Measurements of Local Sources of Particulates with a Portable Monitor along the Coast of an Insular City
Abstract
:1. Introduction
2. Experimental Part
2.1. Materials and Methods
2.2. Field Sampling
- A cement factory (Moni area)
- A meat festival, known as a “Tsiknopempti” event (cafe restaurant in the square)
- A construction site of a tall building (Marina and old port area)
- A tire factory incident (nearby balcony, 2nd floor)
- A traffic incident (Molos area, on the coastal road)
- A dust incident (2nd-floor balcony)
- A dust road incident (coastal area at Lady’s Mile Beach)
2.3. Design of Field Study
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Coelho, F.J.R.C.; Santos, A.L.; Coimbra, J.; Almeida, A.; Cunha, Â.; Cleary, D.F.R.; Calado, R.; Gomes, N.C.M. Interactive effects of global climate change and pollution on marine microbes: The way ahead. Ecol. Evol. 2013, 3, 1808–1818. [Google Scholar] [CrossRef] [PubMed]
- Lelieveld, J.; Klingmüller, K.; Pozzer, A.; Pöschl, U.; Fnais, M.; Daiber, A.; Münzel, T. Cardiovascular disease burden from ambient air pollution in Europe reassessed using novel hazard ratio functions. Eur. Heart J. 2019, 40, 1590–1596. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lelieveld, J.; Pozzer, A.; Pöschl, U.; Fnais, M.; Haines, A.; Münzel, T. Loss of life expectancy from air pollution compared to other risk factors: A worldwide perspective. Cardiovasc. Res. 2020, 116, 1910–1917. [Google Scholar] [CrossRef] [PubMed]
- Michaelides, S.; Karacostas, T.; Sánchez, J.L.; Retalis, A.; Pytharoulis, I.; Homar, V.; Romero, R.; Zanis, P.; Giannakopoulos, C.; Bühl, J.; et al. Reviews and perspectives of high impact atmospheric processes in the Mediterranean. Atmos. Res. 2018, 208, 4–44. [Google Scholar] [CrossRef]
- Lelieveld, J.; Evans, J.S.; Fnais, M.; Giannadaki, D.; Pozzer, A. The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature 2015, 525, 367–371. [Google Scholar] [CrossRef]
- Giannadaki, D.; Lelieveld, J.; Pozzer, A. Implementing the US air quality standard for PM2.5 worldwide can prevent millions of premature deaths per year. Environ. Health 2016, 15, 1–11. [Google Scholar] [CrossRef] [Green Version]
- EC DIRECTIVE 2008/50/EC of the European parliament and of the Council of 21 May 2008 on ambient air quality and cleaner air for Europe. Off. J. Eur. Union 2008. Available online: https://eur-lex.europa.eu/legal-content/en/ALL/?uri=CELEX%3A32008L0050 (accessed on 20 December 2020).
- Pozzer, A.; Dominici, F.; Haines, A.; Witt, C. Regional and global contributions of air pollution to risk of death from COVID-19. Cardiovasc. Res. 2020. [Google Scholar] [CrossRef]
- Burnett, R.; Chen, H.; Szyszkowicz, M.; Fann, N.; Hubbell, B.; Pope, C.A.; Apte, J.S.; Brauer, M.; Cohen, A.; Weichenthal, S.; et al. Global estimates of mortality associated with longterm exposure to outdoor fine particulate matter. Proc. Natl. Acad. Sci. USA 2018, 115, 9592–9597. [Google Scholar] [CrossRef] [Green Version]
- Lim, C.C.; Thurston, G.D.; Shamy, M.; Alghamdi, M.; Khoder, M.; Mohorjy, A.M.; Alkhalaf, A.K.; Brocato, J.; Chen, L.C.; Costa, M. Temporal variations of fine and coarse particulate matter sources in Jeddah, Saudi Arabia. J. Air Waste Manag. Assoc. 2018, 68, 123–138. [Google Scholar] [CrossRef] [Green Version]
- Kaluzna-Oleksy, M.; Aunan, K.; Rao-Skirbekk, S.; Kjellstrom, T.; Ezekowitz, J.A.; Agewall, S.; Atar, D. Impact of climate and air pollution on acute coronary syndromes: An update from the European Society of Cardiology Congress 2017. Scand. Cardiovasc. J. 2018, 52, 1–3. [Google Scholar] [CrossRef] [PubMed]
