Prediction of Potential Evapotranspiration Using Temperature-Based Heuristic Approaches
Abstract
:1. Introduction
2. Materials and Methods
2.1. Case Study
2.2. Group Method of Data Handling Type Neural Network
2.3. Multivariate Adaptive Regression Splines
2.4. M5 Model Tree
2.5. Stephens-Stewart Model
2.6. Hargreaves and Samani Model
2.7. Model Development by Heuristic Methods
- Tmin, Tmax, Ra
- Tmin, Tmax, Ra, α.
3. Application and Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jing, W.; Yaseen, Z.M.; Shahid, S.; Saggi, M.K.; Tao, H.; Kisi, O.; Salih, S.Q.; Al-Ansari, N.; Chau, K.W. Implementation of evolutionary computing models for reference evapotranspiration modeling: Short review, assessment and possible future research directions. Eng. Appl. Comput. Fluid Mech. 2019, 13, 811–823. [Google Scholar] [CrossRef] [Green Version]
- Allen, R.G.; Pereira, L.S.; Howell, T.A.; Jensen, M.E. Evapotranspiration information reporting: I. Factors governing measurement accuracy. Agric. Water Manag. 2011, 98, 899–920. [Google Scholar] [CrossRef] [Green Version]
- Allen, R.G.; Pereira, L.S.; Howell, T.A.; Jensen, M.E. Evapotranspiration information reporting: II. Recommended documentation. Agric. Water Manag. 2011, 98, 921–929. [Google Scholar] [CrossRef]
- Ren, X.; Qu, Z.; Martins, D.S.; Paredes, P.; Pereira, L.S. Daily reference evapotranspiration for hyper-arid to moist sub-humid climates in inner mongolia, China: I. Assessing temperature methods and spatial variability. Water Resour. Manag. 2016, 30, 3769–3791. [Google Scholar] [CrossRef]
- Xing, W.; Wang, W.; Shao, Q.; Peng, S.; Yu, Z.; Yong, B.; Taylor, J. Changes of reference evapotranspiration in the Haihe River Basin: Present observations and future projection from climatic variables through multi-model ensemble. Glob. Planet. Chang. 2014, 115, 1–15. [Google Scholar] [CrossRef]
- Valiantzas, J.D. Temperature-and humidity-based simplified Penman’s ET0 formulae. Comparisons with temperature-based Hargreaves-Samani and other methodologies. Agric. Water Manag. 2018, 208, 326–334. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. FAO Rome 1998, 300, D05109. [Google Scholar]
- Yaseen, Z.M.; Sulaiman, S.O.; Deo, R.C.; Chau, K.-W. An enhanced extreme learning machine model for river flow forecasting: State-of-the-art, practical applications in water resource engineering area and future research direction. J. Hydrol. 2018, 569, 387–408. [Google Scholar] [CrossRef]
- Khosravinia, P.; Nikpour, M.R.; Kisi, O.; Yaseen, Z.M. Application of novel data mining algorithms in prediction of discharge and end depth in trapezoidal sections. Comput. Electron. Agric. 2020, 170, 105283. [Google Scholar] [CrossRef]
- Zhu, S.; Ptak, M.; Yaseen, Z.M.; Dai, J.; Sivakumar, B. Forecasting surface water temperature in lakes: A comparison of approaches. J. Hydrol. 2020, 585, 124809. [Google Scholar] [CrossRef]
- Yuan, X.; Chen, C.; Lei, X.; Yuan, Y.; Adnan, R.M. Monthly runoff forecasting based on LSTM–ALO model. Stoch. Environ. Res. Risk Assess. 2018, 32, 2199–2212. [Google Scholar] [CrossRef]
- Adnan, R.M.; Liang, Z.; Yuan, X.; Kisi, O.; Akhlaq, M.; Li, B. Comparison of LSSVR, M5RT, NF-GP, and NF-SC models for predictions of hourly wind speed and wind power based on cross-validation. Energies 2019, 12, 329. [Google Scholar] [CrossRef] [Green Version]
- Kisi, O.; Shiri, J.; Karimi, S.; Adnan, R.M. Three different adaptive neuro fuzzy computing techniques for forecasting long-period daily streamflows. In Big Data in Engineering Applications; Springer: Singapore, 2018; pp. 303–321. [Google Scholar]
