Study on the Spatial Pattern of Migration Population in Egypt and Its Flow Field Characteristics from the Perspective of “Source-Flow-Sink”
Abstract
:1. Introduction
2. Research Methods and Data Sources
2.1. “Source-Sink” Theory
2.2. Flow Field Theory
2.3. Research Steps
2.4. Data Sources
3. Results
3.1. Overall Analysis
3.2. Source System: Source Places and Pure-Source Places
3.3. Sink System: Sink Places and Pure-Sink Places
3.4. Exchange Places
3.5. Flow Field
4. Conclusions and Discussion
- (1)
- There are significant differences in the migration population size and rate of migration in Egypt, which may be associated with the level of the economic development and environmental carrying capacity of the provinces [40,46,47]. How to guide the combination of provincial population migration and urbanization is a long-term challenge for Egypt in the future. The total interprovincial migration population size in Egypt is more than 2.2 million, and the overall migration rate is 2.33%, with extreme multiples of 80, 82, 463, 12, 40 and 28 for the total migration population, immigrant population size, emigrant population size, migration rate, immigration rate and emigration rate, respectively. According to the provincial analysis, the CVs of Inflow, Outflow, and Total flow in a province are all greater than 1, except for Outflow in Cairo and Total flow in South Sinai. It is up to 3.5 in Kalyubia, compared with the overall level of around 2.5 in Giza, Fayoum, Cairo, Beni-Suef, and North Sinai.
- (2)
- There is a big difference in development level between Source System and Sink System. According to the spatial pattern of geographical distribution, the Source System is divided into five types: axis type, layer type, fan type, oblique symmetry type and scattered jump type. There are only three types in Sink System, namely wide area coverage type, local development type, and scattered jump type. About 52% of the provinces in Egypt have Pure-Source Places nodes, which are generally characterized by lagging economic development, small population size, and certain security risks. There are Pure-Sink Places nodes in about 48% of the provinces in Egypt, which are mainly located outside the Nile Valley. The population migration flow network and space distribution patterns in Egypt are still in immature development compared with China, which may be due to the great difference between China and Egypt in economic development levels, population mobility policies, and management systems [74].
- (3)
- The interprovincial migration flow network in Egypt has developed into a variety of models, and the center system of flow field with clear primary and secondary points and the streamline network framework with layered trunks and branches have been developed in most provinces. There are 7 modes in the migration flow network center system, including Centerless Mode, Only Diffusion Center Field Mode, Only Gathering Center Field Mode, One Diffusion and One Gathering Center Field Mode, One Diffusion and Two Gathering Center Field Mode, One Diffusion and Multiple Gathering Center Field Mode, Multiple Diffusion and Multiple Gathering Center Field Mode. There are 3 modes of pole-core interaction, that is, ITLM, OTLM, and IOTIM, in the interprovincial migration flow. The migration flow is based on neighborhood penetration and polarization of high-level nodes (national capital or regional economic centers). Water source is an important factor affecting population migration, which agrees with the research results concluded by Ai Tinghua [46], Ayman Zohry [75] and Lea Müller-Funk [76].
