A Systematic Review on Cognitive Radio in Low Power Wide Area Network for Industrial IoT Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. How Cognitive Radio Engage with the Industrial IoT?
2.1.1. LPWAN for IIoT
2.1.2. Cognitive LPWAN
2.1.3. Cognitive Industrial Internet of Things (IIoT)
2.1.4. IIoT LPWAN Cognitive Radio Bands
2.1.5. Spectrum Allocation
2.2. What Are the Proposed Architectures That Support Cognitive Radio LPWAN Based IIoT?
2.2.1. Cognitive IIoT LPWAN Architectures
2.2.2. Architecture and Domain of CR-Based IIoT
2.2.3. The Architecture of U-LTE Cognitive Radio for IIoT
2.2.4. Architectures of NBIoT Cognitive Radio
2.3. What Key Success Factors Need to Comply for Reliable CIIoT Support in the Industry?
2.3.1. CIIoT with Fog and Clouds
2.3.2. CIIoT Remote Sensor Systems
2.3.3. CIIoT with D2D and M2M Technologies
2.3.4. Cognitive Engine
3. Conclusions and Future Work
Author Contributions
Funding
Conflicts of Interest
Abbreviations
3GPP | Third Generation Partnership Project |
5G | Fifth Generation |
AI | Artificial Intelligence |
BLE | Bluetooth Low Energy |
CIIoT | Cognitive Radio IIoT |
CR | Cognitive Radio |
CRLPWAN | Cognitive Radio Low Power Wide Area Network |
CSMA | Carrier Sense Multiple Access |
CU | Cognitive User |
eMTC | Enhanced Machine Type Communication |
FHSS | Frequency Hopping Spread Spectrum |
IIoT | Industrial Internet of Things |
IoT | Internet of Things |
ISM | Industrial, Scientific, and Medical |
IWSNs | Interference in Industrial Wireless Sensor Networks |
LoRA | Bi-directional Long Short-term Memory |
LoRaWAN | Low Range Wide Area Network |
LPWAN | Low Power Wide Area Network |
LTE | Long Term Evolution |
M2M | Machine-to-Machine |
MAC | Media Access Control |
NB-IoTNBIoT | Narrow Band Internet of Things |
OFDMA | Orthogonal Frequency Division Multiple Access |
PU | Primary User |
QoS | Quality of Service |
RQ | Research Question |
SCC | IEEE Standards Coordinating Committee |
SDR | Software-defined radio |
SINR | Signal to Interference Noise Ratio |
U-LTE | Unlicensed LTE |
VOs | Virtual objects |
WSN | Wireless Sensor Network |
References
- Shafiq, M.; Ahmad, M.; Afzal, M.K.; Ali, A.; Irshad, A.; Choi, J.-G. Handshake Sense Multiple Access Control for Cognitive Radio-Based IoT Networks. Sensors 2019, 19, 241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Onumanyi, A.J.; Abu-Mahfouz, A.M.; Hancke, G.P. Towards Cognitive Radio in Low Power Wide Area Network for Industrial IoT Applications. In Proceedings of the 2019 IEEE 17th International Conference on Industrial Informatics (INDIN), Helsinki, Finland, 22–25 July 2019; Volume 1, pp. 947–950. [Google Scholar]
- Hwang, K.; Chen, M. Big Data Analytics for Cloud/IoT and Cognitive Computing; Wiley: London, UK, 2017. [Google Scholar]
- Somov, A.; Dupont, C.; Giaffreda, R. Supporting Smart-City Mobility with Cognitive Internet of Things. In Proceedings of the Future Network and Mobile Summit, Lisboa, Portugal, 3–5 July 2013. [Google Scholar]
- Ahmed, Z.E.; Saeed, R.A.; Ghopade, S.N.; Mukherjee, A. Energy Optimization in LPWANs by using Heuristic Techniques. In LPWAN Technologies for IoT and M2M Applications; Chaudhari, B.S., Zennaro, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; Chapter 11; ISBN 9780128188804. [Google Scholar]
- Rahman, M.J.A.; Hamzah, M.I.; Yasin, M.H.M.; Tahar, M.M.; Haron, Z.; Ensimau, N.K.E. The UKM Students Perception towards Cyber Security. Creative Educ. 2018, 10, 2850–2858. [Google Scholar] [CrossRef] [Green Version]
- Onumanyi, A.J.; Abu-Mahfouz, A.M.; Hancke, G.P. Cognitive Radio in Low Power Wide Area Network for IoT Applications: Recent Approaches, Benefits and Challenge. IEEE Trans. Ind. Inform. 2019, 16, 7489–7498. [Google Scholar] [CrossRef]
- Boulogeorgos, A.A.; Diamantoulakis, P.D.; Karagiannidis, G.K. Low Power Wide Area Networks (LPWANs) for Internet of Things (IoT) Applications: Research Challenges and Future Trends. arXiv 2016, arXiv:1611.07449. [Google Scholar]
- Augustin, A.; Yi, J.; Clausen, T.; Townsley, W.M. A Study of LoRa: Long Range & Low Power Networks for the Internet of Things. Sensors 2016, 16, 1466. [Google Scholar]
- Insider, B.I. Ericsson just Took a Significant Step toward Delivering Cellular-Based IoT. Available online: https://www.businessinsider.com/ericsson-just-took-a-significant-step-toward-delivering-cellular-based-iot-2016-11 (accessed on 17 December 2020).