- Alizamir, M.; Kisi, O.; Muhammad Adnan, R.; Kuriqi, A. Modelling reference evapotranspiration by combining neuro-fuzzy and evolutionary strategies. Acta Geophys. 2020, 68, 1113–1126. [Google Scholar] [CrossRef]
- Petković, B.; Petković, D.; Kuzman, B.; Milovančević, M.; Wakil, K.; Ho, L.S.; Jermsittiparsert, K. Neuro-fuzzy estimation of reference crop evapotranspiration by neuro fuzzy logic based on weather conditions. Comput. Electron. Agric. 2020, 173, 105358. [Google Scholar] [CrossRef]
- Zhu, B.; Feng, Y.; Gong, D.; Jiang, S.; Zhao, L.; Cui, N. Hybrid particle swarm optimization with extreme learning machine for daily reference evapotranspiration prediction from limited climatic data. Comput. Electron. Agric. 2020, 173, 105430. [Google Scholar] [CrossRef]
- Jovic, S.; Nedeljkovic, B.; Golubovic, Z.; Kostic, N. Evolutionary algorithm for reference evapotranspiration analysis. Comput. Electron. Agric. 2018, 150, 1–4. [Google Scholar] [CrossRef]
- Adnan, R.M.; Chen, Z.; Yuan, X.; Kisi, O.; El-Shafie, A.; Kuriqi, A.; Ikram, M. Reference Evapotranspiration Modeling Using New Heuristic Methods. Entropy 2020, 22, 547. [Google Scholar] [CrossRef]
- Khoshravesh, M.; Sefidkouhi, M.A.G.; Valipour, M. Estimation of reference evapotranspiration using multivariate fractional polynomial, Bayesian regression, and robust regression models in three arid environments. Appl. Water Sci. 2015, 7, 1911–1922. [Google Scholar] [CrossRef] [Green Version]
- Mattar, M.A. Using gene expression programming in monthly reference evapotranspiration modeling: A case study in Egypt. Agric. Water Manag. 2018, 198, 28–38. [Google Scholar] [CrossRef]
- Mehdizadeh, S. Estimation of daily reference evapotranspiration (ETo) using artificial intelligence methods: Offering a new approach for lagged ETo data-based modeling. J. Hydrol. 2018, 559, 794–812. [Google Scholar] [CrossRef]
- Mehdizadeh, S.; Behmanesh, J.; Khalili, K. Comprehensive modeling of monthly mean soil temperature using multivariate adaptive regression splines and support vector machine. Theor. Appl. Climatol. 2017, 133, 911–924. [Google Scholar] [CrossRef]
- Sanikhani, H.; Kisi, O.; Maroufpoor, E.; Yaseen, Z.M. Temperature-based modeling of reference evapotranspiration using several artificial intelligence models: Application of different modeling scenarios. Theor. Appl. Climatol. 2018. [Google Scholar] [CrossRef]
- Shiri, J. Improving the performance of the mass transfer-based reference evapotranspiration estimation approaches through a coupled wavelet-random forest methodology. J. Hydrol. 2018, 561, 737–750. [Google Scholar] [CrossRef]
- Tao, H.; Diop, L.; Bodian, A.; Djaman, K.; Ndiaye, P.M.; Yaseen, Z.M. Reference evapotranspiration prediction using hybridized fuzzy model with firefly algorithm: Regional case study in Burkina Faso. Agric. Water Manag. 2018, 208, 140–151. [Google Scholar] [CrossRef]
- Yin, Z.; Wen, X.; Feng, Q.; He, Z.; Zou, S.; Yang, L. Integrating genetic algorithm and support vector machine for modeling daily reference evapotranspiration in a semi-arid mountain area. Hydrol. Res. 2016, 48, 1177–1191. [Google Scholar] [CrossRef]
- Adamala, S. Temperature based generalized wavelet-neural network models to estimate evapotranspiration in India. Inf. Process. Agric. 2018, 5, 149–155. [Google Scholar] [CrossRef]
- Gavili, S.; Sanikhani, H.; Kisi, O.; Mahmoudi, M.H. Evaluation of several soft computing methods in monthly evapotranspiration modelling. Meteorol. Appl. 2017, 25, 128–138. [Google Scholar] [CrossRef] [Green Version]
