Sound Water Masking to Match a Waterfront Soundscape with the Users’ Expectations: The Case Study of the Seafront in Naples, Italy
Abstract
:1. Introduction
1.1. Water Masking Sounds
1.2. Immersive Virtual Reality as a Tool for the Appraisal of Soundscape
1.3. Motivation and Objectives of the Study
2. Materials and Methods
2.1. Pilot Study
2.2. Main Study
3. Results
3.1. Pilot Study
3.2. Main Study
3.2.1. Hypothesis 1 (H1): Masking Water Sound SPLs and Expectations
3.2.2. Hypothesis 2 (H2): Locations and Expectations
3.2.3. Hypothesis 3 (H3): SDS and Water Sounds SPLs
3.2.4. Hypothesis 4 (H4): SDS and Experimental Stimuli
3.2.5. Hypothesis 5 (H5): Coherence and Expectations
4. Discussion
4.1. Hypothesis 1 (H1)
4.2. Hypothesis 2 (H2)
4.3. Hypothesis 3 (H3)
4.4. Hypothesis 4 (H4)
4.5. Hypothesis 5 (H5)
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ouis, D. Annoyance from road traffic noise: A review. J. Environ. Psychol. 2001, 21, 101–120. [Google Scholar] [CrossRef]
- World Health Organization. European Union Environmental Noise Guidelines for the European Region; WHO Regional Office for Europe: Copenhagen, Denmark, 2018. [Google Scholar]
- Van Gerven, P.W.M.; Vos, H.; Van Boxtel, M.P.J.; Janssen, S.A.; Miedema, H.M.E. Annoyance from environmental noise across the lifespan. J. Acoust. Soc. Am. 2009, 126, 187–194. [Google Scholar] [CrossRef] [PubMed]
- Fuks, K.; Moebus, S.; Hertel, S.; Viehmann, A.; Nonnemacher, M.; Dragano, N.; Möhlenkamp, S.; Jakobs, H.; Kessler, C.; Erbel, R.; et al. Long-term urban particulate air pollution, traffic noise, and arterial blood pressure. Environ. Health Perspect. 2011, 119, 1706–1711. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Halperin, D. Environmental noise and sleep disturbances: A threat to health? Sleep Sci. 2014, 7, 209–212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Babisch, W. The noise/stress concept, risk assessment and research needs. Noise Health 2002, 4, 1–11. [Google Scholar]
- Miedema, H.M.E.; Passchier-Vermeer, W.; Vos, H. Elements for a Position Paper on Night-Time Transportation Noise and Sleep Disturbance; Inro, T., Ed.; TNO Inro: Delft, The Netherland, 2003. [Google Scholar]
- Gan, W.Q.; Davies, H.W.; Koehoorn, M.; Brauer, M. Association of long-term exposure to community noise and traffic-related air pollution with coronary heart disease mortality. Am. J. Epidemiol. 2012, 175, 898–906. [Google Scholar] [CrossRef] [Green Version]
- Selander, J.; Nilsson, M.E.; Bluhm, G.; Rosenlund, M.; Lindqvist, M.; Nise, G.; Pershagen, G. Long-term exposure to road traffic noise and myocardial infarction. Epidemiology 2009, 20, 272–279. [Google Scholar] [CrossRef]
- Zimbardo, P.G.; Gerrig, R.J. Perception. Foundation of Cognitive Psychology: Core Readings; Daniel, J.L., Ed.; The MIT Press: Cambridge, MA, USA, 2002. [Google Scholar]
- Zube, E.H. Environmental perception. In Environmental Geology; Springer: Dordrecht, The Netherlands, 1999; pp. 214–216. ISBN 978-1-4020-4494-6. [Google Scholar]
- Davis, S.F.; Buskist, W. 21st Century Psychology: A Reference Handbook; Sage: Southend Oaks, CA, USA, 2008. [Google Scholar]
- International Organization for Standardization. ISO 12913-1:2014 Acoustics—Soundscape—Part 1: Definition and Conceptual Framework; International Organization for Standardization: Geneva, Switzerland, 2014. [Google Scholar]
