng, X.; Liu, S.-S.; You, M.; Furlong, M.J. Biology, ecology, and management of the diamondback moth in China. Annu. Rev. Entomol. 2016, 61, 277–296. [Google Scholar] [CrossRef]
- Li, Z.; Zalucki, M.; Yonow, T.; Kriticos, D.; Bao, H.; Chen, H.; Hu, Z.; Feng, X.; Furlong, M. Population dynamics and management of diamondback moth (Plutella xylostella) in China: The relative contributions of climate, natural enemies and cropping patterns. Bull. Entomol. Res. 2016, 106, 197–214. [Google Scholar] [CrossRef]
- Badenes-Perez, F.R.; Nault, B.A.; Shelton, A.M. Dynamics of diamondback moth oviposition in the presence of a highly preferred non-suitable host. Entomol. Exp. Appl. 2006, 120, 23–31. [Google Scholar] [CrossRef]
- Justus, K.; Mitchell, B. Oviposition site selection by the diamondback moth, Plutella xylostella (L.)(Lepidoptera: Plutellidae). J. Insect Behav. 1996, 9, 887–898. [Google Scholar] [CrossRef]
- Ayalew, G. Comparison of yield loss on cabbage from Diamondback moth, Plutella xylostella L.(Lepidoptera: Plutellidae) using two insecticides. Crop Prot. 2006, 25, 915–919. [Google Scholar] [CrossRef]
- Mohan, M.; Gujar, G. Local variation in susceptibility of the diamondback moth, Plutella xylostella (Linnaeus) to insecticides and role of detoxification enzymes. Crop Prot. 2003, 22, 495–504. [Google Scholar] [CrossRef]
- Charleston, D.S.; Gols, R.; Hordijk, K.A.; Kfir, R.; Vet, L.E.; Dicke, M. Impact of botanical pesticides derived from Melia azedarach and Azadirachta indica plants on the emission of volatiles that attract parasitoids of the diamondback moth to cabbage plants. J. Chem. Ecol. 2006, 39, 105–114. [Google Scholar] [CrossRef]
- Schulz, R.; Peall, S.K.; Dabrowski, J.M.; Reinecke, A.J. Current-use insecticides, phosphates and suspended solids in the Lourens River, Western Cape, during the first rainfall event of the wet season. Water SA 2001, 27, 65–70. [Google Scholar] [CrossRef] [Green Version]
- Dalvie, M.A.; Cairncross, E.; Solomon, A.; London, L. Contamination of rural surface and ground water by endosulfan in farming areas of the Western Cape, South Africa. Environ. Health 2003, 2, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Pedigo, L.P.; Rice, M.E. Entomology and Pest Management; Waveland Press: Long Grove, IL, USA, 2014. [Google Scholar]
- Patel, P.; Shukla, N.; Patel, G. Enhancing insecticidal properties of cow urine against sucking pests of cotton. In Proceedings of the National Symposium on Fronterier Areas of Entomological Research, New Delhi, India, 5–7 November 2003. [Google Scholar]
- Mochiah, M.; Banful, B.; Fening, K.; Amoabeng, B.; Ekyem, S.; Braimah, H.; Owusu-Akyaw, M. Botanicals for the management of insect pests in organic vegetable production. J. Entomol. Nematol. 2011, 3, 85–97. [Google Scholar]
- Mersha, W.; Ayele, N.; Fentahun, G.; Getinet, M.; Kassu, K.; Nagappan, R. Repellent and insecticidal activity of Mentha piperita (L.) plant extracts against cabbage aphid [Brevicoryne brassicae Linn. (Homoptera: Aphididae)]. Am. Eurasian J. Sci. Res. 2014, 9, 150–156. [Google Scholar]
- Gill, H.K.; Garg, H.; Gillett-Kaufman, J.L. Cabbage aphid, Brevicoryne brassicae Linnaeus (Insecta: Hemiptera: Aphididae); IFAS Extension University of Florida: Gainesville, FL, USA, 2013. [Google Scholar]
- Carter, C.; Sorensen, K. Insect and related pests of vegetables. In Cabbage and Turnip Aphid; Center for Integrated Pest Management; North Carolina State University: Raleigh, NC, USA, 2013. [Google Scholar]