- Kennes, C.; Veiga, M. Fundamentals and Microbiological Aspects. Air Pollution Prevention and Control: Bioreactors and Bioenergy; Wiley: Hoboken, NJ, USA, 2013. [Google Scholar]
- World Health Organization. WHO Air Quality Guidelines; WHO: Geneva, Switzerland, 2006. [Google Scholar]
- McMurry, P.H. A review of atmospheric aerosol measurements. Atmos. Environ. 2000, 34, 1959–1999. [Google Scholar] [CrossRef]
- Pikridas, M.; Vrekoussis, M.; Sciare, J.; Kleanthous, S.; Vasiliadou, E.; Kizas, C.; Savvides, C.; Mihalopoulos, N. Spatial and temporal (short and long-term) variability of submicron, fine and sub-10 μm particulate matter (PM1, PM2.5, PM10) in Cyprus. Atmos. Environ. 2018, 191, 79–93. [Google Scholar] [CrossRef]
- Wallace, L.A.; Wheeler, A.J.; Kearney, J.; Van Ryswyk, K.; You, H.; Kulka, R.H.; Rasmussen, P.E.; Brook, J.R.; Xu, X. Validation of continuous particle monitors for personal, indoor, and outdoor exposures. J. Expo. Sci. Environ. Epidemiol. 2011, 21, 49–64. [Google Scholar] [CrossRef] [PubMed]
- Kuhlbusch, T.A.J.; Wijnhoven, S.W.P.; Haase, A. Nanomaterial exposures for worker, consumer and the general public. NanoImpact 2018, 10, 11–25. [Google Scholar] [CrossRef]
- Kumar, M.K.; Sreekanth, V.; Salmon, M.; Tonne, C.; Marshall, J.D. Use of spatiotemporal characteristics of ambient PM2.5 in rural South India to infer local versus regional contributions. Environ. Pollut. 2018, 239, 803–811. [Google Scholar] [CrossRef]
- Liu, X.; Schnelle-Kreis, J.; Zhang, X.; Bendl, J.; Khedr, M.; Jakobi, G.; Schloter-Hai, B.; Hovorka, J.; Zimmermann, R. Integration of air pollution data collected by mobile measurement to derive a preliminary spatiotemporal air pollution profile from two neighboring German-Czech border villages. Sci. Total Environ. 2020, 722, 137632. [Google Scholar] [CrossRef]
- Zogou, O.; Stamatelos, A. Analysis of data from ambient PM10 concentration monitoring in Volos in the period 2005–2010. Am. J. Environ. Eng. 2012, 2, 97–108. [Google Scholar] [CrossRef]
- Hegde, S.; Min, K.T.; Moore, J.; Lundrigan, P.; Patwari, N.; Collingwood, S.; Balch, A.; Kelly, K.E. Indoor household particulate matter measurements using a network of low-cost sensors. Aerosol Air Qual. Res. 2020, 20, 381–394. [Google Scholar] [CrossRef] [Green Version]
- Chen, R.; Aherrera, A.; Isichei, C.; Olmedo, P.; Jarmul, S.; Cohen, J.E.; Navas-Acien, A.; Rule, A.M. Assessment of indoor air quality at an electronic cigarette (Vaping) convention. J. Expo. Sci. Environ. Epidemiol. 2018, 28, 522–529. [Google Scholar] [CrossRef] [Green Version]
- Kellnerová, E.; Kellner, J.; Navrátil, J.; Paulus, F. Monitoring of indoor ultrafine particulate matter at the fire rescue brigade workplaces. Energy Procedia 2018, 153, 315–319. [Google Scholar] [CrossRef]
- Sousan, S.; Koehler, K.; Thomas, G.; Park, J.H.; Hillman, M.; Peters, T.M. Inter-comparison of low-cost sensors for measuring the mass concentration of occupational aerosols. Aerosol Sci. Technol. 2017, 50, 462–473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Firlag, S.; Rogulski, M.; Badyda, A. The influence of marine traffic on Particulate Matter (PM) levels in the region of Danish Straits, North and Baltic Seas. Sustainability 2018, 10, 4231. [Google Scholar] [CrossRef] [Green Version]
- Sharpley, R. Tourism, modernisation and development on the island of Cyprus: Challenges and policy responses. J. Sustain. Tour. 2003, 11, 246–265. [Google Scholar] [CrossRef]