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cao, Y. Evolution and characteristics of spatial economic structure in Ningxia Province. J. Arid Land Resour. Environ. 2010, 24, 10–14. [Google Scholar]
- Cindy, C. FanInterprovincial Migration, Population Redistribution, and Regional Development in China: 1990 and 2000 Census Comparisons. Prof. Geogr. 2005, 57, 295–311. [Google Scholar]
- Otsubo, K.; Ichinose, T.; Ishimura, S. Spatial and Temporal Changes of Floating Population in China Between 1990 and 2000. Chin. Geogr. Sci. 2007, 17, 99–109. [Google Scholar]
- Liang, Z.; Ma, Z. China’s Floating Population: New Evidence from the 2000 Census. Popul. Dev. Rev. 2004, 30, 467–478. [Google Scholar] [CrossRef]
- Liang, Z.; Li, Z.; Ma, Z. Changing Patterns of the Floating Population in China, 2000–2010. Popul. Dev. Rev. 2014, 4, 695–716. [Google Scholar] [CrossRef]
- Qiao, L.; Li, Y.; Liu, Y.; Yang, R. The spatio-temporal change of China’s net floating population at county scale from 2000 to 2010. Asia Pac. Viewp. 2016, 57, 365–378. [Google Scholar] [CrossRef]
- Wu, J.; Yu, Z.; Wei, Y.D. Changing distribution of migrant population and its influencing factors in urban China: Economic transition, public policy, and amenities. Habitat Int. 2019, 94, 102063. [Google Scholar] [CrossRef]
- Wang, L.; Xue, C. Spatio-temporal characteristics and influencing factors of urban floating population in China from 2011 to 2015. Chin. J. Popul. Resour. Environ. 2019, 4, 359–373. [Google Scholar] [CrossRef]
- Liu, S.; Hu, Z.; Deng, Y.; Wang, Y.J. The regional types of China’s floating population: Identification methods and spatial patterns. J. Geogr. Sci. 2011, 21, 35–48. [Google Scholar] [CrossRef]
- Kuninaka, H.; Matsushita, M. Modelling of Population Migration to Reproduce Rank-Size Distribution of Cities in Japan. In Proceedings of the International Conference on Complex Sciences, Shanghai, China, 23–25 February 2009; Springer: Berlin/Heidelberg, Germany, 2009; Volume 4, pp. 441–445. [Google Scholar]
- Liu, R.; Jia, R.; Dong, Q. Improvement of Population Migration Model and System Dynamics Simulation. Math. Pract. Theory 2008, 4, 161–164. [Google Scholar]
- Zhao, M.; Liu, S.; Qi, W. Exploring the differential impacts of urban transit system on the spatial distribution of local and floating population in Beijing. J. Geogr. Sci. 2017, 27, 731–751. [Google Scholar] [CrossRef]
- Jordi, B.; Marc, A. Habitual mobility and territorial concentration of the immigrant population: The case of the Metropolitan Region of Barcelona. Eure-Revista Latinoamericana De Estudios Urbano Regionales 2018, 133, 161–186. [Google Scholar]
- Wang, X.; Hao, R.; Zhao, N.; Hao, R. Statistical characteristics of dynamics for population migration driven by the economic interests. Phys. A Stat. Mech. Appl. 2016, 451, 123–134. [Google Scholar]
- Shi, G.; Lu, X.; Deng, Y.; Urpelainen, J.; Liu, L.; Zhang, Z.; Wei, W.; Wang, H.K. Air Pollutant Emissions Induced by Population Migration in China. Environ. Sci. Technol. 2020, 10, 6308–6318. [Google Scholar] [CrossRef]
- Olha, L.; Olha, M.; Ulana, I.; Marta, K.; Taras, V.; Ruslan, L. Modelling the Conditions Affecting Population Migration Activity in the Eastern European Region: The Case of Ukraine. Tem J.-Technol. Educ. Manag. Inform. 2020, 2, 507–514. [Google Scholar]
- Shi, Q.; Liu, T. Glimpsing China’s future urbanization from the geography of a floating population. Environ. Plan. 2019, 51, 817–819. [Google Scholar] [CrossRef]