- Opfer, P.; McGranth, D. Oregon Vegetables, Cabbage Aphid and Green Peach Aphid; Department of Horticulture Oregon State University Corvallis: Corvallis, OR, USA, 2013. [Google Scholar]
- Gabrys, B.J.; Gadomski, H.; Klukowski, Z.; Pickett, J.A.; Sobota, G.T.; Wadhams, L.; Woodcock, C.M. Sex pheromone of cabbage aphid Brevicoryne brassicae: Identification and field trapping of male aphids and parasitoids. J. Chem. Ecol. 1997, 23, 1881–1890. [Google Scholar] [CrossRef]
- Ahmad, M.; Akhtar, S. Development of insecticide resistance in field populations of Brevicoryne brassicae (Hemiptera: Aphididae) in Pakistan. J. Econ. Entomol. 2013, 106, 954–958. [Google Scholar] [CrossRef]
- Jahan, F.; Abbasipour, H.; Askarianzade, A.; Hasanshahi, G.; Saeedizadeh, A. Effect of eight cauliflower cultivars on biological parameters of the cabbage aphid, Brevicoryne brassicae (L.)(Hem: Aphididae) in laboratory conditions. Arch. Phytopathol. Pflanzenschutz. 2013, 46, 636–642. [Google Scholar] [CrossRef]
- Moharramipour, S.; Monfared, A.; Fathipour, Y. Comparison of intrinsic rate of increase and mean relative growth rate of cabbage aphid (Brevicoryne brassicae L.) on four rapeseed (Brassica napus L.) varieties in growth room. Agric. Sci. 2003, 13, 79–89. [Google Scholar]
- Blackman, R.L.; Eastop, V.F. Aphids on the World’s Crops: An Identification and Information Guide; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2000. [Google Scholar]
- Elwakil, W.M.; Mossler, M. Florida Crop/Pest Management Profile: Cabbage; University of Florida: Gainesville, FL, USA, 2016; Volume 1256, p. 18. [Google Scholar]
- Lashkari, M.R.; Sahragard, A.; Ghadamyari, M. Sublethal effects of imidacloprid and pymetrozine on population growth parameters of cabbage aphid, Brevicoryne brassicae on rapeseed, Brassica napus L. Insect Sci. 2007, 14, 207–212. [Google Scholar] [CrossRef]
- Valenzuela, I.; Hoffmann, A.A. Effects of aphid feeding and associated virus injury on grain crops in A ustralia. Austral. Entomol. 2015, 54, 292–305. [Google Scholar] [CrossRef]
- Liu, T.X.; Sparks, A.N., Jr. Aphids on Cruciferous Crops: Identification and Management; Texas A&M University: College Station, TX, USA, 2001. [Google Scholar]
- Liu, Y.Q.; Shi, Z.-H.; Zalucki, M.P.; Liu, S.-S. Conservation biological control and IPM practices in Brassica vegetable crops in China. Biol. Control. 2014, 68, 37–46. [Google Scholar] [CrossRef]
- Hines, R.; Hutchison, W. Cabbage Aphids. VegEdge, Vegetable IPM Resource for the Midwest; University of Minnesota: Minneapolis, MN, USA, 2013. [Google Scholar]
- Bami, H. Pesticide use in India-Ten questions. Chem. Wkly. Bombay 1997, 42, 137–146. [Google Scholar]
- Gu, H.; Fitt, G.P.; Baker, G.H. Invertebrate pests of canola and their management in Australia: A review. Aust. J. Entomol. 2007, 46, 231–243. [Google Scholar] [CrossRef]
- Edwards, O.R.; Franzmann, B.; Thackray, D.; Micic, S. Insecticide resistance and implications for future aphid management in Australian grains and pastures: A review. Aust. J. Exp. Agric. 2008, 48, 1523–1530. [Google Scholar] [CrossRef]
- Umina, P.A.; Edwards, O.; Carson, P.; Van Rooyen, A.; Anderson, A. High levels of resistance to carbamate and pyrethroid chemicals widespread in Australian Myzus persicae (Hemiptera: Aphididae) populations. J. Econ. Entomol. 2014, 107, 1626–1638. [Google Scholar] [CrossRef]
- Anstead, J.; Mallet, J.; Denholm, I. Temporal and spatial incidence of alleles conferring knockdown resistance to pyrethroids in the peach–potato aphid, Myzus persicae (Hemiptera: Aphididae), and their association with other insecticide resistance mechanisms. Bull. Entomol. Res. 2007, 97, 243–252. [Google Scholar] [CrossRef]