- Brambilla, G.; Maffei, L.; Di Gabriele, M.; Gallo, V. Merging physical parameters and laboratory subjective ratings for the soundscape assessment of urban squares. J. Acoust. Soc. Am. 2013, 134, 782–790. [Google Scholar] [CrossRef]
- Kang, J.; Zhang, M. Semantic differential analysis of the soundscape in urban open public spaces. Build. Environ. 2010, 45, 150–157. [Google Scholar] [CrossRef]
- Jo, H.I.; Jeon, J.Y. The influence of human behavioral characteristics on soundscape perception in urban parks: Subjective and observational approaches. Landsc. Urban Plan. 2020, 203, 103890. [Google Scholar] [CrossRef]
- Brown, A.L.; Kang, J.; Gjestland, T. Towards standardization in soundscape preference assessment. Appl. Acoust. 2011, 72, 387–392. [Google Scholar] [CrossRef]
- Maffei, L.; Masullo, M.; Pascale, A.; Ruggiero, G.; Puyana-Romero, V. Immersive Virtual Reality in community planning: Acoustic and visual congruence of simulated vs. real world. Sustain. Cities Soc. 2016, 27. [Google Scholar] [CrossRef]
- Hong, J.Y.; Jeon, J.Y. Influence of urban contexts on soundscape perceptions: A structural equation modeling approach. Landsc. Urban Plan. 2015, 141, 78–87. [Google Scholar] [CrossRef]
- Maffei, L.; Puyana-Romero, V.; Brambilla, G.; di Gabriele, M.; Gallo, V. Characterization of the soundscape of urban waterfronts. In Proceedings of the Forum Acusticum, European Acoustic Association, Krakow, Poland, 7–12 September 2014. [Google Scholar]
- Carles, J.L.; Barrio, I.L.; De Lucio, J.V. Sound influence on landscape values. Landsc. Urban Plan. 1999, 43, 191–200. [Google Scholar] [CrossRef]
- Hong, J.Y.; Jeon, J.Y. Designing sound and visual components for enhancement of urban soundscapes. J. Acoust. Soc. Am. 2013, 134, 2026–2036. [Google Scholar] [CrossRef]
- Song, J.; Ma, H.; Yang, Q.; Zhang, S. Interaction of color perception and annoyance evaluation of road traffic noise. In Proceedings of the Internoise; Institute of Noise Control Engineering/Japan & Acoustical Society of Japan: Osaka, Japan, 2011; pp. 1–6. [Google Scholar]
- Galbrun, L.; Calarco, F.M. a Audio-visual interaction and perceptual assessment of water features used over road traffic noise. J. Acoust. Soc. Am. 2014, 136, 2609. [Google Scholar] [CrossRef] [Green Version]
- Menzel, D.; Haufe, N.; Fastl, H. Colour-influences on loudness judgements. In Proceedings of the 20th ICA, International Commission for Acoustics, Sydney, Australia, 23–27 August 2010; pp. 2–6. [Google Scholar]
- Liu, J.; Kang, J.; Luo, T.; Behm, H. Landscape effects on soundscape experience in city parks. Sci. Total Environ. 2013, 454–455, 474–481. [Google Scholar] [CrossRef]
- D’Alessandro, F.; Evangelisti, L.; Guattari, C.; Grazieschi, G.; Orsini, F. Influence of visual aspects and other features on the soundscape assessment of a university external area. Build. Acoust. 2018, 25, 199–217. [Google Scholar] [CrossRef]
- Gan, Y.; Luo, T.; Breitung, W.; Kang, J.; Zhang, T. Multi-sensory landscape assessment: The contribution of acoustic perception to landscape evaluation. J. Acoust. Soc. Am. 2014, 136, 3200–3210. [Google Scholar] [CrossRef]
- Anderson, L.M.; Mulligan, B.E.; Goodman, L.S.; Regen, H.Z. Effects of Sounds on Preferences for Outdoor Settings. Environ. Behav. 1983, 15, 539–566. [Google Scholar] [CrossRef]
- López Barrio, I.; Carles, J. Acoustic Dimensions of Inhabited Areas: Quality Criteria. Soundsc. Newsl. 1995, 10, 6–8. [Google Scholar]