- Gao, D.; Peng, J.; Zi, L. Study on the Relationship between the Population Migration and Region Economy Based on the Framework of VAR Model: A Case Study of Chongqing. Northwest Popul. J. 2020, 110, 50–53. [Google Scholar]
- Luo, J.; Zhang, X.; Wu, Y.; Shen, J.; Shen, L.; Xing, X.S. Urban land expansion and the floating population in China: For production or for living? Cities 2018, 74, 219–228. [Google Scholar] [CrossRef]
- Zhu, R.; Lin, D.; Wang, Y.; Michael, J.; Xin, R.; Yang, J.; Guo, J.; Meng, L.Q. Social Sensing of the Imbalance of Urban and Regional Development in China Through the Population Migration Network around Spring Festival. Sustainability 2020, 12, 3457. [Google Scholar] [CrossRef]
- Wilner, J.P.; Mark, P.; Elena, I. Estimation of a spatial simultaneous equation model of population migration and housing price dynamics. Reg. Sci. Urban Econ. 2010, 40, 343–352. [Google Scholar]
- Gou, W.; Huang, S.; Chen, Q.; Chen, J.; Li, X.M. Structure and Dynamic of Global Population Migration Network. Complexity 2020. [Google Scholar] [CrossRef]
- Wang, J.; Kim, S. Multilevel Analysis of Social and Policy Acceptance of Immigrants across: European Countries and Its Implications for Comparative Policy. J. Comp. Policy Anal. Res. Pract. 2020. [Google Scholar] [CrossRef]
- Angeles, H.G.M.; Rocio, M.M. Neighborhood models and logical location of the immigrant population:The case of the city of Seville. Scripta Nova-Revista Electronica De Geografia Y Ciencias Sociales 2011, 372, 1–14. [Google Scholar]
- John, S.; Konstantinos, D.; Martin, B.; Nik, L. The IMAGE studio: A tool for internal migration analysis and modelling. Appl. Spat. Anal. Policy 2014, 7, 5–23. [Google Scholar]
- Mariella, A.; Cristina, T.; Maria, A. Earth Observation for the Implementation of Sustainable Development Goal 11 Indicators at Local Scale: Monitoring of the Migrant Population Distribution. Remote Sens. 2020, 6, 950. [Google Scholar] [CrossRef]
- Nayef, A.; David, P.; Elin, C. Accounting for peoples’ preferences in establishing new cities: A spatial model of population migration in Kuwait. PLoS ONE 2018, 13, e0209065. [Google Scholar]
- Raymer, J.; Bai, X.; Liu, N.; Wilson, T. Reconciliation of Australian Demographic Data to Study Immigrant Population Change Across Space and Time. Spat. Demogr. 2020, 8, 123–153. [Google Scholar] [CrossRef]
- Raymer, J.; Shi, Y.; Guan, Q.; Baffour, B.; Wilson, T. The Sources and Diversity of Immigrant Population Change in Australia, 1981–2011. Demography 2018, 55, 1777–1802. [Google Scholar] [CrossRef]
- Perez, L.; Dragicevic, S.; Gaudreau, J. A geospatial agent-based model of the spatial urban dynamics of immigrant population: A study of the island of Montreal, Canada. PLoS ONE 2019, 14, e0219188. [Google Scholar] [CrossRef]
- Liang, Z. The Age of Migration in China. Popul. Dev. Rev. 2010, 27, 499–524. [Google Scholar] [CrossRef]
- Tan, S.; Li, Y.; Song, Y.; Luo, X.; Zhou, M.; Zhang, L.; Kuang, B. Influence factors on settlement intention for floating population in urban area: A China study. Qual. Quant. 2017, 1, 147–176. [Google Scholar] [CrossRef]
- Tang, S.; Feng, J. Understanding the Settlement Intentions of the Floating Population in the Cities of Jiangsu Province, China. Asian Pac. Migr. J. 2012, 4, 509–532. [Google Scholar] [CrossRef]
- Wang, N. Changing Trend of Population Migration in China and Its Spatial Pattern. Chin. J. Urban Environ. Stud. 2017, 4, 1650032. [Google Scholar] [CrossRef]