- Karbasi, M. Forecasting of multi-step ahead reference evapotranspiration using wavelet- gaussian process regression model. Water Resour. Manag. 2017, 32, 1035–1052. [Google Scholar] [CrossRef]
- Farlow, S.J. The GMDH algorithm of Ivakhnenko. Am. Stat. 1981, 35, 210–215. [Google Scholar]
- Adnan, R.M.; Khosravinia, P.; Karimi, B.; Kisi, O. Prediction of hydraulics performance in drain envelopes using Kmeans based multivariate adaptive regression spline. Appl. Soft Comput. 2020, 100, 107008. [Google Scholar] [CrossRef]
- Nasir, V.; Nourian, S.; Avramidis, S.; Cool, J. Prediction of physical and mechanical properties of thermally modified wood based on color change evaluated by means of “group method of data handling”(GMDH) neural network. Holzforschung 2019, 73, 381–392. [Google Scholar] [CrossRef]
- Adnan, R.M.; Liang, Z.; Parmar, K.S.; Soni, K.; Kisi, O. Modeling monthly streamflow in mountainous basin by MARS, GMDH-NN and DENFIS using hydroclimatic data. Neural Comput. Appl. 2020. [Google Scholar] [CrossRef]
- Nkurlu, B.M.; Shen, C.; Asante-Okyere, S.; Mulashani, A.K.; Chungu, J.; Wang, L. Prediction of permeability using group method of data handling (GMDH) neural network from well log data. Energies 2020, 13, 551. [Google Scholar] [CrossRef] [Green Version]
- Najafzadeh, M.; Barani, G.-A.; Kermani, M.R.H. Estimation of pipeline scour due to waves by GMDH. J. Pipeline Syst. Eng. Pract. 2014, 5, 06014002. [Google Scholar] [CrossRef]
- Najafzadeh, M.; Barani, G.-A.; Hessami-Kermani, M.-R. Evaluation of GMDH networks for prediction of local scour depth at bridge abutments in coarse sediments with thinly armored beds. Ocean Eng. 2015, 104, 387–396. [Google Scholar] [CrossRef]
- Najafzadeh, M.; Zahiri, A. Neuro-fuzzy GMDH-based evolutionary algorithms to predict flow discharge in straight compound channels. J. Hydrol. Eng. 2015, 20, 4015035. [Google Scholar] [CrossRef]
- Shahabi, S.; Khanjani, M.-J.; Kermani, M.H. Hybrid wavelet-GMDH model to forecast significant wave height. Water Supply 2015, 16, 453–459. [Google Scholar] [CrossRef]
- Tsai, T.-M.; Yen, P.-H. GMDH algorithms applied to turbidity forecasting. Appl. Water Sci. 2016, 7, 1151–1160. [Google Scholar] [CrossRef] [Green Version]
- Parsaie, A.; Haghiabi, A.H. Improving modelling of discharge coefficient of triangular labyrinth lateral weirs using SVM, GMDH and MARS techniques. Irrig. Drain. 2017, 66, 636–654. [Google Scholar] [CrossRef]
- Alitaleshi, F.; Daghbandan, A. Using a multi-objective optimal design of GMDH type neural networks to evaluate the quality of treated water in a water treatment plant. Desalination Water Treat. 2019, 139, 123–132. [Google Scholar] [CrossRef]
- Daghbandan, A.; Khalatbari, S.; Abbasi, M.M. Applying GMDH-type neural network for modeling and prediction of turbidity and free residual aluminium in drinking water. Desalination Water Treat. 2019, 140, 118–131. [Google Scholar] [CrossRef]
- Da Silva Carvalho, R.L.; Delgado, A.R.S. Estimativas da evapotranspiração de referência do município de Ariquemes (RO) utilizando os métodos Penman-Monteith-FAO e Hargreaves-Samani. Rev. Bras. De Agric. Irrig. 2016, 10, 1038–1048. [Google Scholar]
- Friedman, J.H. Multivariate adaptive regression splines. Ann. Stat. 1991, 19, 1–67. [Google Scholar] [CrossRef]
- Quinlan, J.R. Learning with Continuous Classes. In Proceedings of the 5th Australian Joint Conference on Artificial Intelligence, Hobart, Tasmania, 16–18 November 1992; pp. 343–348. [Google Scholar]