- Jeon, J.Y.; Jo, H.I. Effects of audio-visual interactions on soundscape and landscape perception and their influence on satisfaction with the urban environment. Build. Environ. 2020, 169, 106544. [Google Scholar] [CrossRef]
- Hong, J.Y.; Jeon, J.Y. Relationship between spatiotemporal variability of soundscape and urban morphology in a multifunctional urban area: A case study in Seoul, Korea. Build. Environ. 2017, 126, 382–395. [Google Scholar] [CrossRef]
- Yu, L.; Kang, J.; Liang, H.; Yang, Y. Soundscape identification in terms of urban morphology. In Proceedings of the ICA 2016 22nd International Congress on Acoustics, International Commission for Acoustics, Buenos Aires, Argentine, 5–9 September 2016. [Google Scholar]
- Hao, Y. Effects of Urban Morphology on Urban Sound Environment from the Perspective of Masking Effects. Ph.D. Thesis, University of Sheffield, Sheffield, UK, 2014. [Google Scholar]
- Liu, J.; Kang, J.; Luo, T.; Behm, H.; Coppack, T. Spatiotemporal variability of soundscapes in a multiple functional urban area. Landsc. Urban Plan. 2013, 115, 1–9. [Google Scholar] [CrossRef]
- Puyana-Romero, V.; Maffei, L.; Brambilla, G.; Ciaburro, G. Acoustic, visual and spatial indicators for the description of the soundscape of water front areas with and without road traffic flow. Int. J. Environ. Res. Public Health 2016, 13, 934. [Google Scholar] [CrossRef]
- Puyana-Romero, V.; Maffei, L.; Brambilla, G.; Ciaburro, G. Modelling the soundscape quality of urban waterfronts by artificial neural networks. Appl. Acoust. 2016, 111, 121–128. [Google Scholar] [CrossRef]
- University of Alberta Dictionary of Cognitive Science. Available online: http://www.bcp.psych.ualberta.ca/~mike/Pearl_Street/Dictionary/dictionary.html (accessed on 2 January 2021).
- Williams, T. The Effects of Expectations on Perception: Experimental Design Issues and Further Evidence. Fed. Reserve Bank Boston Work. Pap. 2007, 7–14. [Google Scholar] [CrossRef] [Green Version]
- Bruce, N.S.; Davies, W.J. The effects of expectation on the perception of soundscapes. Appl. Acoust. 2014, 85, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Brambilla, G.; Maffei, L. Responses to noise in urban parks and in rural quiet areas. Acta Acust. United Acust. 2006, 92, 881–886. [Google Scholar]
- Brambilla, G.; Gallo, V.; Asdrubali, F.; D’Alessandro, F. The perceived quality of soundscape in three urban parks in Rome. J. Acoust. Soc. Am. 2013, 134, 832–839. [Google Scholar] [CrossRef]
- Puyana-Romero, V.; Ciaburro, G.; Maffei, L. The soundscape and the degree of match of a waterfront with the expectations placed on it. The cases study of Naples and Brighton. In Proceedings of the Internoise 2016 45th International Congress and Exposition on Noise Control Engineering: Towards a Quieter Future, Hamburg, Germany, 21–24 August 2016. [Google Scholar]
- Botteldooren, D.; De Coensel, B. A model for long-term environmental sound detection. In Proceedings of the 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence), Hong Kong, China, 1–8 June 2008; pp. 2017–2023. [Google Scholar] [CrossRef] [Green Version]
- Bruce, N.; Condie, J.; Henshaw, V.; Payne, S.R. Analysing olfactory and auditory sensescapes in English cities: Sensory expectation and urban environmental perception. Ambiances Int. J. Sens. Environ. Archit. Urban Spaces 2015. [Google Scholar] [CrossRef] [Green Version]
- Crichton, F.; Dodd, G.; Schmid, G.; Petrie, K.J. Framing sound: Using expectations to reduce environmental noise annoyance. Environ. Res. 2015, 142, 609–614. [Google Scholar] [CrossRef] [PubMed]