- Akpakwu, G.A.; Silva, B.J.; Hancke, G.P.; Abu-Mahfouz, A.M. A Survey on 5G Networks for the Internet of Things: Communication Technologies and Challenges. IEEE Access 2018, 6, 3619–3647. [Google Scholar] [CrossRef]
- Vejlgaard, B.; Lauridsen, M.; Nguyen, H.; Kovacs, I.Z.; Mogensen, P.; Sorensen, M. Coverage and Capacity Analysis of Sigfox, LoRa, GPRS and NBIoT. In Proceedings of the 2017 IEEE 85th Vehicular Technology Conference (VTC Spring), Sydney, Australia, 4–7 June 2017. [Google Scholar]
- Mercier, B.; Fodor, V.; Thobaben, R.; Beferull-Lozano, B. Sensor Networks for Cognitive Radio: Theory and System Design. In Proceedings of the ICT Mobile and Wireless Communications, Stockholm, Sweden, 10–12 June 2008. [Google Scholar]
- Moon, B.-K. Dynamic Spectrum Access for Internet of Things Service in Cognitive Radio-Enabled LPWANs. Sensors 2017, 17, 2818. [Google Scholar] [CrossRef] [Green Version]
- Awin, F.; Alginahi, Y.M.; Abdel-Raheem, E.; Tepe, K. Technical Issues on Cognitive Radio-Based Internet of Things Systems: A Survey. IEEE Access 2019, 7, 97887–97908. [Google Scholar] [CrossRef]
- Chaudhari, B.S.; Zennaro, M.; Borkar, S. LPWAN Technologies: Emerging Application Characteristics, Requirements, and Design Considerations. Futur. Internet 2020, 12, 46. [Google Scholar] [CrossRef] [Green Version]
- Chaudhari, B.S.; Zennaro, M. (Eds.) LPWAN Technologies for IoT and M2M Applications; Academic Press: Cambridge, MN, USA, 2020. [Google Scholar]
- Ismail, D.; Rahman, M.; Saifullah, A. Low-Power Wide-Area Networks: Opportunities, Challenges, and Directions. In Proceedings of the Workshop Program of the 19th International Conference on Distributed Computing and Networking, Varanasi, India, 4–7 January 2018. [Google Scholar]
- Kelaidonis, D.; Somov, A.; Foteinos, V.; Poulios, G.; Stavroulaki, V.; Vlacheas, P.; Demestichas, P.; Baranov, A.; Biswas, A.R.; Giaffreda, R. Virtualization and Cognitive Management of Real-World Objects in the Internet of Things. In Proceedings of the 2012 IEEE International Conference on Green Computing and Communications, Besancon, France, 20–23 November 2012. [Google Scholar]
- Tragos, E.Z.; Angelakis, V. Cognitive Radio Inspired M2M Communications. In Proceedings of the 2013 16th International Symposium on Wireless Personal Multimedia Communications (WPMC), New Brunswick, NJ, USA, 24–27 June 2013. [Google Scholar]
- Adelantado, F.; Vilajosana, X.; Tuset-Peiro, P.; Martinez, B.; Melia-Segui, J.; Watteyne, T. Understanding the Limits of LoRaWAN. IEEE Commun. Mag. 2017, 55, 34–40. [Google Scholar] [CrossRef] [Green Version]
- Fadda, M.; Nitti, M.; Pilloni, V.; Atzori, L.; Giusto, D.; Popescu, V.; Alexandru, M. Distributed Spectrum Sensing for Indoor Broadcasting Services Using an IoT Platform. In Proceedings of the IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (BMSB), Cagliari, Italy, 7–9 June 2017. [Google Scholar]
- Shah, G.A.; Gungor, V.C.; Akan, O.B. A Cross-Layer QoS-Aware Communication Framework in Cognitive Radio Sensor Networks for Smart Grid Applications. IEEE Trans. Ind. Inform. 2013, 9, 1477–1485. [Google Scholar] [CrossRef]
- Rizzo, G.; Mancuso, V.; Ali, S.; Marsan, M.A. Stop and forward: Opportunistic local information sharing under walking mobility. Ad Hoc Netw. 2018, 78, 54–72. [Google Scholar] [CrossRef]