- Thunis, P.; Degraeuwe, B.; Pisoni, E.; Trombetti, M.; Peduzzi, E.; Belis, C.A.; Wilson, J.; Vignati, E. Urban PM2.5 Atlas—Air Quality in European Cities; Publications Office of the European Union: Luxembourg, 2017; ISBN 978-92-79-73876-0. [Google Scholar]
- Achilleos, S.; Evans, J.S.; Yiallouros, P.K.; Kleanthous, S.; Schwartz, J.; Koutrakis, P. PM10 concentration levels at an urban and background site in Cyprus: The impact of urban sources and dust storms. J. Air Waste Manag. Assoc. 2014, 64, 1352–1360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Theophilou, M.K.; Serghides, D. Heat island effect for Nicosia, Cyprus. Adv. Build. Energy Res. 2014, 8, 63–73. [Google Scholar] [CrossRef]
- Prevenios, M.; Zeri, C.; Tsangaris, C.; Liubartseva, S.; Fakiris, E.; Papatheodorou, G. Beach litter dynamics on Mediterranean coasts: Distinguishing sources and pathways. Mar. Pollut. Bull. 2018, 129, 448–457. [Google Scholar] [CrossRef]
- Cebe, K.; Balas, L. Monitoring and modeling land-based marine pollution. Reg. Stud. Mar. Sci. 2018, 24, 23–39. [Google Scholar] [CrossRef]
- Farmaki, A. A supply-side evaluation of coastal tourism diversification: The case of Cyprus. Tour. Plan. Dev. 2012, 9, 183–203. [Google Scholar] [CrossRef]
- Kathijotes, N.; Alam, L.; Kontou, A. Aquaculture, coastal pollution and the environment. Aquac. Ecosyst. Adapt. Sustain. 2015, 139–163. [Google Scholar] [CrossRef]
- Beloconi, A.; Chrysoulakis, N.; Lyapustin, A.; Utzinger, J.; Vounatsou, P. Bayesian geostatistical modelling of PM10 and PM2.5 surface level concentrations in Europe using high-resolution satellite-derived products. Environ. Int. 2018, 121, 57–70. [Google Scholar] [CrossRef] [PubMed]
- Martuzevicius, D.; Prasauskas, T.; Setyan, A.; O’Connell, G.; Cahours, X.; Julien, R.; Colard, S. Characterization of the spatial and temporal dispersion differences between exhaled E-Cigarette mist and cigarette smoke. Nicotine Tob. Res. 2019, 21, 1371–1377. [Google Scholar] [CrossRef] [PubMed]
- Google Maps. Cyprus, Limassol. Available online: https://www.google.com/maps (accessed on 30 November 2020).
- Oguntoke, O.; Awanu, A.E.; Annegarn, H.J. Impact of cement factory operations on air quality and human health in Ewekoro local government area, South-Western Nigeria. Int. J. Environ. Stud. 2012, 69, 934–945. [Google Scholar] [CrossRef]
- Adeyanju, E.; Okeke, C.A. Exposure effect to cement dust pollution: A mini review. SN Appl. Sci. 2019, 1, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Rovira, J.; Sierra, J.; Nadal, M.; Schuhmacher, M.; Domingo, J.L. Main components of PM10 in an area influenced by a cement plant in Catalonia, Spain: Seasonal and daily variations. Environ. Res. 2018, 165, 201–209. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.Y. Emissions from Street Vendor Cooking Devices (Charcoal Grilling); ARCADIS Geraghty and Miller: Amsterdam, The Netherlands, 1999; pp. 6–9. [Google Scholar]
- Song, Y.; Sun, L.; Wang, X.; Zhang, Y.; Wang, H.; Li, R.; Xue, L.; Chen, J.; Wang, W. Pollution characteristics of particulate matters emitted from outdoor barbecue cooking in urban Jinan in eastern China. Front. Environ. Sci. Eng. 2018, 12, 1–8. [Google Scholar] [CrossRef]
- Shao, L.; Hou, C.; Geng, C.; Liu, J.; Hu, Y.; Wang, J.; Jones, T.; Zhao, C.; BéruBé, K. The oxidative potential of PM10 from coal, briquettes and wood charcoal burnt in an experimental domestic stove. Atmos. Environ. 2016, 127, 372–381. [Google Scholar] [CrossRef]
- Abdullahi, K.L.; Delgado-Saborit, J.M.; Harrison, R.M. Emissions and indoor concentrations of particulate matter and its specific chemical components from cooking: A review. Atmos. Environ. 2013, 71, 260–294. [Google Scholar] [CrossRef]