- Adnan, R.M.; Liang, Z.; Trajkovic, S.; Zounemat-Kermani, M.; Li, B.; Kisi, O. Daily streamflow prediction using optimally pruned extreme learning machine. J. Hydrol. 2019, 577, 123981. [Google Scholar] [CrossRef]
- Kisi, O.; Parmar, K.S. Application of least square support vector machine and multivariate adaptive regression spline models in long term prediction of river water pollution. J. Hydrol. 2016. [Google Scholar] [CrossRef]
- Adnan, R.M.; Liang, Z.; El-Shafie, A.; Zounemat-Kermani, M.; Kisi, O. Prediction of suspended sediment load using data-driven models. Water 2019, 11, 2060. [Google Scholar] [CrossRef] [Green Version]
- Yin, Z.; Feng, Q.; Wen, X.; Deo, R.C.; Yang, L.; Si, J.; He, Z. Design and evaluation of SVR, MARS and M5Tree models for 1, 2 and 3-day lead time forecasting of river flow data in a semiarid mountainous catchment. Stoch. Environ. Res. Risk Assess. 2018, 32, 2457–2476. [Google Scholar] [CrossRef]
- Ghaemi, A.; Rezaie-Balf, M.; Adamowski, J.; Kisi, O.; Quilty, J. On the applicability of maximum overlap discrete wavelet transform integrated with MARS and M5 model tree for monthly pan evaporation prediction. Agric. For. Meteorol. 2019, 278, 107647. [Google Scholar] [CrossRef]
- Adnan, R.M.; Yuan, X.; Kisi, O.; Anam, R. Improving accuracy of river flow forecasting using LSSVR with gravitational search algorithm. Adv. Meteorol. 2017, 2017, 1–23. [Google Scholar] [CrossRef]
- Kisi, Ö.; Yildirim, G. Discussion of “Forecasting of reference evapotranspiration by artificial neural networks” by Slavisa Trajkovic, Branimir Todorovic, and Miomir Stankovic. J. Irrig. Drain. Eng. 2005, 131, 390–391. [Google Scholar] [CrossRef]
- Mehdizadeh, S.; Behmanesh, J.; Khalili, K. Using MARS, SVM, GEP and empirical equations for estimation of monthly mean reference evapotranspiration. Comput. Electron. Agric. 2017, 139, 103–114. [Google Scholar] [CrossRef]
- Kisi, O. Modeling reference evapotranspiration using three different heuristic regression approaches. Agric. Water Manag. 2016, 169, 162–172. [Google Scholar] [CrossRef]
- Keshtegar, B.; Mert, C.; Kisi, O. Comparison of four heuristic regression techniques in solar radiation modeling: Kriging method vs RSM, MARS and M5 model tree. Renew. Sustain. Energy Rev. 2018, 81, 330–341. [Google Scholar] [CrossRef]
- Keshtegar, B.; Kisi, O. RM5Tree: Radial basis M5 model tree for accurate structural reliability analysis. Reliab. Eng. Syst. Saf. 2018, 180, 49–61. [Google Scholar] [CrossRef]
- Kisi, O.; Kilic, Y. An investigation on generalization ability of artificial neural networks and M5 model tree in modeling reference evapotranspiration. Theor. Appl. Climatol. 2015, 126, 413–425. [Google Scholar] [CrossRef]
- Rahimikhoob, A. Comparison between M5 model tree and neural networks for estimating reference evapotranspiration in an arid environment. Water Resour. Manag. 2014, 28, 657–669. [Google Scholar] [CrossRef]
- Amanifard, N.; Nariman-Zadeh, N.; Farahani, M.H.; Khalkhali, A. Modelling of multiple short-length-scale stall cells in an axial compressor using evolved GMDH neural networks. Energy Convers. Manag. 2008, 49, 2588–2594. [Google Scholar] [CrossRef]
- Ivakhnenko, A.G. Polynomial theory of complex systems. IEEE Trans. Syst. ManCybern. 1971, SMC-1, 364–378. [Google Scholar] [CrossRef] [Green Version]
- Ivakhnenko, A.G.; Ivakhnenko, G.A. Problems of further development of the group method of data handling algorithms. Part I. Pattern Recognit. Image Anal. C/C Raspoznavaniye Obraz. I Anal. Izobr. 2000, 10, 187–194. [Google Scholar]