- Hasan, M.K.; Ahmed, M.M.; Hashim, A.H.A.; Razzaque, A.; Islam, S.; Pandey, B. A Novel Artificial Intelligence Based Timing Synchronization Scheme for Smart Grid Applications. Wirel. Pers. Commun. 2020, 114, 1067–1084. [Google Scholar] [CrossRef]
- Ibrahim, M.Z.; Hassan, R. The implementation of internet of things using testbed in the UKMNET environment. Asia Pac. J. Inf. Technol. Multimed. 2019, 8, 1–17. [Google Scholar]
- Badri1, I.; Abdellaoui, M. Spectral Sensing & Multi-Objective Spectrum Allocation over MIMO-OFDMA Based on 5G Cognitive WSSNs for IoT Intelligent Agriculture. IJMER 2018, 6, 23–33. [Google Scholar]
- Parvez, I.; Sarwat, A.I. A Spectrum Sharing based Metering Infrastructure for Smart Grid Utilizing LTE and WiFi. Adv. Sci. Technol. Eng. Syst. J. 2019, 4, 70–77. [Google Scholar] [CrossRef] [Green Version]
- Islam, S.; Khalifa, O.O.; Hashim, A.-H.A.; Hasan, M.K.; Razzaque, A.; Pandey, B. Design and Evaluation of a Multihoming-Based Mobility Management Scheme to Support Inter Technology Handoff in PNEMO. Wirel. Pers. Commun. 2020, 114, 1133–1153. [Google Scholar] [CrossRef]
- Tervonen, J.; Mikhaylov, K.; Pieska, S.; Jämsä, J.; Heikkila, M. Cognitive Internet-of-Things Solutions Enabled by Wireless Sensor and Actuator Networks. In Proceedings of the 2014 5th IEEE Conference on Cognitive Infocommunications (CogInfoCom), Vietri sul Mare, Italy, 5–7 November 2014. [Google Scholar]
- Rubio, J.; Cerdan-Cartagena, F.; Muro, J.S.; Ybarra-Moreno, J. Design and Implementation of a Mixed IoT LPWAN Network Architecture. Sensors 2019, 19, 675. [Google Scholar] [CrossRef] [Green Version]
- Joshi, G.P.; Nam, S.Y.; Kim, S.W. Cognitive Radio Wireless Sensor Networks: Applications, Challenges and Research Trends. Sensors 2013, 13, 11196–11228. [Google Scholar] [CrossRef] [Green Version]
- Kalyan, M.; Reddy, V.; Jitesh, K.; Ashif, S.; Ravikumar, C.V.; Kalapraveen, B. LPWAN Technologies for IoT Deployment. Int. J. Electr. Eng. Technol. 2020, 11, 285–296. [Google Scholar]
- Khan, A.A.; Rehmani, M.H.; Rachedi, A. When Cognitive Radio meets the Internet of Things? In Proceedings of the International Wireless Communications and Mobile Computing Conference (IWCMC), Paphos, Cyprus, 5–9 September 2016. [Google Scholar]
- Ji, Z.; Liu, K.J.R. Dynamic Spectrum Sharing: A Game Theoretical Overview. IEEE Commun. Mag. 2007, 45, 88–94. [Google Scholar] [CrossRef] [Green Version]
- Santa, J.; Sanchez-Iborra, R.; Rodriguez-Rey, P.; Bernal-Escobedo, L.; Skarmeta, A.F. LPWAN-based vehicular monitoring platform with a generic IP network interface. Sensors 2019, 19, 264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ribeiro, L.E.; Tokikawa, D.W.; Rebelatto, J.L.; Brante, G. Comparison between LoRa and NB-IoT coverage in urban and rural Southern Brazil regions. Ann. Telecommun. 2020, 75, 755–766. [Google Scholar] [CrossRef]
- Lavric, A.; Popa, V. Internet of Things and LoRaTM Low-Power Wide-Area Networks: A survey. In Proceedings of the 2017 International Symposium on Signals, Circuits and Systems (ISSCS), Iasi, Romania, 13–14 July 2017. [Google Scholar]
- Kim, D.-Y.; Kim, S.; Park, J.H. A combined network control approach for the edge cloud and LPWAN-based IoT services. Concurr. Comput. Pr. Exp. 2020, 32, e4406. [Google Scholar] [CrossRef]
- Hasan, M.K.; Ismail, A.; Islam, S.; Hashim, W.; Ahmed, M.M.; Memon, I. A Novel HGBBDSA-CTI Approach for Subcarrier Allocation in Heterogeneous Network. Telecommun. Syst. 2019, 70, 245–262. [Google Scholar] [CrossRef]