- Singh, A.; Spak, S.N.; Stone, E.A.; Downard, J.; Bullard, R.L.; Pooley, M.; Kostle, P.A.; Mainprize, M.W.; Wichman, M.D.; Peters, T.M.; et al. Uncontrolled combustion of shredded tires in a landfill—Part 2: Population exposure, public health response, and an air quality index for urban fires. Atmos. Environ. 2015, 104, 273–283. [Google Scholar] [CrossRef]
- Downard, J.; Singh, A.; Bullard, R.; Jayarathne, T.; Rathnayake, C.M.; Simmons, D.L.; Wels, B.R.; Spak, S.N.; Peters, T.; Beardsley, D.; et al. Uncontrolled combustion of shredded tires in a landfill—Part 1: Characterization of gaseous and particulate emissions. Atmos. Environ. 2015, 104, 195–204. [Google Scholar] [CrossRef]
- Lemieux, P.M.; Lutes, C.C.; Santoianni, D.A. Emissions of organic air toxics from open burning: A comprehensive review. Prog. Energy Combust. Sci. 2004, 30, 1–32. [Google Scholar] [CrossRef]
- Jimoda, L.A.; Sulaymon, I.D.; Alade, A.O.; Adebayo, G.A. Assessment of environmental impact of open burning of scrap tyres on ambient air quality. Int. J. Environ. Sci. Technol. 2018, 15, 1323–1330. [Google Scholar] [CrossRef]
- Ziadat, A.H.; Sood, E. An environmental impact assessment of the open burning of scrap tires. J. Appl. Sci. 2014, 14, 2695–2703. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Che, W.; Lau, A.K.H.; Fung, J.C.H.; Lin, C.; Lu, X. A feasible experimental framework for field calibration of portable light-scattering aerosol monitors: Case of TSI DustTrak. Environ. Pollut. 2019, 255, 113136. [Google Scholar] [CrossRef] [PubMed]
- Asbach, C.; Kaminski, H.; Von Barany, D.; Kuhlbusch, T.A.J.; Monz, C.; Dziurowitz, N.; Pelzer, J.; Vossen, K.; Berlin, K.; Dietrich, S.; et al. Comparability of portable nanoparticle exposure monitors. Ann. Occup. Hyg. 2012, 56, 606–621. [Google Scholar] [CrossRef] [PubMed]
- Nkhama, E.; Ndhlovu, M.; Timothy Dvonch, J.; Lynam, M.; Mentz, G.; Siziya, S.; Voyi, K. Effects of airborne particulate matter on respiratory health in a community near a cement factory in Chilanga, Zambia: Results from a panel study. Int. J. Environ. Res. Public Health 2017, 14, 1351. [Google Scholar] [CrossRef] [Green Version]
- Abu-Allaban, M.; Abu-Qdais, H. Impact assessment of ambient air quality by cement industry: A case study in Jordan. Aerosol Air Qual. Res. 2011, 11, 802–810. [Google Scholar] [CrossRef]
- Gupta, R.K.; Majumdar, D.; Trivedi, J.V.; Bhanarkar, A.D. Particulate matter and elemental emissions from a cement kiln. Fuel Process. Technol. 2012, 104, 343–351. [Google Scholar] [CrossRef]
- Sánchez-Soberón, F.; Rovira, J.; Mari, M.; Sierra, J.; Nadal, M.; Domingo, J.L.; Schuhmacher, M. Main components and human health risks assessment of PM10, PM2.5, and PM1 in two areas influenced by cement plants. Atmos. Environ. 2015, 120, 109–116. [Google Scholar] [CrossRef]
- Achilleos, S.; Wolfson, J.M.; Ferguson, S.T.; Kang, C.M.; Hadjimitsis, D.G.; Hadjicharalambous, M.; Achilleos, C.; Christodoulou, A.; Nisanzti, A.; Papoutsa, C.; et al. Spatial variability of fine and coarse particle composition and sources in Cyprus. Atmos. Res. 2016, 169, 255–270. [Google Scholar] [CrossRef]
- Falchi, F. Light pollution. Urban Pollut. Sci. Manag. 2018, 147–159. [Google Scholar] [CrossRef]
- Titos, G.; Ealo, M.; Pandolfi, M.; Pérez, N.; Sola, Y.; Sicard, M.; Comerón, A.; Querol, X.; Alastuey, A. Spatiotemporal evolution of a severe winter dust event in the western Mediterranean: Aerosol optical and physical properties. J. Geophys. Res. 2017, 122, 4052–4069. [Google Scholar] [CrossRef] [Green Version]