- Adnan, R.M.; Liang, Z.; Heddam, S.; Zounemat-Kermani, M.; Kisi, O.; Li, B. Least square support vector machine and multivariate adaptive regression splines for streamflow prediction in mountainous basin using hydro-meteorological data as inputs. J. Hydrol. 2020, 586, 124371. [Google Scholar] [CrossRef]
- Roy, S.S.; Roy, R.; Balas, V.E. Estimating heating load in buildings using multivariate adaptive regression splines, extreme learning machine, a hybrid model of MARS and ELM. Renew. Sustain. Energy Rev. 2018, 82, 4256–4268. [Google Scholar] [CrossRef]
- García Nieto, P.J.; García-Gonzalo, E.; Álvarez Antón, J.C.; Suárez, V.M.G.; Bayón, R.M.; Martín, F.M. A comparison of several machine learning techniques for the centerline segregation prediction in continuous cast steel slabs and evaluation of its performance. J. Comput. Appl. Math. 2018, 330, 877–895. [Google Scholar] [CrossRef]
- Pourghasemi, H.R.; Rahmati, O. Prediction of the landslide susceptibility: Which algorithm, which precision? CATENA 2018, 162, 177–192. [Google Scholar] [CrossRef]
- Kuter, S.; Akyurek, Z.; Weber, G.-W. Retrieval of fractional snow covered area from MODIS data by multivariate adaptive regression splines. Remote Sens. Environ. 2018, 205, 236–252. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, R.; Goh, A.T.C. Multivariate adaptive regression splines approach to estimate lateral wall deflection profiles caused by braced excavations in clays. Geotech. Geol. Eng. 2017. [Google Scholar] [CrossRef]
- Jekabsons, G. ARESLab: Adaptive Regression Splines Toolbox for Matlab/Octave Ver. 1.13.0; Riga Technical University: Riga, Latvia, 2016. [Google Scholar]
- Afsarian, F.; Saber, A.; Pourzangbar, A.; Olabi, A.G.; Khanmohammadi, M.A. Analysis of recycled aggregates effect on energy conservation using M5′ model tree algorithm. Energy 2018, 156, 264–277. [Google Scholar] [CrossRef]
- García Nieto, P.J.; García-Gonzalo, E.; Sánchez, A.B.; Miranda, A.A.R. Air quality modeling using the PSO-SVM-based approach, MLP neural network, and M5 model tree in the metropolitan area of oviedo (Northern Spain). Environ. Modeling Assess. 2017, 23, 229–247. [Google Scholar] [CrossRef]
- Avval, Y.J.; Derakhshani, A. New formulas for predicting liquefaction-induced lateral spreading: Model tree approach. Bull. Eng. Geol. Environ. 2018, 78, 3649–3661. [Google Scholar] [CrossRef]
- Deo, R.C.; Downs, N.; Parisi, A.V.; Adamowski, J.F.; Quilty, J.M. Very short-term reactive forecasting of the solar ultraviolet index using an extreme learning machine integrated with the solar zenith angle. Environ. Res. 2017, 155, 141–166. [Google Scholar] [CrossRef]
- Pham, H.T.; Marshall, L.; Johnson, F.; Sharma, A. Deriving daily water levels from satellite altimetry and land surface temperature for sparsely gauged catchments: A case study for the Mekong River. Remote Sens. Environ. 2018, 212, 31–46. [Google Scholar] [CrossRef]
- Lin, L.; Wang, Q.; Sadek, A.W. A combined M5P tree and hazard-based duration model for predicting urban freeway traffic accident durations. Accid. Anal. Prev. 2016, 91, 114–126. [Google Scholar] [CrossRef] [PubMed]
- Singh, G.; Sachdeva, S.N.; Pal, M. M5 model tree based predictive modeling of road accidents on non-urban sections of highways in India. Accid. Anal. Prev. 2016, 96, 108–117. [Google Scholar] [CrossRef] [PubMed]
- Jekabsons, G. M5PrimeLab: M5′Regression Tree and Model Tree Ensemble Toolbox for Matlab/Octave Ver. 1.7.0.; Institute of Applied Computer Systems Riga Technical University: Riga, Latvia, 2016; Available online: http://www.cs.rtu.lv/jekabsons/Files/M5PrimeLab.pdf (accessed on 20 December 2019).