- De Little, S.C.; Umina, P.A. Susceptibility of Australian Myzus persicae (Hemiptera: Aphididae) to three recently registered insecticides: Spirotetramat, cyantraniliprole, and sulfoxaflor. J. Econ. Entomol. 2017, 110, 1764–1769. [Google Scholar] [CrossRef] [PubMed]
- Stewart, J.K.; Aharoni, Y.; Hartsell, P.L.; Young, D.K. Acetaldehyde fumigation at reduced pressures to control the green peach aphid on wrapped and packed head lettuce. J. Econ. Entomol. 1980, 73, 149–152. [Google Scholar] [CrossRef]
- Sparks, T.C.; Nauen, R. IRAC: Mode of action classification and insecticide resistance management. Pestic. Biochem. Physiol. 2015, 121, 122–128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Whalon, M.; Mota-Sanchez, D.; Hollingworth, R. Analysis of Global Pesticide Resistance in Arthropods; CABI Publishing: Wallingford, UK, 2008; pp. 5–31. [Google Scholar]
- Seif, A.; Nyambo, B. Integrated Pest. Management for Brassica Production in East Africa; ICIPE Science Press: Addis Ababa, Ethiopia, 2013. [Google Scholar]
- Vuković, S.; Inđić, D.; Gvozdenac, S.; Červenski, J. Efficacy of Insecticides in the Control of Cabbage Pests. Res. J. Agric. Sci. 2014, 46, 421–425. [Google Scholar]
- Walker, G.; Cameron, P.; Berry, N. Implementing an IPM programme for vegetable brassicas in New Zealand. In The management of diamondback moth and other crucifer pests. In Proceedings of the Fourth International Workshop, Melbourne, Australia, 26–29 November 2001. [Google Scholar]
- Sun, C.; Tsai, Y.; Chiang, F. Resistance in the Diamondback Moth to Pyrethroids and Benzoylphenylureas; ACS Publications: Washington, DC, USA, 1992. [Google Scholar]
- Takahashi, H.; Mitsui, J.; Takakusa, N.; Matsuda, M.; Yoneda, H.; Suzuki, J.; Ishimitsu, K.; Kishimoto, T. NI-25, a new type of systemic and broad spectrum insecticide. In Proceedings of the Brighton Crop Protection Conference, Pests and Diseases, Brighton, UK, 23–26 November 1992. [Google Scholar]
- Verma, A.; Sandhu, G. Chemical control of diamondback moth, Plutella maculipennis (Curtis). J. Res. Punjab Agric. Univer. 1968, 5, 420–423. [Google Scholar]
- Joia, B.; Chawla, R.; Udeaan, A. Present insecticide use practices on cole crops in Punjab and strategies for managing multiple insecticide resistance in diamondback moth. In Proceedings of the XX International Congress of Entomology, Florence, Italy, 25–31 August 1996. [Google Scholar]
- Saxena, J.; Rai, S.; Srivastava, K.; Sinha, S. Resistance in the field populations of the diamondback moth to some commonly used synthetic pyrethroids. Ind. J. Entomol. 1989, 51, 265–268. [Google Scholar]
- Imran, M.; Kanwal Hanif, M.A.; Nasir, M.; Sheikh, U.A.A. Comparative Toxicity of Insecticides against Two Important Insect Pests of Cauliflower Crop. Asian J. Agric. Biol. 2017, 5, 88–98. [Google Scholar]
- Huaripata, C.; Sánchez, G. Life Cycle of the Diamondback Moth Plutella xylostella L.(Lepidoptera: Plutellidae), in Broccoli and Cauliflower under Laboratory Conditions. Peruv. J. Agron. 2019, 3, 1–5. [Google Scholar] [CrossRef]
- Harakley, F. Biological studies on the cabbage web-wrom, Hellula undalis Fabr. (Lepidoptera: Crambidae-Pyraustinae). Bull. Soc. Ent. Egypte 1968, 52, 191–211. [Google Scholar]
- Toba, H.; Kishaba, A.; Pangaldan, R.; Vail, P. Temperature and the development of the cabbage looper. Ann. Entomol. Soc. Am. 1973, 66, 965–974. [Google Scholar] [CrossRef]
- Shorey, H.H. A simple artificial rearing medium for the cabbage looper. J. Econ. Entomol. 1963, 56, 536–537. [Google Scholar] [CrossRef]