- Krzywicka, P.; Byrka, K. Restorative Qualities of and Preference for Natural and Urban Soundscapes. Front. Pediatr. 2017, 8, 1705. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, J.; Kang, J.; Behm, H.; Luo, T. Effects of landscape on soundscape perception: Soundwalks in city parks. Landsc. Urban Plan. 2014, 123, 30–40. [Google Scholar] [CrossRef] [Green Version]
- Thoma, M.V.; Mewes, R.; Nater, U.M. Preliminary evidence: The stress-reducing effect of listening to water sounds depends on somatic complaints. Medicine 2018, 97, e9851. [Google Scholar] [CrossRef]
- Galbrun, L.; Ali, T.T. Perceptual assessment of water sounds for road traffic noise masking. In Proceedings of the Acoustics Nantes Conference, Nantes, France, 23–27 April 2012; pp. 2147–2152. [Google Scholar]
- Nilsson, M.E.; Alvarsson, J.; Rådsten-Ekman, M.; Bolin, K. Auditory masking of wanted and unwanted sounds in a city park. Noise Control Eng. J. 2010, 58, 524–531. [Google Scholar] [CrossRef]
- You, J.; Lee, P.J.; Jeon, J.Y. Evaluating water sounds to improve the soundscape of urban areas affected by traffic noise. Noise Control Eng. J. 2010, 58, 477–483. [Google Scholar] [CrossRef] [Green Version]
- Watts, G.R.; Pheasant, R.J.; Horoshenkov, K.V.; Ragonesi, L. Measurement and subjective assessment of water generated sounds. Acta Acust. United Acust. 2009, 95, 1032–1039. [Google Scholar] [CrossRef] [Green Version]
- Maffei, L.; Masullo, M.; Pascale, A.; Ruggiero, G.; Puyana-Romero, V. On the validity of immersive virtual reality as tool for multisensory evaluation of urban spaces. Energy Procedia 2015, 78, 471–476. [Google Scholar] [CrossRef] [Green Version]
- Puyana-Romero, V.; Solange-Lopez-Segura, L.; Maffei, L.; Hernández-Molina, R.; Masullo, M. Interactive Soundscapes: 360°-Video Based Immersive Virtual Reality in a Tool for the Participatory Acoustic Environment Evaluation of Urban Areas. Acta Acust. United Acust. 2017, 103, 574–588. [Google Scholar] [CrossRef]
- Sun, K.; De Coensel, B.; Filipan, K.; Aletta, F.; Van Renterghem, T.; De Pessemier, T.; Joseph, W.; Botteldooren, D. Classification of soundscapes of urban public open spaces. Landsc. Urban Plan. 2019, 189, 139–155. [Google Scholar] [CrossRef] [Green Version]
- Asakura, T.; Tsujimura, S.; Yonemura, M.; Hyojin, L.; Sakamoto, S. Effect of immersive visual stimuli on the subjective evaluation of the loudness and annoyance of sound environments in urban cities. Appl. Acoust. 2019, 143, 141–150. [Google Scholar] [CrossRef]
- International Organization for Standardization. ISO 12913-2 Soundscape; International Organization for Standardization: Geneva, Switzerland, 2018; Volume 7. [Google Scholar]
- Farina, A.; Tronchin, L. Measurements and reproduction of spatial sound characteristics of auditoria. Acoust. Sci. Technol. 2005, 26, 193–199. [Google Scholar] [CrossRef] [Green Version]
- Axelsson, Ö.; Nilsson, M.E.; Berglund, B. A principal components model of soundscape perception. J. Acoust. Soc. Am. 2010, 128, 2836–2846. [Google Scholar] [CrossRef] [PubMed]
- Jeon, J.Y.; Lee, P.J.; You, J.; Kang, J. Perceptual assessment of quality of urban soundscapes with combined noise sources and water sounds. J. Acoust. Soc. Am. 2010, 127, 1357–1366. [Google Scholar] [CrossRef] [PubMed]