- Stephens, J.C.; Stewart, E.H. A comparison of procedures for computing evaporation and evapotranspiration. Publication 1963, 62, 123–133. [Google Scholar]
- Hargreaves, G.H.; Samani, Z.A. Estimating potential evapotranspiration. J. Irrig. Drain. Div. 1982, 108, 225–230. [Google Scholar]
- Hargreaves, G.H.; Samani, Z.A. Reference crop evapotranspiration from temperature. Appl. Eng. Agric. 1985, 1, 96–99. [Google Scholar] [CrossRef]
- Tiyasha, T.; Tung, M.; Yaseen, Z.M. A survey on river water quality modelling using artificial intelligence models: 2000–2020. J. Hydrol. 2020, 585, 124670. [Google Scholar] [CrossRef]
- Adnan, R.M.; Yuan, X.; Kisi, O.; Yuan, Y.; Tayyab, M.; Lei, X. Application of soft computing models in streamflow forecasting. In Proceedings of the Institution of Civil Engineers-Water Management; Thomas Telford Ltd.: London, UK, 2019; Volume 172, No. 3; pp. 123–134. [Google Scholar]
- Bhagat, S.K.; Tung, T.M.; Yaseen, Z.M. Development of artificial intelligence for modeling wastewater heavy metal removal: State of the art, application assessment and possible future research. J. Clean. Prod. 2019, 250, 119473. [Google Scholar] [CrossRef]
Station | Variable | xmin | xmax | xmean | Sx | Csx | Correlation with ET0 |
---|---|---|---|---|---|---|---|
Adana | Tmin (°C) | −3.4 | 23.4 | 9.33 | 7.70 | 0.08 | 0.828 |
Tmax (°C) | 17.0 | 44.0 | 31.3 | 7.02 | −0.41 | 0.850 | |
Ra (MJ/m2) | 15.5 | 41.7 | 29.4 | 9.35 | −0.14 | 0.920 | |
ET0 (mm) | 0.57 | 6.52 | 3.32 | 1.52 | 0.04 | 1.000 | |
Antakya | Tmin (°C) | −4.6 | 24.8 | 9.18 | 8.16 | 0.22 | 0.860 |
Tmax (°C) | 14.4 | 42.6 | 28.8 | 7.64 | −0.32 | 0.878 | |
Ra (MJ/m2) | 16.0 | 41.6 | 29.5 | 9.16 | −0.11 | 0.926 | |
ET0 (mm) | 0.28 | 7.20 | 3.39 | 1.86 | 0.06 | 1.000 |
Model | Input | Training | Test | ||||
---|---|---|---|---|---|---|---|
RMSE (mm) | MAE (mm) | NSE | RMSE (mm) | MAE (mm) | NSE | ||
50% training and 50% test | |||||||
MARS1 | Tmin, Tmax, Ra | 0.454 | 0.363 | 0.908 | 0.467 | 0.359 | 0.907 |
MARS2 | Tmin, Tmax, Ra, α | 0.461 | 0.356 | 0.905 | 0.466 | 0.357 | 0.907 |
M5Tree1 | Tmin, Tmax, Ra | 0.408 | 0.301 | 0.926 | 0.518 | 0.406 | 0.885 |
M5Tree2 | Tmin, Tmax, Ra, α | 0.408 | 0.301 | 0.926 | 0.518 | 0.406 | 0.885 |
HS | Tmin, Tmax, Ra | 2.021 | 1.777 | −0.82 | 2.006 | 1.782 | −0.72 |
CHS | Tmin, Tmax, Ra | 0.523 | 0.407 | 0.878 | 0.510 | 0.383 | 0.889 |
SS | Tmin, Tmax, Ra | 0.501 | 0.390 | 0.888 | 0.463 | 0.355 | 0.909 |
GMDHNN1 | Tmin, Tmax, Ra | 0.448 | 0.353 | 0.898 | 0.456 | 0.347 | 0.895 |
GMDHNN2 | Tmin, Tmax, Ra, α | 0.443 | 0.347 | 0.901 | 0.453 | 0.343 | 0.898 |
60% training and 40% test | |||||||
MARS1 | Tmin, Tmax, Ra | 0.435 | 0.344 | 0.916 | 0.510 | 0.389 | 0.889 |
MARS2 | Tmin, Tmax, Ra, α | 0.447 | 0.347 | 0.912 | 0.492 | 0.376 | 0.898 |
M5Tree1 | Tmin, Tmax, Ra | 0.402 | 0.288 | 0.929 | 0.529 | 0.406 | 0.881 |