- Kessing, J.; Mau, R. Cabbage Aphid, Brevicoryne Brassicae (Linnaeus); Department of Entomology: Honolulu, HI, USA, 1991. [Google Scholar]
- Van Emden, H.; Eastop, V.; Hughes, R.; Way, M. The ecology of Myzus persicae. Ann. Rev. Entomol. 1969, 14, 197–270. [Google Scholar] [CrossRef]
- Alavanja, M.C. Introduction: Pesticides Use and Exposure, Extensive Worldwide. Rev. Environ. Health 2009, 24, 303–310. [Google Scholar] [CrossRef] [PubMed]
- Nyirenda, S.P.; Sileshi, G.W.; Belmain, S.R.; Kamanula, J.F.; Mvumi, B.M.; Sola, P.; Nyirenda, G.K.; Stevenson, P.C. Farmers’ ethno-ecological knowledge of vegetable pests and pesticidal plant use in Malawi and Zambia. Afric. J. Agric. Res. 2011, 6, 1525–1537. [Google Scholar]
- Williamson, S.; Ball, A.; Pretty, J. Trends in pesticide use and drivers for safer pest management in four African countries. Crop Prot. 2008, 27, 1327–1334. [Google Scholar] [CrossRef]
- Scaife, A.; Turner, M. Diagnosis of Mineral Disorders in Plants. In Vegetables; Her Majesty’s Stationery Office: London, UK, 1983; Volume 2. [Google Scholar]
- Ntow, W.J.; Gijzen, H.J.; Kelderman, P.; Drechsel, P. Farmer perceptions and pesticide use practices in vegetable production in Ghana. Pest. Manag. Sci. 2006, 62, 356–365. [Google Scholar] [CrossRef]
- De Bon, H.; Huat, J.; Parrot, L.; Sinzogan, A.; Martin, T.; Malezieux, E.; Vayssieres, J.-F. Pesticide risks from fruit and vegetable pest management by small farmers in sub-Saharan Africa. A review. Agron. Sustain. Dev. 2014, 34, 723–736. [Google Scholar] [CrossRef] [Green Version]
- Obopile, M.; Munthali, D.; Matilo, B. Farmers’ knowledge, perceptions and management of vegetable pests and diseases in Botswana. Crop. Prot. 2008, 27, 1220–1224. [Google Scholar] [CrossRef]
- Chikukura, L.; Mvumi, B.; Chikonzo, R.; Chenzara, C. Evaluation of selected indigenous pesticidal plant powders against stored maize and cowpeas insect pests. In Proceedings of the African Crop Science Conference, Maputo, Mozambique, 10–18 October 2011; pp. 651–676. [Google Scholar]
- Stevenson, P.C.; Kite, G.C.; Lewis, G.P.; Forest, F.; Nyirenda, S.P.; Belmain, S.R.; Sileshi, G.W.; Veitch, N.C. Distinct chemotypes of Tephrosia vogelii and implications for their use in pest control and soil enrichment. Phytochemistry 2012, 78, 135–146. [Google Scholar] [CrossRef]
- Landrum, P.F.; Fisher, S.W. Influence of lipids on the bioaccumulation and trophic transfer of organic contaminants in aquatic organisms. In Lipids in Freshwater Ecosystems; Springer: Cham, Switzerland, 1999; pp. 203–234. [Google Scholar]
- Mpumi, N.; Mtei, K.; Machunda, R.; Ndakidemi, P.A. The toxicity, persistence and mode of actions of selected botanical pesticides in Africa against insect pests in common beans, P. vulgaris: A review. Am. J. Plant Sci. 2016, 7, 138–151. [Google Scholar] [CrossRef]
- Mwanauta, R.W.; Mtei, K.M.; Ndakidemi, P.A. Potential of Controlling Common Bean Insect Pests (Bean Stem Maggot (Ophiomyia phaseoli), Ootheca (Ootheca bennigseni) and Aphids (Aphis fabae)) Using Agronomic, Biological and Botanical Practices in Field. Agric. Sci. 2015, 6, 489–497. [Google Scholar]
- Pal, K.K.; Gardener, B.M. Biological control of plant pathogens. Plant Health Instr. 2006, 5, 1–25. [Google Scholar] [CrossRef] [Green Version]
- Gupta, S.; Dikshit, A. Biopesticides: An ecofriendly approach for pest control. J. Biopestic. 2010, 3, 186–188. [Google Scholar]
- Kareru, P.; Maina, E.W.; Rotich, Z.K. Use of Botanicals and Safer Insecticides Designed in Controlling Insects: The African Case; INTECH Open Access Publisher: Rijeka, Croatia, 2013. [Google Scholar]