- Lauridsen, M.; Nguyen, H.; Vejlgaard, B.; Kovacs, I.Z.; Mogensen, P.; Sorensen, M. Coverage Comparison of GPRS, NBIoT, LoRa, and Sigfox in a 7800 km2 Area. In Proceedings of the IEEE Vehicular Technology Conference, Sydney, Australia, 4–7 June 2017. [Google Scholar]
- Chaudhari, B.; Borkar, S. Design considerations and network architectures for low-power wide-area networks. In LPWAN Technologies for IoT and M2M Applications; Academic Press: Cambridge, MN, USA, 2020; pp. 15–35. [Google Scholar]
- Akhtaruzzaman, M.; Hasan, M.K.; Kabir, S.R.; Abdullah, S.N.H.S.; Sadeq, M.J.; Hossain, E. HSIC Bottleneck based Distributed Deep Learning Model for Load Forecasting in Smart Grid with A Comprehensive Survey. IEEE Access 2020, 8, 222977–223008. [Google Scholar] [CrossRef]
- Hasan, R.; Hossain, E.; Faruque, H.M.R.; Sultan, T. IoT Based Smart Energy Management in Residential Applications. In Proceedings of the 2019 1st International Conference on Advances in Science, Engineering and Robotics Technology (ICASERT), Dhaka, Bangladesh, 3–5 May 2019; pp. 1–6. [Google Scholar]
- Sherman, M.; Mody, A.N.; Martinez, R.; Rodriguez, C.; Reddy, R. IEEE Standards Supporting Cognitive Radio and Networks, Dynamic Spectrum Access, and Coexistence. IEEE Commun. Mag. 2008, 46, 72–79. [Google Scholar] [CrossRef]
- Tang, F.; Tang, C.; Yang, Y.; Yang, L.T.; Zhou, T.; Li, J.; Guo, M. Delay-minimized routing in mobile cognitive networks for time-critical applications. IEEE Trans. Ind. Inform. 2016, 13, 1398–1409. [Google Scholar] [CrossRef]
- Fadeyi, J.; Markus, E.D.; Abu-Mahfouz, A.M. Technology Coexistence in LPWANs-A Comparative Analysis for Spectrum Optimization. In Proceedings of the 2019 IEEE 28th International Symposium on Industrial Electronics (ISIE), Vancouver, BC, Canada, 12–14 June 2019. [Google Scholar]
- Zhang, M.; Zhao, H.; Zheng, R.; Wu, Q.; Wei, W. Cognitive Internet of Things: Concepts and Application Example. Int. J. Comput. Sci. Issues 2012, 9, 151–158. [Google Scholar]
- Mochizuki, K.; Obata, K.; Mizutani, K.; Harada, H. Development and Field Experiment of Wide Area Wi-SUN System based on IEEE 802.15.4g. In Proceedings of the 2016 IEEE 3rd World Forum on Internet of Things (WF-IoT), Reston, VA, USA, 12–14 December 2016. [Google Scholar]
- Hassan, M.B.; Ali, E.S.; Saeed, R.A. Intelligence IoT Wireless Networks. In Intelligent Wireless Communications; IET Book Publisher: Bangalore, India, 2020. [Google Scholar]
- Khan, A.A.; Rehmani, M.H.; Reisslein, M. Cognitive Radio for Smart Grids: Survey of Architectures, Spectrum Sensing Mechanisms, and Networking Protocols. IEEE Commun. Surv. Tutorials 2016, 18, 860–898. [Google Scholar] [CrossRef]
- Dai, R.; Zheng, Y.; He, J.; Kong, W.; Zou, S. A duplex current-reusedcmos lna with complementary derivative superposition technique. Int. J. Circuit Theory Appl. 2017, 45, 110–119. [Google Scholar] [CrossRef]
- Walden, R. Analog-to-digital converter survey and analysis. IEEE J. Sel. Areas Commun. 1999, 17, 539–550. [Google Scholar] [CrossRef] [Green Version]
- Vivado, D.S. LogiCORE IP Product Guide Fast Fourier Transform v9.0. 2017. Available online: https://www.xilinx.com/support/documentation/ip_documentation/xfft/v9_0/pg109-xfft.pdf (accessed on 17 December 2020).