- Martori, J.C.; Apparicio, P.; Ngui, A.N. Understanding Immigrant Population Growth within Urban Areas: A Spatial Econometric Approach. J. Int. Migr. Integr. 2016, 1, 215–234. [Google Scholar] [CrossRef]
- Joan, C.M.; Philippe, A. Changes in Spatial Patterns of the Immigrant Population of a Southern European Metropolis: The Case of the Barcelona Metropolitan Area (2001–2008). Tijdschrift Voor Economische En Sociale Geografie 2011, 102, 562–581. [Google Scholar]
- Stewart, D.J.; Yin, Z.; Bullard, S.M.; Maclachlan, J.T. Assessing the spatial structure of urban and population growth in the Greater Cairo area, Egypt: A GIS and imagery analysis approach. Urban Stud. 2004, 41, 95–116. [Google Scholar] [CrossRef]
- McCormick, B.; Wahba, J. Return International Migration and Geographical Inequality: The Case of Egypt. J. Afr. Econ. 2003, 12, 500–532. [Google Scholar] [CrossRef]
- Tamer, A. The Environmental Root Causes Triggering Economic Migration: The Case of Egypt. Environment, Forced Migration and Social Vulnerability; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Arouri, M.; Cuong, N.V. Wealth inequality and inter-governorate migration: Evidence from Egypt. Prog. Dev. Stud. 2020, 20, 119–139. [Google Scholar] [CrossRef]
- Dalia, M. Ibrahiem. Road energy consumption, economic growth, population and urbanization in Egypt: Cointegration and causality analysis. Environ. Dev. Sustain. 2018, 20, 1053–1066. [Google Scholar]
- Gomaa, G.; Mohamed, A.; Schachler, M.H. Population Growth and Transitional Dynamics of Egypt Theoretical Analysis & Time Series Analysis from 1981 to 2007. Int. J. Asian Soc. Sci. 2016, 7, 110–118. [Google Scholar]
- Mohamed, R.I. How do people select their residential locations in Egypt? The case of Alexandria. Cities 2017, 62, 96–106. [Google Scholar]
- Gourida, S. The Internal Migration in Arab World “Reasons, Policies and Aspects” Evidence from Egypt. Int. J. Adv. Soc. Sci. Humanit. 2014, 2, 8–15. [Google Scholar]
- Zohry, A. Immigration to Egypt. J. Immigr. Refug. Stud. 2006, 4, 33. [Google Scholar] [CrossRef]
- Ai, T.; Zhou, M.; Tian, J.; Ye, N. Origin-destination (OD) of the interprovincial floating population of China. J. Maps 2016, 12 (Suppl. 1), 577–583. [Google Scholar] [CrossRef]
- Kazuhiro, K. Inter-regional Population Migration in Russia: Using an Origin-to-Destination Matrix. Post-Communist Econ. 2007, 19, 131–152. [Google Scholar]
- Paquet, M.; Arlt, D.; Knape, J.; Low, M.; Forslund, P.; Part, T. Why we should care about movements: Using spatially explicit integrated population models to assess habitat source–sink dynamics. J. Anim. Ecol. 2020. [Google Scholar] [CrossRef]
- Sutherland, K.H.; Johnstone, R.A.; Sih, A. The Logic of Territory Choice: Implications for Conservation and Source-Sink Dynamics. Am. Nat. 2001, 4, 459–463. [Google Scholar]
- Christine, S.; Joanna, B.; Benjamin, A.A.; Dementiev, Y.; Carson, A.; Higgins, C.; Piatt, S.; Qiu, S.; Stafford, S.; Mattsson, B.J.; et al. Quantifying source and sink habitats and pathways in spatially structured populations: A generalized modelling approach. Ecol. Model. 2019, 407, 108715. [Google Scholar]
- Zaccarelli, N.; Petrosillo, I.; Zurlini, G.; Riitters, K.H. Source/Sink Patterns of Disturbance and Cross-Scale Mismatches in a Panarchy of Social-Ecological Landscapes. Ecol. Soc. 2008, 13, 26. [Google Scholar] [CrossRef]
- Ma, R.; Xie, M.; Yun, W. Evaluating Responses of Temperature Regulating Service to Landscape Pattern Based on ‘Source-Sink’ Theory. Isprs Int. J. Geo-Inf. 2020, 5, 295. [Google Scholar] [CrossRef]