M5Tree2 | Tmin, Tmax, Ra, α | 0.402 | 0.288 | 0.929 | 0.529 | 0.406 | 0.881 |
HS | Tmin, Tmax, Ra | 2.048 | 1.809 | −0.86 | 1.960 | 1.734 | −0.63 |
CHS | Tmin, Tmax, Ra | 0.509 | 0.396 | 0.885 | 0.527 | 0.395 | 0.882 |
SS | Tmin, Tmax, Ra | 0.482 | 0.376 | 0.897 | 0.482 | 0.368 | 0.901 |
GMDHNN1 | Tmin, Tmax, Ra | 0.428 | 0.331 | 0.909 | 0.480 | 0.368 | 0.902 |
GMDHNN2 | Tmin, Tmax, Ra, α | 0.424 | 0.327 | 0.910 | 0.478 | 0.366 | 0.903 |
75% training and 25% test | |||||||
MARS1 | Tmin, Tmax, Ra | 0.438 | 0.339 | 0.916 | 0.516 | 0.408 | 0.884 |
MARS2 | Tmin, Tmax, Ra, α | 0.437 | 0.336 | 0.917 | 0.522 | 0.405 | 0.882 |
M5Tree1 | Tmin, Tmax, Ra | 0.385 | 0.279 | 0.935 | 0.550 | 0.424 | 0.869 |
M5Tree2 | Tmin, Tmax, Ra, α | 0.385 | 0.279 | 0.935 | 0.550 | 0.424 | 0.869 |
HS | Tmin, Tmax, Ra | 2.053 | 1.821 | −0.841 | 1.894 | 1.659 | −0.556 |
CHS | Tmin, Tmax, Ra | 0.504 | 0.388 | 0.889 | 0.552 | 0.414 | 0.868 |
SS | Tmin, Tmax, Ra | 0.479 | 0.370 | 0.900 | 0.491 | 0.382 | 0.896 |
GMDHNN1 | Tmin, Tmax, Ra | 0.421 | 0.322 | 0.914 | 0.497 | 0.385 | 0.881 |
GMDHNN2 | Tmin, Tmax, Ra, α | 0.420 | 0.320 | 0.915 | 0.495 | 0.384 | 0.883 |
Average | |||||||
MARS1 | Tmin, Tmax, Ra | 0.442 | 0.349 | 0.913 | 0.498 | 0.385 | 0.893 |
MARS2 | Tmin, Tmax, Ra, α | 0.448 | 0.346 | 0.911 | 0.493 | 0.379 | 0.896 |
M5Tree1 | Tmin, Tmax, Ra | 0.398 | 0.289 | 0.930 | 0.532 | 0.412 | 0.878 |
M5Tree2 | Tmin, Tmax, Ra, α | 0.398 | 0.289 | 0.930 | 0.532 | 0.412 | 0.878 |
HS | Tmin, Tmax, Ra | 2.041 | 1.802 | −0.840 | 1.953 | 1.725 | −0.635 |
CHS | Tmin, Tmax, Ra | 0.512 | 0.397 | 0.884 | 0.530 | 0.397 | 0.880 |
SS | Tmin, Tmax, Ra | 0.487 | 0.379 | 0.895 | 0.479 | 0.368 | 0.902 |
GMDHNN1 | Tmin, Tmax, Ra | 0.432 | 0.335 | 0.907 | 0.478 | 0.367 | 0.893 |
GMDHNN2 | Tmin, Tmax, Ra, α | 0.429 | 0.331 | 0.909 | 0.475 | 0.364 | 0.895 |
Model | Input | Training | Test | ||||
---|---|---|---|---|---|---|---|
RMSE (mm) | MAE (mm) | NSE | RMSE (mm) | MAE (mm) | NSE | ||
50% training and 50% test | |||||||
MARS1 | Tmin, Tmax, Ra | 0.383 | 0.290 | 0.959 | 0.635 | 0.521 | 0.872 |
MARS2 | Tmin, Tmax, Ra, α | 0.369 | 0.286 | 0.962 | 0.566 | 0.460 | 0.963 |
M5Tree1 | Tmin, Tmax, Ra | 0.341 | 0.257 | 0.968 | 0.639 | 0.527 | 0.870 |
M5Tree2 | Tmin, Tmax, Ra, α | 0.335 | 0.256 | 0.969 | 0.598 | 0.489 | 0.886 |
HS | Tmin, Tmax, Ra | 1.513 | 1.316 | 0.367 | 1.781 | 1.613 | 0.065 |
CHS | Tmin, Tmax, Ra | 0.641 | 0.456 | 0.886 | 0.718 | 0.603 | 0.848 |
SS | Tmin, Tmax, Ra | 0.438 | 0.339 | 0.947 | 0.678 | 0.572 | 0.864 |
GMDHNN1 | Tmin, Tmax, Ra | 0.350 | 0.268 | 0.963 | 0.552 | 0.436 | 0.912 |
GMDHNN2 | Tmin, Tmax, Ra, α | 0.345 | 0.263 | 0.965 | 0.550 | 0.433 | 0.913 |
60% training and 40% test | |||||||
MARS1 | Tmin, Tmax, Ra | 0.464 | 0.359 | 0.938 | 0.468 | 0.370 | 0.933 |
MARS2 | Tmin, Tmax, Ra, α | 0.454 | 0.345 | 0.941 | 0.453 | 0.373 | 0.966 |
M5Tree1 | Tmin, Tmax, Ra | 0.406 | 0.305 | 0.953 | 0.478 | 0.380 | 0.930 |