- Hasan, M.K.; Ismail, A.F.; Abdalla, A.H.; Ramli, H.A.; Islam, S.; Hashim, W.; Badron, K. Cluster-based spectrum sensing scheme in heterogeneous network. In Theory and Applications of Applied Electromagnetics; Springer: Cham, Switzerland, 2015; pp. 1–11. [Google Scholar] [CrossRef]
- Rahman, M.; Ismail, D.; Modekurthy, V.P.; Saifullah, A. Implementation of LPWAN over white spaces for practical deployment. In Proceedings of the IoTDI ‘19: International Conference on Internet-of-Things Design and Implementation, Montreal, QC, Canada, 15–18 April 2019; pp. 178–189. [Google Scholar] [CrossRef]
- Onumanyi, A.J.; Abu-Mahfouz, A.M.; Hancke, G.P. Low Power Wide Area Network, Cognitive Radio and the Internet of Things: Potentials for Integration. Sensors 2020, 20, 6837. [Google Scholar] [CrossRef] [PubMed]
- Tuttlebee, W.H. Software-defined radio: Facets of a developing tech-nology. IEEE Pers. Commun. 1999, 6, 38–44. [Google Scholar] [CrossRef]
- Onumanyi, A.J.; Abu-Mahfouz, A.M.; Hancke, G.P. A comparativeanalysis of local and global adaptive threshold estimation techniques forenergy detection in cognitive radio. Phys. Commun. 2018, 29, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Sumathi, A.C.; Vidhyapriya, R.; Vivekanandan, C.; Sangaiah, A.K. Enhancing 4G Co-existence with Wi-Fi/IoT using Cognitive Radio. Cluster Comput. 2019, 22, 11295–11305. [Google Scholar] [CrossRef]
- Sakib, N.; Hossain, E.; Ahamed, S.I. A Qualitative Study on the United States Internet of Energy: A Step Towards Computational Sustainability. IEEE Access 2020, 8, 69003–69037. [Google Scholar] [CrossRef]
- Onumanyi, A.; Abu-Mahfouz, A.M.; Hancke, G.P. Adaptive threshold techniques for cognitive radio-based low power wide area network. Trans. Emerg. Telecommun. Technol. 2020, 31, e3908. [Google Scholar] [CrossRef]
- Vlacheas, P.; Giaffreda, R.; Stavroulaki, V.; Kelaidonis, D.; Foteinos, V.; Poulios, G.; Demestichas, P.; Somov, A.; Biswas, A.R.; Moessner, K. Enabling smart cities through a cognitive management framework for the internet of things. IEEE Commun. Mag. 2013, 51, 102–111. [Google Scholar] [CrossRef]
- Benmammar, B. Internet of Things and Cognitive Radio: Motivations and Challenges. Int. J. Organ. Collect. Intell. (IJOCI) 2019, 11, 39–52. [Google Scholar] [CrossRef]
- Baykas, T.; Kasslin, M.; Cummings, M.; Kang, H.; Kwak, J.; Paine, R.; Reznik, A.; Saeed, R.; Shellhammer, S.J. Developing a standard for TV white space coexistence: Technical challenges and solution approaches. IEEE Wirel. Commun. 2012, 19, 10–22. [Google Scholar] [CrossRef]
- Hasan, M.K.; Yousoff, S.H.; Ahmed, M.M.; Hashim, A.H.A.; Ismail, A.F.; Islam, S. Phase offset analysis of asymmetric communications infrastructure in smart grid. Elektron. Elektrotech. 2019, 25, 67–71. [Google Scholar] [CrossRef] [Green Version]
- Saeed, R.A.; Khatun, S.; Ali, B.; Abdullah, K. Ultra-Wideband Interference Mitigation using Cross-layer Cognitive Radio. In Proceedings of the 2006 IFIP IEEE Conference on Wireless and Optical Communications Networks (WOCN’06), Bangalore, India, 11–13 April 2006. [Google Scholar]
- Hassan, R.; Qamar, F.; Hasan, M.K.; Aman, A.H.M.; Ahmed, A.S. Internet of Things and Its Applications: A Comprehensive Survey. Symmetry 2020, 12, 1674. [Google Scholar] [CrossRef]
- Wu, Q.; Ding, G.; Xu, Y.; Feng, S.; Du, Z.; Wang, J.; Long, K. Cognitive Internet of Things: A New Paradigm Beyond Connection. IEEE Internet Things J. 2014, 1, 129–143. [Google Scholar] [CrossRef] [Green Version]
- Memon, I.; Shaikh, R.A.; Hasan, M.K.; Hassan, R.; Haq, A.U.; Zainol, K.A. Protect Mobile Travelers Information in Sensitive Region Based on Fuzzy Logic in IoT Technology. Secur. Commun. Netw. 2020. [Google Scholar] [CrossRef]
- Mokhtar, R.; Saeed, R.A.; Alsaqour, R.; Abdallah, Y. Study on Energy Detection-based Cooperative Sensing in Cognitive Radio Networks. J. Netw. 2013, 8, 1255–1261. [Google Scholar] [CrossRef] [Green Version]