- Pramanik, S.; Punia, M. Land use/land cover change and surface urban heat island intensity: Source-sink landscape-based study in Delhi, India. Environ. Dev. Sustain. 2020, 8, 7331–7356. [Google Scholar] [CrossRef]
- Zhang, X.; Wu, Q.Y.; Cui, J.T.; Liu, Y.Q.; Wang, W.S. “Source–sink” landscape pattern analysis of nonpoint source pollution using remote sensing techniques. Int. J. Environ. Technol. 2018, 15, 2253–2268. [Google Scholar] [CrossRef]
- Zhang, X.; Cui, J.; Liu, Y.; Wang, L. Geo-cognitive computing method for identifying “source-sink” landscape patterns of river basin non-point source pollution. Int. J. Agric. Biol. Eng. 2017, 10, 55–68. [Google Scholar]
- Jiang, M.; Chen, H.; Chen, Q. A method to analyze “source-sink” structure of non-point source pollution based on remote sensing technology. Environ. Pollut. 2013, 182, 135–140. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; Gao, B.; Lin, J.; Cui, S.; Zhong, Q.; Huang, C.L. Driving forces of nitrogen input into city-level food systems: Comparing a food-source with a food-sink prefecture-level city in China. Resour. Conserv. Recycl. 2020, 160, 104850. [Google Scholar] [CrossRef]
- Wu, X.D.; Guo, J.L.; Han, M.Y.; Chen, G.Q. An overview of arable land use for the world economy: From source to sink via the global supply chain. Land Use Policy 2018, 76, 201–214. [Google Scholar] [CrossRef]
- Wu, X.F.; Chen, G.Q. Global overview of crude oil use: From source to sink through inter-regional trade. Energy Policy 2019, 128, 476–486. [Google Scholar] [CrossRef]
- Wu, X.F.; Chen, G.Q. Coal use embodied in globalized world economy: From source to sink through supply chain. Renew. Sustain. Energy Rev. 2018, 81, 978–993. [Google Scholar] [CrossRef]
- Wu, T.; Tang, L.; Chen, H.; Wang, Z. Application of Source-Sink Landscape Influence Values to Commuter Traffic: A Case Study of Xiamen Island. Sustainability 2017, 9, 2366. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, F.; Xiao, Y.; Gao, S. Urban land uses and traffic ‘source-sink areas’: Evidence from GPS-enabled taxi data in Shanghai. Landsc. Urban Plan. 2012, 106, 73–87. [Google Scholar] [CrossRef]
- Gu, Q.; Zhang, H.; Chen, M.; Chen, C. Regionalization Analysis and Mapping for the Source and Sink of Tourist Flows. ISPRS Int. J. Geo-Inf. 2019, 8, 314. [Google Scholar] [CrossRef]
- Felzer, B.S.; Jiang, M. Effect of Land Use and Land Cover Change in Context of Growth Enhancements in the United States since 1700: Net Source or Sink? J. Geophys. Res. Biogeosci. 2018, 123. [Google Scholar] [CrossRef]
- Qin, M.; Li, H.; Ya, J.; Zhao, J.; Chen, W.C. Study on space structure change of land used for carbon source and carbon sink in urban fringe areas. In Proceedings of the 3rd International Conference on Civil Engineering and Urban Planning (CEUP), Wuhan, China, 20–22 June 2014; pp. 407–411. [Google Scholar]
- Sakalli, A. The responses of net ecosystem production to climate change: A modelling study to identify the sink and source of carbon regions at the paneuropean scale. Appl. Ecol. Environ. Res. 2020, 18, 4569–4581. [Google Scholar] [CrossRef]
- Craig, J.; Joseph, B.; Nepal, P.; Prestemon, J.P. From Source to Sink: Past Changes and Model Projections of Carbon Sequestration in the Global Forest Sector. J. For. Econ. 2019, 34, 47–72. [Google Scholar]
- Kawecki, T.J. Demography of source-sink populations and the evolution of ecological niches. Evol. Ecol. 1995, 9, 38–44. [Google Scholar] [CrossRef]