- Liora, N.; Poupkou, A.; Giannaros, T.M.; Kakosimos, K.E.; Stein, O.; Melas, D. Impacts of natural emission sources on particle pollution levels in Europe. Atmos. Environ. 2016, 137, 171–185. [Google Scholar] [CrossRef]
- Sarigiannis, D.; Handakas, E.; Gotti, A.; Manousakas, M. Monitoring of air pollution levels related to Charilaos Trikoupis Brige. Sci. Total Environ. 2017, 609, 1451–1463. [Google Scholar] [CrossRef]
- Sarti, G.; Rossi, V.; Amorosi, A.; Luka, S. Magdala harbour sedimentation (Sea of Galilee, Israel), from natural to anthropogenic control. Quat. Int. 2013, 303, 120–131. [Google Scholar] [CrossRef]
- Garcia, C.; Servera, J. Impacts of tourism development on water demand and beach degradation on the island of Mallorca (Spain). Geogr. Ann. Ser. A Phys. Geogr. 2003, 85, 287–300. [Google Scholar] [CrossRef]
- Zorpas, A.A.; Skouroupatis, A. Indoor air quality evaluation of two museums in a subtropical climate conditions. Sustain. Cities Soc. 2016, 20, 52–60. [Google Scholar] [CrossRef]
- Zorpas, A.A.; Voukkali, I.; Navarro Pedreño, J. Tourist area metabolism and its potential to change through a proposed strategic plan in the framework of sustainable development. J. Clean. Prod. 2018, 172, 3609–3620. [Google Scholar] [CrossRef]
- Sindosi, O.A.; Katsoulis, B.D.; Bartzokas, A. An objective definition of air mass types affecting Athens, Greece; The corresponding atmospheric pressure patterns and air pollution levels. Environ. Technol. 2003, 24, 947–962. [Google Scholar] [CrossRef]
- Kushta, J.; Georgiou, G.K.; Proestos, Y.; Christoudias, T.; Lelieveld, J. Modelling study of the atmospheric composition over Cyprus. Atmos. Pollut. Res. 2018, 9, 257–269. [Google Scholar] [CrossRef]
- Heaviside, C.; Tsangari, H.; Paschalidou, A.; Vardoulakis, S.; Kassomenos, P.; Georgiou, K.E.; Yamasaki, E.N. Heat-related mortality in Cyprus for current and future climate scenarios. Sci. Total Environ. 2016, 569–570, 627–633. [Google Scholar] [CrossRef] [PubMed]
Parameter | Importance |
---|---|
Violation of permissible limit concentrations | PM average values are evaluated per 24 h (or per year), according to the respective limits per organisation *: PM10 (a) EPA: 150 µg/m3 (24 h) (b) WHO: 50 µg/m3 (24 h), 20 µg/m3 (1 year) (c) EEA: 50 µg/m3 (24 h), 40 µg/m3 (1 year) PM2.5 (a) EPA: 35 µg/m3 (24 h), 12 µg/m3 (1 year) (b) WHO: 25 µg/m3 (24 h), 10 µg/m3 (1 year) (c) EEA: 25 µg/m3 (1 year) |
Incident location | A point is more important when it is located near sources of PM pollution (e.g., an industry with PM emissions, polluted/dusty road). In addition, it is very important if the place has an increased human existence. Residential areas, tourist areas, schools, hospitals, shopping streets, sidewalks and beaches indicate a frequent and intense presence of human life. Equally important is the presence of natural ecosystems such as the living organisms (e.g., animals, plants) in a marine area that can be affected. |
The time | The season, month, day, and time contribute to the incident. In an event, it often plays a role in monitoring it at the right time and using the right equipment. For example, the operation of a factory, city heavy traffic, dust periods, traffic nearby a beach, dusty road, etc. More rare manifestations of pollution are, for example, the occurrence of an event with smoke or fire (e.g., barbeque meat festival, fire). |
Weather conditions | The existence of rain, intense sunshine, strong wind, etc. |