M5Tree2 | Tmin, Tmax, Ra, α | 0.439 | 0.326 | 0.945 | 0.441 | 0.348 | 0.941 |
HS | Tmin, Tmax, Ra | 1.612 | 1.402 | 0.256 | 1.722 | 1.569 | 0.127 |
CHS | Tmin, Tmax, Ra | 0.676 | 0.487 | 0.869 | 0.647 | 0.538 | 0.877 |
SS | Tmin, Tmax, Ra | 0.526 | 0.400 | 0.921 | 0.510 | 0.436 | 0.923 |
GMDHNN1 | Tmin, Tmax, Ra | 0.441 | 0.339 | 0.939 | 0.426 | 0.345 | 0.943 |
GMDHNN2 | Tmin, Tmax, Ra, α | 0.430 | 0.335 | 0.941 | 0.424 | 0.342 | 0.945 |
75% training and 25% test | |||||||
MARS1 | Tmin, Tmax, Ra | 0.455 | 0.351 | 0.941 | 0.368 | 0.276 | 0.957 |
MARS2 | Tmin, Tmax, Ra, α | 0.443 | 0.349 | 0.944 | 0.335 | 0.269 | 0.971 |
M5Tree1 | Tmin, Tmax, Ra | 0.390 | 0.291 | 0.957 | 0.373 | 0.304 | 0.963 |
M5Tree2 | Tmin, Tmax, Ra, α | 0.406 | 0.299 | 0.953 | 0.367 | 0.292 | 0.958 |
HS | Tmin, Tmax, Ra | 1.663 | 1.463 | 0.211 | 1.641 | 1.489 | 0.168 |
CHS | Tmin, Tmax, Ra | 0.677 | 0.497 | 0.869 | 0.601 | 0.481 | 0.888 |
SS | Tmin, Tmax, Ra | 0.526 | 0.416 | 0.621 | 0.410 | 0.327 | 0.648 |
GMDHNN1 | Tmin, Tmax, Ra | 0.439 | 0.347 | 0.940 | 0.318 | 0.248 | 0.968 |
GMDHNN2 | Tmin, Tmax, Ra, α | 0.426 | 0.337 | 0.944 | 0.304 | 0.247 | 0.969 |
Average | |||||||
MARS1 | Tmin, Tmax, Ra | 0.434 | 0.333 | 0.946 | 0.490 | 0.389 | 0.921 |
MARS2 | Tmin, Tmax, Ra, α | 0.422 | 0.327 | 0.949 | 0.451 | 0.367 | 0.967 |
M5Tree1 | Tmin, Tmax, Ra | 0.379 | 0.284 | 0.959 | 0.497 | 0.404 | 0.921 |
M5Tree2 | Tmin, Tmax, Ra, α | 0.393 | 0.294 | 0.956 | 0.469 | 0.376 | 0.928 |
HS | Tmin, Tmax, Ra | 1.596 | 1.394 | 0.278 | 1.715 | 1.557 | 0.120 |
CHS | Tmin, Tmax, Ra | 0.665 | 0.480 | 0.875 | 0.655 | 0.541 | 0.871 |
SS | Tmin, Tmax, Ra | 0.497 | 0.385 | 0.830 | 0.533 | 0.445 | 0.812 |
GMDHNN1 | Tmin, Tmax, Ra | 0.410 | 0.318 | 0.947 | 0.432 | 0.343 | 0.941 |
GMDHNN2 | Tmin, Tmax, Ra, α | 0.401 | 0.312 | 0.950 | 0.426 | 0.341 | 0.942 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adnan, R.M.; Heddam, S.; Yaseen, Z.M.; Shahid, S.; Kisi, O.; Li, B. Prediction of Potential Evapotranspiration Using Temperature-Based Heuristic Approaches. Sustainability 2021, 13, 297. https://doi.org/10.3390/su13010297
Adnan RM, Heddam S, Yaseen ZM, Shahid S, Kisi O, Li B. Prediction of Potential Evapotranspiration Using Temperature-Based Heuristic Approaches. Sustainability. 2021; 13(1):297. https://doi.org/10.3390/su13010297
Chicago/Turabian StyleAdnan, Rana Muhammad, Salim Heddam, Zaher Mundher Yaseen, Shamsuddin Shahid, Ozgur Kisi, and Binquan Li. 2021. "Prediction of Potential Evapotranspiration Using Temperature-Based Heuristic Approaches" Sustainability 13, no. 1: 297. https://doi.org/10.3390/su13010297
APA StyleAdnan, R. M., Heddam, S., Yaseen, Z. M., Shahid, S., Kisi, O., & Li, B. (2021). Prediction of Potential Evapotranspiration Using Temperature-Based Heuristic Approaches. Sustainability, 13(1), 297. https://doi.org/10.3390/su13010297