- Brawn, J.D.; Robinson, S.K. Source-Sink Population Dynamics may Complicate the Interpretation of Long-Term Census Data. Ecology 1996, 1, 3–12. [Google Scholar] [CrossRef]
- Gundersen, G.; Johannesen, E.; Andreassen, H.P.; Ims, R.A. Source–sink dynamics: How sinks affect demography of sources. Ecol. Lett. 2001, 4, 14–21. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, F.; Zhang, Y.; Liu, Y. Delineating urbanization “source-sink” regions in China: Evidence from mobile app data. Cities 2019, 86, 167–177. [Google Scholar] [CrossRef]
- Haggett, P.; Cliff, A.D.; Frey, A. Locational Analysis in Human Geography; Edwad Arnold: London, UK, 1977. [Google Scholar]
- Xiao, D. Cognitive Geography: People-Oriented Geographic Information Science; Science Press: Beijing, China, 2013; pp. 56–64. [Google Scholar]
- Zhang, W.; Derudder, B.; Witlox, F.; Vanheule, D. Method for visualizing mainland China’s floating migration: A critical assessment. Asian Pac. Migr. J. 2017, 26, 128. [Google Scholar] [CrossRef]
- Ayman, Z.; Zohry, A. The Place of Egypt in the regional migration system as a receiving country. Rev. Eur. Migrat. Int. 2003, 19, 129–149. [Google Scholar]
- Lea, M.-F. Managing Distance: Examining Egyptian Emigration and Diaspora Policies. Egypte/Monde Arabe 2019, 15, 47–69. [Google Scholar]
Spatial Attributes | Explanation | ||
---|---|---|---|
1 | =0 | Pure-Sink Places | Population in space only moves in unidirectionally with no population moving out |
2 | <0.5 | Sink Places | Immigrant population size is larger than emigrant population size in space |
3 | 0.5–1.5 | Exchange Places | Immigrant population size is in a relative balance with the emigrant population size in space |
4 | ≥1.5 | Source Places | Emigrant population size is larger than immigrant population size in space |
5 | ∞ | Pure-Source Places | Population in space only moves out unidirectionally with no population moving in |
Outflow | Inflow | Total Flow | Total Population | Inflow Rate | Outflow Rate | Migration Rate | Net Flow | |
---|---|---|---|---|---|---|---|---|
Cairo | 170,854 | 429,762 | 600,616 | 9,539,673 | 1.79 | 4.50 | 6.30 | 258,908 |
Alexandria | 60,054 | 77,410 | 137,464 | 5,163,750 | 1.16 | 1.50 | 2.66 | 17,356 |
Port Said | 7878 | 43,836 | 51,714 | 749,371 | 1.05 | 5.85 | 6.90 | 35,958 |
Suez | 8841 | 56,817 | 65,658 | 728,180 | 1.21 | 7.80 | 9.02 | 47,976 |
Damietta | 7658 | 49,805 | 57,463 | 1,496,765 | 0.51 | 3.33 | 3.84 | 42,147 |
Dakahlia | 23,718 | 27,544 | 51,262 | 6,492,381 | 0.37 | 0.42 | 0.79 | 3826 |
Sharkia | 45,591 | 55,238 | 100,829 | 7,163,824 | 0.64 | 0.77 | 1.41 | 9647 |
Kalyubia | 195,685 | 21,660 | 217,345 | 5,627,420 | 3.48 | 0.38 | 3.86 | −174,025 |
Kafr El Sheikh | 12,296 | 27,263 | 39,559 | 3,362,185 | 0.37 | 0.81 | 1.18 | 14,967 |
Gharbia | 17,762 | 21,505 | 39,267 | 4,999,633 | 0.36 | 0.43 | 0.79 | 3743 |
Menoufia | 19,759 | 25,910 | 45,669 | 4,301,601 | 0.46 | 0.60 | 1.06 | 6151 |
Behera | 25,983 | 32,238 | 58,221 | 6,171,613 | 0.42 | 0.52 | 0.94 | 6255 |
Ismailia | 24,771 | 9250 | 34,021 | 1,303,993 | 1.90 | 0.71 | 2.61 | −15,521 |
Giza | 345,874 | 24,243 | 370,117 | 8,632,021 | 4.01 | 0.28 | 4.29 | −321,631 |
Beni-Suef | 8571 | 22,696 | 31,267 | 3,154,100 | 0.27 | 0.72 | 0.99 | 14,125 |
Fayoum | 11,374 | 30,248 | 41,622 | 3,596,954 | 0.32 | 0.84 | 1.16 | 18,874 |
Menia | 13,187 | 33,208 | 46,395 | 5,497,095 | 0.24 | 0.60 | 0.84 | 20,021 |