- Galbrun, L.; Ali, T.T. Acoustical and perceptual assessment of water sounds and their use over road traffic noise. J. Acoust. Soc. Am. 2013, 133, 227–237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cohen, J. Using Effect Size—Or Why the P Value Is Not Enough. J. Grad. Med. Educ. 2012, 4, 279–282. [Google Scholar]
- Coe, R. It’s the Effect Size, Stupid: What effect size is and why it is important. In Proceedings of the Conference of the British Educational Research Association, Exeter, UK, 12–14 September 2002. [Google Scholar]
- Rosenthal, R. Parametric measures of effect size. In The Handbook of Research Synthesis; Russell Sage Foundation: New York, NY, USA, 1994; pp. 231–244. ISBN 0-87154-226-9. [Google Scholar]
Session | Participants’ Groups | Site | Stimuli (AV) |
---|---|---|---|
1 | A (10 subjects) | L1 | N065, N0 + SW56, N0 + SW59, N0 + SW62, N0 + SW65, N0 + SW68, N0 + SW71, N0 + SW74 |
Control question: Choice of the AV scenario with highest rating on semantic differential scale (SDS)-Unpleasant. If two scenarios have the same rating, the one with the highest SW level was chosen. For the chosen acoustic condition, the four SDS were repeated. | |||
2 | B (10 subjects) | L1 | N065, N0 + SW55, N0 + SW60, N0 + SW65, N0 + SW70, N0 + SW75 |
Control question: Same selection criteria applied in the session 1. |
Questions | Audio-Visual Scenarios | Measurement Scale |
---|---|---|
| No video, no audio | - |
| Audio-only (A): N0, N1, N2, and N3 | 7-point Likert scale |
● Unpleasant–Pleasant | ||
● Chaotic–Calm | ||
● Uneventful–Eventful | ||
● Boring–Exciting | ||
| Video-only (V) | - |
| Audio-video (AV): N0, N1, N2, and N3 (coherent) | 7-point Likert scale |
● Unpleasant–Pleasant | ||
● Chaotic–Calm | ||
● Uneventful–Eventful | ||
● Boring-Exciting | ||
| Audio-video (AV): N1 (uncoherent) | 7-point Likert scale |
● Unpleasant–Pleasant | ||
● Chaotic–Calm | ||
● Uneventful–Eventful | ||
● Boring–Exciting | ||
| Audio-video (AV): N0, N1, N2, and N3 (coherent) | 7-point Likert scale |
| Audio-video (AV): N0, N1, N2, and N3 (coherent) | 7-point Likert scale |
| Audio-video (AV): N0 and N1 (coherent) | 4-point Likert scale |
| Audio-video (AV): N0 and N1 (coherent) | 7-point Likert scale |
| Audio-video (AV): N0 and N1 (coherent) | 7-point Likert scale |
| Audio-video (AV): N0 and N1 (coherent) | 7-point Likert scale |
Session | Participants’ Groups | Site | Stimuli | |||
---|---|---|---|---|---|---|
A | V | AV | AV | |||
Coherent Added Sound | - | Coherent Added Sound | Uncoherent Added Sound | |||
1 | C(30) | L1 | N065; N1 = N0 + SW60; N2 = N0 + SW65; N3 = N0 + SW70 Type of questions: SDS | VL1 | N065; N1 = N0 + SW60; N2 = N0 + SW65; N3 = N0 + SW70 Type of questions: SDS, artificiality, expectations | - |
L2 | N055; N1 = N0 + SS50; N2 = N0 + SS55 N3 = N0 + SS60 Type of questions: SDS | VL2 | N055; N1 = N0 + SS50; N2 = N0 + SS55 N3 = N0 + SS60 Type of questions: SDS, artificiality, expectations | - | ||
15 days of delay | ||||||
2 | C(30) | L1 | - | - | N065; N1 = N0 + SW60 SDS questions only on N1, sound sources heard, SQ, LQ, overall EQ | N1 = N0 + SS60 SDS questions |
L2 | - | - | N055; N1 = N0 + SS50 SDS questions only on N1, sound sources heard, SQ, LQ, overall EQ | N1 = N0 + SW50 SDS questions |
Repeated Acoustic Condition | Semantic Differential Scale | Difference of Ratings Given to the Repeated Condition | |||||
---|---|---|---|---|---|---|---|
0 | ±1 | ±2 | ±3 | ±4 | |||
Number of subjects 3 dB steps (session 1) | Highest rating given to Unpleasant–Pleasant | Unpleasant–Pleasant | 5 | 3 | 1 | 1 | - |