- Flint, M.L.; Dreistadt, S.H.; Clark, J.K. Natural Enemies Handbook: The Illustrated Guide to Biological Pest Control; University of California Press: Berkeley, CA, USA, 1998. [Google Scholar]
- Chapman, R.; Bernays, E.; Simpson, S. Attraction and repulsion of the aphid, Cavariella aegopodii, by plant odors. J. Chem. Ecol. 1981, 7, 881–888. [Google Scholar] [CrossRef]
- Mahr, D.; Ridgway, N. Biological Control of Insects and Mites; North Central Regional Publication: Greenwood, WV, USA, 1993; pp. 481–492. [Google Scholar]
- Tembo, Y.; Mkindi, A.G.; Mkenda, P.A.; Mpumi, N.; Mwanauta, R.; Stevenson, P.C.; Ndakidemi, P.A.; Belmain, S.R. Pesticidal plant extracts improve yield and reduce insect pests on legume crops without harming beneficial arthropods. Front. Plant Sci. 2018, 9, 1–10. [Google Scholar] [CrossRef]
- Henn, T.; Weinzierl, R. Botanical Insecticides and Insecticidal Soaps; University of Illinois at Urbana-Champaign: Champaign, IL, USA, 1989. [Google Scholar]
- Secoy, D.; Smith, A. Use of plants in control of agricultural and domestic pests. Econ. Bot. 1983, 37, 28–57. [Google Scholar] [CrossRef]
- Arannilewa, S.; Ekrakene, T.; Akinneye, J. Laboratory evaluation of four medicinal plants as protectants against the maize weevil, Sitophilus zeamais (Mots). Afr. J. Biotechnol. 2006, 5, 2032–2036. [Google Scholar]
- Le Roy, C.; Wrana, J.L. Signaling and endocytosis: A team effort for cell migration. Dev. Cell 2005, 9, 167–178. [Google Scholar] [CrossRef] [Green Version]
- Orr, A.; Ritchie, J.M. Learning from failure: Smallholder farming systems and IPM in Malawi. Agric. Syst. 2004, 79, 31–54. [Google Scholar] [CrossRef]
- Ambrósio, S.R.; Oki, Y.; Heleno, V.C.G.; Chaves, J.S.; Nascimento, P.G.B.D.; Lichston, J.E.; Constantino, M.G.; Varanda, E.M.; Da Costa, F.B. Constituents of glandular trichomes of Tithonia diversifolia: Relationships to herbivory and antifeedant activity. Phytochemistry 2008, 69, 2052–2060. [Google Scholar] [CrossRef]
Chemical and Pesticidal Plant | Insect Pests Controlled | The Area of Study | Reference |
---|---|---|---|
Garlic (Allium sativum L.) and Hot Pepper (Capsicum frutescens L.) | Brevicoryne brassicae (L.), Plutella xylostella (L.), Helula undalis (Fab.) and Trichoplusia ni (Hub) | In a greenhouse nursery | [1,23] |
Lantana camara (L.) and Azadirachta indica (A. Juss) | Plutella xylostella, Brevicorynebrassicae and Hellula undalis | In a greenhouse nursery | [7] |
Ageratum conyzoides, Chromolaena odorata Synedrella nodiflora, Capsicum frutescens, Nicotiana tabacum Cassia sophera, Jatropha curcas, Ricinus communis and Ocimum gratissimum | Cabbage aphids (Brevicoryne brassicae) and diamondback moth (Plutella xylostella) | It was a field cage experiment | [24] |
Lantana camara (L.), Azadirachta indica (A. Juss), Capsicum annuum (L.) and Curcuma longa (L.) | Diamondback Moth, Plutella xylostella L. (Lepidoptera: Plutellidae) | It was conducted at the field | [25] |
Plant extract Neem azal - S | Brevicoryne brassicae and Bemesia tabaci | It was conducted at the field | [26] |
Tephrosia vogelii, Allium sativum and Solanum incanum | Brevicoryne brassicae in Brassica napus done in greenhouse nursery | It was conducted in the greenhouse nursery | [3] |
Name of Brassica Species | Propagation | Biological CycleLength | References |
---|---|---|---|