- Hasan, M.K.; Ismail, A.F.; Abdalla, A.-H.; Ramli, H.A.M.; Hashim, W.; Islam, S. Throughput Maximization for the Cross-Tier Interference in Heterogeneous Network. Adv. Sci. Lett. 2016, 22, 2785–2789. [Google Scholar] [CrossRef]
- Hasan, M.K.; Ismail, A.F.; Islam, S.; Hashim, W.; Pandey, B. Dynamic spectrum allocation scheme for heterogeneous network. Wirel. Pers. Commun. 2017, 95, 299–315. [Google Scholar] [CrossRef]
- Saeed, R.A.; Ismail, A.F.; Hasan, M.K.; Mokhtar, R.; Salih, S.K.A.; Hashim, W. Throughput Enhancement for WLAN TV White Space in Coexistence of IEEE 802.22. Indian J. Sci. Technol. 2015, 8. [Google Scholar] [CrossRef] [Green Version]
- Oyewobi, S.S.; Hancke, G.P. A survey of cognitive radio handoff schemes, challenges and issues for industrial wireless sensor networks (CR-IWSN). J. Netw. Comput. Appl. 2017, 97, 140–156. [Google Scholar] [CrossRef] [Green Version]
- Xiang, W. 5G Mobile Communications; Springer: Berlin/Heidelberg, Germany, 2017; ISBN 978-3-319-34206-1. [Google Scholar]
- Sadeq, A.S.; Hassan, R.; Al-Rawi, S.S.; Jubair, A.M.; Aman, A.H.M. A Qos Approach for Internet Of Things (Iot) Environment Using Mqtt Protocol. In Proceedings of the 2019 International Conference on Cybersecurity (ICoCSec), Negeri Sembilan, Malaysia, 25–26 September 2019; pp. 59–63. [Google Scholar]
- Hassan, M.B.; Ali, E.S.; Mokhtar, R.A.; Saeed, R.A.; Chaudhari, B.S. NB-IoT: Concepts, Applications, and Deployment Challenges. In LPWAN Technologies for IoT and M2M Applications; Chaudhari, B.S., Zennaro, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; Chapter 6; ISBN 9780128188804. [Google Scholar]
- Sinha, R.S.; Wei, Y.; Hwang, S.-H. A survey on LPWA technology: LoRa and NB-IoT. ICT Express 2017, 3, 14–21. [Google Scholar] [CrossRef]
- Chiwewe, T.M.; Mbuya, C.F.; Hancke, G.P., Jr. Using Cognitive Radio for Interference-Resistant Industrial Wireless Sensor Networks: An Overview. IEEE Trans. Ind. Inform. 2015, 11, 1466–1481. [Google Scholar] [CrossRef] [Green Version]
- Li, T.; Yuan, J.; Torlak, M. Network Throughput Optimization for Random Access Narrowband Cognitive Radio Internet of Things (NB-CR-IoT). IEEE Internet Things J. 2018, 3, 1436–1448. [Google Scholar] [CrossRef]
- Raza, U.; Kulkarni, P.; Sooriyabandara, M. Low Power Wide Area Networks: An Overview. IEEE Commun. Surv. Tutor. 2017, 19, 855–873. [Google Scholar] [CrossRef] [Green Version]
- Hu, W.; Willkomm, D.; Abusubaih, M.; Gross, J.; Vlantis, G.; Gerla, M. Cognitive Radios for Dynamic Spectrum Access—Dynamic Frequency Hopping Communities for Efficient IEEE 802.22 Operation. IEEE Commun. Mag. 2007, 45, 80–87. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.H.; Wang, Q.; Wang, J.; Shao, L.; Tang, J. Wireless IoT Platform Based on SDR Technology. In Proceedings of the 2013 IEEE International Conference on Green Computing and Communications and IEEE Internet of Things and IEEE Cyber, Physical and Social Computing, Beijing, China, 20–23 August 2013. [Google Scholar]
- Bankov, D.; Khorov, E.; Lyakhov, A. On the limits of LoRaWANchannel access. In Proceedings of the 2016 International Conference on Engineering and Telecommunication (EnT), Dolgoprudny, Russia, 29–30 November 2016; pp. 10–14. [Google Scholar]
- Alam, S.; Sohail, M.F.; Ghauri, S.A.; Qureshi, I.M.; Aqdas, N. Cognitive radio based Smart Grid CommunicationNetwork. Renew. Sustain. Energy Rev. 2016, 72, 535–548. [Google Scholar] [CrossRef]
- Khan, A.A.; Rehmani, M.H.; Rachedi, A. Cognitive-Radio-Based Internet of Things: Applications, Architectures, Spectrum RelatedFunctionalities, and Future Research Directions. IEEE Wirel. Commun. 2017, 24, 17–25. [Google Scholar] [CrossRef]
- Rahman, M.; Saifullah, A. A comprehensive survey on networkingover tv white spaces. arXiv 2018, arXiv:1810.07120. [Google Scholar]
- Rawat, P.; Singh, K.D.; Bonnin, J.M. Cognitive radio for M2M and Internet of Things: A survey. Comput. Commun. 2016, 94, 1–29. [Google Scholar] [CrossRef]