Asyout | 12,992 | 32,425 | 45,417 | 4,383,289 | 0.30 | 0.74 | 1.04 | 19,433 |
Suhag | 14,133 | 35,444 | 49,577 | 4,967,409 | 0.28 | 0.71 | 1.00 | 21,311 |
Qena | 6560 | 21,591 | 28,151 | 3,164,281 | 0.21 | 0.68 | 0.89 | 15,031 |
Aswan | 7714 | 8505 | 16,219 | 1,473,975 | 0.52 | 0.58 | 1.10 | 791 |
Luxor | 4207 | 4785 | 8992 | 1,250,209 | 0.34 | 0.38 | 0.72 | 578 |
Red Sea | 29,422 | 2229 | 31,651 | 359,888 | 8.18 | 0.62 | 8.79 | −27,193 |
El Wadi El Gidid | 7783 | 929 | 8712 | 241,247 | 3.23 | 0.39 | 3.61 | −6854 |
Matrouh | 7268 | 2070 | 9338 | 425,624 | 1.71 | 0.49 | 2.19 | −5198 |
North Sinai | 8491 | 6581 | 15,072 | 450,328 | 1.89 | 1.46 | 3.35 | −1910 |
South Sinai | 6140 | 1374 | 7514 | 102,018 | 6.02 | 1.35 | 7.37 | −4766 |
Inflow | Outflow | Total Flow | |
---|---|---|---|
Cairo | 21,231 (Giza) | 23,498 (Alexandria) | 225,395 (Giza) |
Alexandria | 23,498 (Cairo) | 15,737 (Behera) | 32,198 (Cairo) |
Port Said | 10,669 (Cairo) | 2093 (Dakahlia) | 10,966 (Cairo) |
Suez | 14,609 (Cairo) | 1446 (Sharkia) | 15,862 (Cairo) |
Damietta | 11,799 (Giza) | 3621 (Dakahlia) | 11,809 (Giza) |
Dakahlia | 4435 (Sharkia) | 5575 (Damietta) | 9196 (Damietta) |
Sharkia | 16,238 (Cairo) | 11,541 (Cairo) | 27,779 (Cairo) |
Kalyubia | 9844 (Cairo) | 134,142 (Cairo) | 143,986 (Cairo) |
Kafr El Sheikh | 6731 (Alexandria) | 2521 (Alexandria) | 9252 (Alexandria) |
Gharbia | 4294 (Cairo) | 5235 (Cairo) | 9529 (Cairo) |
Menoufia | 6429 (Cairo) | 6561 (Cairo) | 12,990 (Cairo) |
Behera | 15,737 (Alexandria) | 8815 (Alexandria) | 24,552 (Alexandria) |
Ismailia | 2145 (Sharkia) | 6638 (Sharkia) | 8783 (Sharkia) |
Giza | 13,083 (Cairo) | 212,312 (Cairo) | 225,395 (Cairo) |
Beni-Suef | 8715 (Cairo) | 4344 (Cairo) | 13,059 (Cairo) |
Fayoum | 17,912 (Cairo) | 5432 (Cairo) | 18,712 (Cairo) |
Menia | 11,584 (Cairo) | 6194 (Cairo) | 17,778 (Cairo) |
Asyout | 9287 (Cairo) | 5263 (Cairo) | 14,550 (Cairo) |
Suhag | 8039 (Cairo) | 4459 (Cairo) | 12,498 (Cairo) |
Qena | 8839 (Cairo) | 1962 (Cairo) | 9287 (Cairo) |
Aswan | 1774 (Giza) | 2110 (Qena) | 2873 (Qena) |
Luxor | 1255 (Red Sea) | 1090 (Aswan) | 2254 (Aswan) |
Red Sea | 448 (Qena) | 8839 (Qena) | 9287 (Qena) |
El Wadi El Gidid | 256 (Cairo) | 1555 (Kafr El Sheikh) | 1555 (Kafr El Sheikh) |
Matrouh | 355 (Cairo) | 1547 (Alexandria) | 1889 (Alexandria) |
North Sinai | 2532 (Ismailia) | 4124 (Sharkia) | 5926 (Sharkia) |
South Sinai | 231 (Giza) | 1031 (Cairo) | 1144 (Cairo) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, Z.; Zhang, S.; Zhao, S. Study on the Spatial Pattern of Migration Population in Egypt and Its Flow Field Characteristics from the Perspective of “Source-Flow-Sink”. Sustainability 2021, 13, 350. https://doi.org/10.3390/su13010350
Ma Z, Zhang S, Zhao S. Study on the Spatial Pattern of Migration Population in Egypt and Its Flow Field Characteristics from the Perspective of “Source-Flow-Sink”. Sustainability. 2021; 13(1):350. https://doi.org/10.3390/su13010350
Chicago/Turabian StyleMa, Zhishan, Susu Zhang, and Sidong Zhao. 2021. "Study on the Spatial Pattern of Migration Population in Egypt and Its Flow Field Characteristics from the Perspective of “Source-Flow-Sink”" Sustainability 13, no. 1: 350. https://doi.org/10.3390/su13010350
APA StyleMa, Z., Zhang, S., & Zhao, S. (2021). Study on the Spatial Pattern of Migration Population in Egypt and Its Flow Field Characteristics from the Perspective of “Source-Flow-Sink”. Sustainability, 13(1), 350. https://doi.org/10.3390/su13010350