Brassica oleracea L. | Conventional propagation is through seed, with seedlings being raised in beds or modules and then transplanted to field sites. However, some B. oleracea subspecies, such as tronchuda, can be propagated through vegetative from stem and side shoot cuttings whereby the stem and side shoot cuttings are obtained from 5-week old plants, which is rooted, and transplanted as normal cuttings | Seed germinates within 5 days after sowing at 20–25 °C. | [30] |
Brassica juncea L. | Conventional propagation is through seeds also, it has been successful by using petioles, cotyledons, stems and shoot tips as explants. | Seed germinates within 5 days after sowing at 20–25 °C. | [27,31] |
Brassica napus L. | Conventional propagation is through seeds. The seedlings are raised in seedling trays or in a seedbed. Also, it is propagated successful by using stems, cotyledons, nodal stems and hypocotyl as explants in vitro. | The seeds take 3–5 days to emerge at 20–25 °C | [27,32,33] |
Brassica rapa L. | Conventional propagation is done using seeds but also, the propagation is successful through petioles, stems, cotyledons, stems and shoot tips as explants in vitro. | The seeds require 3–5 days to germinate at 20–25 °C | [27] |
Brassica campestris L. | Conventional propagation is through seeds. Also, petiole and cotyledons can be used in the development of a plants in vitro culture. Four day seedlings are enough to give a viable Brassica campestris plants | The seeds require 3–5 days to germinate at 20–25 °C | [27,33,34] |
Brassica nigra | The propagation is done using seeds. The small seeds require a level and a well-prepared seedbed. | The first leaves are usually visible within 48 h | [35] |
Common Name | Scientific Name | Parts of Cabbages Damaged |
---|---|---|
Dimondback moth | Plutella xylostella | Cabbage heads and foliar tissues |
Cabbage webworm | Helula undalis | Leaves, petioles and heads of cabbages |
Cabbage white butterfly | Pieris brassicae | Head of cabbage and leaves |
Cabbage aphid | Brevycoryne brassicae | Tips, flowers and leaves |
Green peach aphids | Myzus persicae | Tips, flowers, developing pods and leaves |
Cabbage looper | Trichloplusia ni | Leaves, stems and veins of leaves |
Insect Pests | Parts of Cabbages Damaged | Signs of the Damaged Crop | Effects |
---|---|---|---|
Plutella xylostella | Cabbage heads and remove foliar tissues | Stunts and destroys the cabbage heads | Reduces quality and marketability of cabbage crops |
Helula undalis | Leaves, petioles and heads of cabbages | Distorted of plant organ and stunted growth | Deaths to young plants and formation of unmarketable multiple heads |
Pieris brassicae | Head of cabbage and leaves | Deforming developing heads of cabbage and leaves | Interfere with plant growth and marketability of the cabbages |
Brevycoryne brassicae | Tips, flowers and leaves | Curling, distortion and yellowing of leaves, stunting growth, deforming developing heads | Stop terminal growth leading to reduced plant size and yield |
Myzus persicae | Tips, flowers, developing pods and leaves | Yellowing of leaves, stunting growth, deforming developing heads and curling of leaves | Wilting, stunted growth and finally death of the crops |
Trichloplusia ni | Leaves, stems and veins of leaves | Large irregular holes of variable shapes on the leaves | Interfere with crop growth and marketability of the cabbages |
Cabbage Insect Pests | Generation Number | Eggs/Adult | Length of Biological Cycle | Reference |
---|---|---|---|---|
Plutella xylostella | It complete 13–14 generations annually. | 187 eggs per adult during the life time in Brassica oleracea var. capitata | It requires 19.4 days to complete the life cycle. | [95] |