- Noreen, U.; Bounceur, A.; Clavier, L. A study of LoRa low power and wide area network technology. In Proceedings of the International Conference on Advanced Technologies for Signal and Image Processing (ATSIP), Fez, Morocco, 22–24 May 2017; pp. 1–6. [Google Scholar]
- Akyildiz, I.F.; Lee, W.-Y.; Vuran, M.C.; Mohanty, S. NeXt generation/dynamic spectrum access/cognitive radio wireless networks: A survey. Comput. Netw. 2006, 50, 2127–2159. [Google Scholar] [CrossRef]
- Saifullah, A.; Rahman, M.; Ismail, D.; Lu, C.; Chandra, R.; Liu, J. Snow: Sensor network over white spaces. In Proceedings of the 14th ACM Conference on Embedded Network Sensor Systems CD-ROM, New York, NY, USA, 14 November 2016; pp. 272–285. [Google Scholar]
- Saifullah, A.; Rahman, M.; Ismail, D.; Lu, C.; Liu, J.; Chandra, R. Low-Power Wide-Area Network Over White Spaces. IEEE/ACM Trans. Netw. 2018, 26, 1893–1906. [Google Scholar] [CrossRef]
- Fantacci, R.; Marabissi, D. Cognitive spectrum sharing: An enabling wireless communication technology for a wide use of smart systems. Future Internet 2016, 8, 23. [Google Scholar] [CrossRef] [Green Version]
- Ohize, H.; Dlodlo, M. A Channel Hopping Algorithm for Guaran-teed Rendezvous in Cognitive Radio Ad Hoc Networks Using Swarm Intelligence. Wirel. Pers. Commun. 2017, 96, 879–893. [Google Scholar] [CrossRef]
- Dongare, A.; Hesling, C.; Bhatia, K.; Balanuta, A.; Pereira, R.L.; Iannucci, B.; Rowe, A. OpenChirp: A Low-Power Wide-Area Networking Architecture. In Proceedings of the 2017 IEEE International Conference on Pervasive Computing and Communications Workshops (PerComWorkshops), Big Island, HI, USA, 13–17 March 2017; pp. 569–574. [Google Scholar]
- Chen, M.; Miao, Y.; Jian, X.; Wang, X.; Humar, I. Cognitive-LPWAN: Towards intelligent wireless services in hybrid low powerwide area networks. IEEE Trans. Green Commun. Netw. 2018, 3, 409–417. [Google Scholar] [CrossRef] [Green Version]
- Saeed, A.; Harras, K.A.; Zegura, E.; Ammar, M. Local and low-costwhite space detection. In Proceedings of the 2017 IEEE 37th International Conference on Distributed Computing Systems (ICDCS), Atlanta, GA, USA, 5–8 June 2017; pp. 503–516. [Google Scholar]
Technologies | LTE-M | Narrowband | ||||||
---|---|---|---|---|---|---|---|---|
LTE | IoT | Ecs GSM | LORA | Sigfox | Symphony Link | Weightless | ||
Coverage area | <11 km | <15 km | 20 km | <13 km | <3 km | 2 km | ||
Spectrum radio | <900 MHz [L] | both range (867–869 MHz, or 902–928 MHz) [UL] | 900 MHz [UL] | 923 MHz [L] | ||||
BW | 1.4 MHz | 200 kHz | 200 kHz | 2.4 MHz | 125 kHz 250 kHz 500 MHz | 100 kHz | 125 kHz 250 kHz 500 MHz | 12.5 kHz |
Capacity data Rate | <1 Mbps | <150 kbps | <400 kbps | 10 kbps | <50 kbps | 100 bps | <50 kbps | 625 bps |
Life cycle battery (years) | >10 |
Technologies | Maximum Coverage | Maximum Data Rate | Modulation | Operation | CR Capabilities | IIOT Applications |
---|---|---|---|---|---|---|
Sigfox | 50 km (rural) | 100 bps | BPSK | Unlicensed ISM (800–900 Mz) | To be considered |
|
Weightless-W | 5 km (Urban) | 100 kbps | DBPSK | Licensed/Unlicensed (TV white space138 to 780 MHz) | Yes |
|
Nwave (Weightless-N) | 3 km (Urban) | 100 kbps | DBPSK | Unlicensed 868 to 923 MHz. | Yes (uplink only) | |
LoRa | 5 km (urban),15 km (rural) | 50 kbps | chirp spread spectrum (CSS) | Unlicensed ISM (400, 800, and 900 MHZ) | Yes |
|
Symphony Link | 12 km | 100 kbps | PSK and GMSK | Unlicensed | To be considered |
|
NBIoT | 15 km | 250 kbps | QPSK | Licensed 700–900 MHz | No | |
LTE-M | 11 Km | 1 Mbps | OFDMA/SC-FDMA | Licensed 700–900 MHz | No |
|
Smart Applications | Low Power | Capacity | Coverage | Cost | CR Potential Interference to Other Primary Users |
---|---|---|---|---|---|
Environment | M | H | M | H | L |
eHealth, Life Sciences, and Wearables | H | H | H | M | H |
Farming and Agriculture | H | H | H | M | L |
Metering | M | H | H | H | M |