No. | Incident | Sampling Point | Results PM1 (μg/m3) | Results PM2.5 (μg/m3) | Results PM10 (μg/m3) | Photograph | Average Concentration Ratios (Quotients) |
---|---|---|---|---|---|---|---|
1 | A cement factory | Moni area | a Min = 23 b Max = 3250 c Average = 126 | Min = 28 Max = 12,200 Average = 386 | Min = 16 Max = 23,700 Average = 388 * DLI = 32.82 | Ratio PM1/PM2.5 = 0.33 | |
2 (a & b) | Meat festival | Cafe restaurant in the main square (a) next to the grill (b) at the center of the square | Next to the grill Min = 30 Max = 57,200 Average = 5160 Cafe: center of square Min = 28 Max = 10,900 Average = 401 | Next to the grill Min = 24 Max = 65,700 Average = 6340 Cafe: center of square Min = 147 Max = 3810 Average = 535 | Next to the grill Min = 23 Max = 60,500 Average = 7470 DLI = 17.51 Cafe: center of square Min = 34 Max = 15,800 Average = 492 | Next to the grill Ratio PM1/PM2.5 = 0.81 Cafe: center of square Ratio PM1/PM2.5 = 0.75 | |
3 | A construction site of a tall building | Marina and old port area | Min = 21 Max = 1300 Average = 55 | Min = 28 Max = 665 Average = 77 | Min = 23 Max = 2630 Average = 302 DLI = 33.84 | Ratio PM1/PM2.5 = 0.71 | |
4 | A tire factory (tire repair and incineration plant) | Balcony, 2nd floor | Min = 49 Max = 278 Average = 79 | Min = 57 Max = 239 Average = 87 | Min = 43 Max = 245 Average = 88 DLI = 30.98 | Ratio PM1/PM2.5 = 0.91 | |
5 | Road traffic | Molos area by the coastal road | Min = 17 Max = 645 Average = 58 | Min = 16 Max = 7010 Average = 65 | Min = 17 Max = 42,800 Average = 191 Average = 13 (fixed station) DLI = 26.76 | Ratio PM1/PM2.5 = 0.89 | |
6 | Dust event | Balcony, 2nd floor | Min = 58 Max = 180 Average = 80 | Min = 91 Max = 124 Average = 98 | Min = 93 Max = 145 Average = 118 DLI = 43.12 | Ratio PM1/PM2.5 = 0.82 | |
7 | Dusty seaside road | Coastal area of Lady’s Mile | Min = 37 Max = 7070 Average = 152 | Min = 42 Max = 5320 Average = 173 | Min = 46 Max = 5810 Average = 207 DLI = 38.18 | Ratio PM1/PM2.5 = 0.88 | |
8–9 | No incident (March 2019, d n = 3) (August 2019, n = 3) | (a) Balcony (distance from sampling points varied from 50 to 5000 m; the closest was the tire factory (50 m) and the farthest the cement factory (5000 m) (b) Balcony | Min = 17 Max = 25 Average = 21 Min = 33 Max = 39 Average = 37 | Min = 20 Max = 43 Average = 28 Min = 40 Max = 46 Average = 42 | Min = 29 Max = 40 Average = 34 DLI = 33.84; 27.13; 22.72 Min = 42 Max = 51 Average = 49 DLI = 26.76; 30.98; 40.06 | Ratio PM1/PM10 = 0.75 Ratio PM1/PM10 = 0.88 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petsas, C.; Stylianou, M.; Zorpas, A.; Agapiou, A. Measurements of Local Sources of Particulates with a Portable Monitor along the Coast of an Insular City. Sustainability 2021, 13, 261. https://doi.org/10.3390/su13010261
Petsas C, Stylianou M, Zorpas A, Agapiou A. Measurements of Local Sources of Particulates with a Portable Monitor along the Coast of an Insular City. Sustainability. 2021; 13(1):261. https://doi.org/10.3390/su13010261
Chicago/Turabian StylePetsas, Christos, Marinos Stylianou, Antonis Zorpas, and Agapios Agapiou. 2021. "Measurements of Local Sources of Particulates with a Portable Monitor along the Coast of an Insular City" Sustainability 13, no. 1: 261. https://doi.org/10.3390/su13010261
APA StylePetsas, C., Stylianou, M., Zorpas, A., & Agapiou, A. (2021). Measurements of Local Sources of Particulates with a Portable Monitor along the Coast of an Insular City. Sustainability, 13(1), 261. https://doi.org/10.3390/su13010261