Hellula unalis | It ranges from 7–8 generations annually. | 175 eggs per adult during her life time in Brassica species. | The total time for the life cycle ranged from 22.75 days at 35 °C to 89.93 days at 20 °C and that depend on the hosts | [96] |
Trichoplusia ni | At least one generation can be completed per month successfully under favorable weather conditions. | 300 to 600 eggs are produced by a female during her life time. | It requires 18 to 25 days when are held at 32 to 21 °C, respectively to complete the life cycle. | [97,98] |
Brevycoryne brassicae | An average of 15 generations are completed during the crop seasons. | A female can give birth 30–50 nymphs without mating and the colony will consists of females only. When mating occur, a female can lay 5–7 eggs. The colony will consists of males and females | It ranges from 16–50 depending on temperatures. It is shorter at high temperatures and long at low temperatures | [76,99] |
Myzus persicae | The maximum number of generation is 20 and 21 in a year and it depends on favourable weather conditions | The oviparous female can oviposit four to thirteen eggs. The viviparous female can give birth to a mean fecundity of 75 offspring. | The length mean of reproductive period is 20 days. | [100] |
Practices | Advantages | Disadvantages |
---|---|---|
Cultural | They are cheap and safe to the environment. | Those methods are effective when used |
practices | Affordable by most of smallholder farmers. | in Combination with other practices |
Biological | Have little effect to the populations of | Requires enough expertise, enough |
practices | beneficial insects. | skills and knowledge in developing |
Have low human toxicity and little | them and apply for the control | |
environmental pollution problems. | of cabbage insect pests. | |
Chemical | Fast effective, reliable against a wide | Causes environmental pollution, |
pesticides | range of insect pests and easily tested | threatened human health, kills none |
for new insect pests | target organisms, and destroy the | |
Ecosystems | ||
Botanicals | Less persistence in the environment, | It is not easy to standardize the extracts, |
harmless to none target organisms, low | rapid degradation and affected by | |
mammalian toxicity, rapid in action | weather conditions |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mpumi, N.; Machunda, R.S.; Mtei, K.M.; Ndakidemi, P.A. Selected Insect Pests of Economic Importance to Brassica oleracea, Their Control Strategies and the Potential Threat to Environmental Pollution in Africa. Sustainability 2020, 12, 3824. https://doi.org/10.3390/su12093824
Mpumi N, Machunda RS, Mtei KM, Ndakidemi PA. Selected Insect Pests of Economic Importance to Brassica oleracea, Their Control Strategies and the Potential Threat to Environmental Pollution in Africa. Sustainability. 2020; 12(9):3824. https://doi.org/10.3390/su12093824
Chicago/Turabian StyleMpumi, Nelson, Revocatus S. Machunda, Kelvin M. Mtei, and Patrick A. Ndakidemi. 2020. "Selected Insect Pests of Economic Importance to Brassica oleracea, Their Control Strategies and the Potential Threat to Environmental Pollution in Africa" Sustainability 12, no. 9: 3824. https://doi.org/10.3390/su12093824
APA StyleMpumi, N., Machunda, R. S., Mtei, K. M., & Ndakidemi, P. A. (2020). Selected Insect Pests of Economic Importance to Brassica oleracea, Their Control Strategies and the Potential Threat to Environmental Pollution in Africa. Sustainability, 12(9), 3824. https://doi.org/10.3390/su12093824