Logistics and Automotive | L | H | H | M | L |
Emergencies and Security | H | L | H | M | L |
Industrial Manufacturing and Automation | L | H | L | H | H |
Cities | M | H | H | H | M |
Real Estate and Building | L | M | H | L | L |
Energy and Smart Grid | M | H | H | M | M |
Retail | L | H | H | H | H |
Year | Approaches | Features | Advantage | Challenges | Refs. |
---|---|---|---|---|---|
2019 | Network functionalities are implemented via software instances in cloud | Proposed an architectural specification | Improved performance | Strategizing regarding the implementation of the classical network functionalities, associated with the challenges in their respective implementations | [6,26,31] |
2019 | Development of a UNIX-based network interface for LPWAN | Regarding transmission distance and end-device energy consumption | Remote track vehicle status in real-time | Light vehicles with impending power barriers | [7] |
2018 | Traffic-pattern data set in the data-cognitive engine | Cognitive- LPWAN selects appropriate communication technologies to achieve a better interaction experience. | intelligent applications and services for the choice of different Wireless-communication technologies. | Cognitive-LPWAN and test the proposed AI-enabled LPWA hybrid method | [27,41] |
2017 | Interference distribution conditioning on sensor measurement | Improves area spectral efficiency (ASE) compared to a conventional ALOHA and an adaptive transmission | Access the medium only when a sensor values is measured | Spectral efficiency need to be enhanced | [12] |
2019 | Notable state-of-the-art approaches | Enhancement of different IIoT-based applications. | CR-LPWAN systems for IIoT-based applications | Lower efficiency and higher latency | [42] |
2018 | The AI algorithm provides the smart control of wireless-communication technology | Cellular-communication technologies (4G, 5G) | AI-enabled LPWA hybrid method | Higher delays in communication delay and higher energy consumptions | [24] |
2019 | C-LPWAN based on generic network architecture and a PHY layer front-end model | Develop CR-LPWAN systems towards enhancing IIoT-based applications | Enhanced IIoT-based applications, including Industrial IoT (IIoT) applications | Interference issue | [36] |
2020 | For integrating CR in LPWAN effectively, deciding on suitable network architecture and physical layer | To enhance the performance of IIoT-based on applications | CRLPWAN are required for adaptive threshold techniques to improve sensing performance | Low throughput | [17] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nurelmadina, N.; Hasan, M.K.; Memon, I.; Saeed, R.A.; Zainol Ariffin, K.A.; Ali, E.S.; Mokhtar, R.A.; Islam, S.; Hossain, E.; Hassan, M.A. A Systematic Review on Cognitive Radio in Low Power Wide Area Network for Industrial IoT Applications. Sustainability 2021, 13, 338. https://doi.org/10.3390/su13010338
Nurelmadina N, Hasan MK, Memon I, Saeed RA, Zainol Ariffin KA, Ali ES, Mokhtar RA, Islam S, Hossain E, Hassan MA. A Systematic Review on Cognitive Radio in Low Power Wide Area Network for Industrial IoT Applications. Sustainability. 2021; 13(1):338. https://doi.org/10.3390/su13010338
Chicago/Turabian StyleNurelmadina, Nahla, Mohammad Kamrul Hasan, Imran Memon, Rashid A. Saeed, Khairul Akram Zainol Ariffin, Elmustafa Sayed Ali, Rania A. Mokhtar, Shayla Islam, Eklas Hossain, and Md. Arif Hassan. 2021. "A Systematic Review on Cognitive Radio in Low Power Wide Area Network for Industrial IoT Applications" Sustainability 13, no. 1: 338. https://doi.org/10.3390/su13010338
APA StyleNurelmadina, N., Hasan, M. K., Memon, I., Saeed, R. A., Zainol Ariffin, K. A., Ali, E. S., Mokhtar, R. A., Islam, S., Hossain, E., & Hassan, M. A. (2021). A Systematic Review on Cognitive Radio in Low Power Wide Area Network for Industrial IoT Applications. Sustainability, 13(1), 338. https://doi.org/10.3390/su13010338