Chaotic–Calm | 3 | 3 | 1 | 3 | - | ||
Eventful–Uneventful | 1 | 3 | 2 | 3 | 1 | ||
Boring-Exciting | 2 | 2 | 4 | 2 | - | ||
Number of subjects 5 dB steps (session 2) | Highest rating given to Unpleasant–Pleasant | Unpleasant–Pleasant | 8 | 2 | - | - | - |
Chaotic–Calm | 6 | 4 | - | - | - | ||
Eventful–Uneventful | 3 | 4 | 2 | 1 | - | ||
Boring–Exciting | 2 | 3 | 4 | 1 | - |
Location | a | b | Wilcoxon p-Value | Lower (a < b) | Equal (a = b) | Higher (a > b) | Effect Size |
---|---|---|---|---|---|---|---|
L1 (Acton street) | N0 | N1 | 0.052 | 8 | 20 | 2 | 0.354 |
N2 | 0.192 | 15 | 5 | 10 | 0.238 | ||
N3 | 0.171 | 15 | 7 | 8 | 0.250 | ||
N1 | N2 | 0.823 | 11 | 8 | 11 | 0.041 | |
N3 | 0.704 | 13 | 7 | 10 | 0.069 | ||
N2 | N3 | 0.806 | 7 | 15 | 8 | 0.045 | |
L2 (Beach) | N0 | N1 | 0.002 | 16 | 11 | 3 | 0.555 |
N2 | 0.020 | 17 | 7 | 6 | 0.424 | ||
N3 | 0.662 | 12 | 9 | 9 | 0.080 | ||
N1 | N2 | 0.721 | 9 | 8 | 13 | 0.065 | |
N3 | 0.031 | 5 | 8 | 17 | 0.395 | ||
N2 | N3 | 0.001 | 0 | 19 | 11 | 0.586 |
Acoustic Condition | a | b | Wilcoxon p-Value | Lower (a < b) | Equal (a = b) | Higher (a > b) | Effect Size |
---|---|---|---|---|---|---|---|
N0 | Exp_L1 | Exp_L2 | 0.052 | 14 | 11 | 5 | 0.355 |
N1 | Exp_L1 | Exp_L2 | 0.001 | 18 | 9 | 3 | 0.609 |
N2 | Exp_L1 | Exp_L2 | 0.009 | 17 | 9 | 4 | 0.474 |
N3 | Exp_L1 | Exp_L2 | 0.543 | 10 | 12 | 8 | 0.111 |
All levels | Exp_L1 | Exp_L2 | 0.000 | 59 | 41 | 20 | 0.398 |
SDS | a | b | Wilcoxon p-Value | Lower (a < b) | Equal | Higher | Effect Size |
---|---|---|---|---|---|---|---|
(a = b) | (a > b) | ||||||
L1_N1_SDS-Unpleasant | Coherent | Uncoherent | 0.009 | 10 | 4 | 16 | 0.477 |
L1_N1_SDS-Chaotic | Coherent | Uncoherent | 0.033 | 8 | 6 | 16 | 0.389 |
L1_N1_SDS-Eventful | Coherent | Uncoherent | 0.982 | 12 | 10 | 8 | 0.004 |
L1_N1_SDS-Boring | Coherent | Uncoherent | 0.721 | 17 | 7 | 6 | 0.065 |
L2_N1_SDS-Unpleasant | Coherent | Uncoherent | 0.013 | 7 | 6 | 17 | 0.453 |
L2_N1_SDS-Chaotic | Coherent | Uncoherent | 0.003 | 12 | 3 | 15 | 0.535 |
L2_N1_SDS-Eventful | Coherent | Uncoherent | 0.001 | 13 | 2 | 15 | 0.599 |
L2_N1_SDS-Boring | Coherent | Uncoherent | 0.001 | 10 | 2 | 17 | 0.600 |
Groups of Variables | Expectations N1 | Groups of Variables | Expectations N1 | ||
---|---|---|---|---|---|
Corr. Coef. | p-Value | Corr. Coef. | p-Value | ||
L1. N1.Coherent_SDS-Unpleasant | 0.710 ** | 0.000 | L1. N1.Uncoherent_SDS-Unpleasant | 0.387 * | 0.035 |
L1. N1.Coherent_SDS-Chaotic | 0.266 | 0.155 | L1. N1.Uncoherent_SDS-Chaotic | 0.230 | 0.221 |
L1. N1.Coherent_SDS-Eventful | 0.191 | 0.312 | L1. N1.Uncoherent_SDS-Uneventful | 0.118 | 0.534 |
L1. N1.Coherent_SDS-Boring | 0.069 | 0.719 | L1. N1.Uncoherent_SDS-Boring | 0.179 | 0.343 |
L2. N1.Coherent_SDS-Unpleasant | 0.551 ** | 0.002 | L2. N1.Uncoherent_SDS-Unpleasant | 0.470 ** | 0.009 |
L2. N1.Coherent_SDS-Chaotic | 0.488 ** | 0.006 | L2. N1.Uncoherent_SDS-Chaotic | 0.645 ** | 0.000 |
L2. N1.Coherent_SDS-Eventful | 0.298 | 0.110 | L2. N1.Uncoherent_SDS-Uneventful | 0.499 ** | 0.005 |
L2. N1.Coherent_SDS-Boring | 0.519 ** | 0.003 | L2. N1.Uncoherent_SDS-Boring | 0.324 | 0.086 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Puyana-Romero, V.; Maffei, L.; Brambilla, G.; Nuñez-Solano, D. Sound Water Masking to Match a Waterfront Soundscape with the Users’ Expectations: The Case Study of the Seafront in Naples, Italy. Sustainability 2021, 13, 371. https://doi.org/10.3390/su13010371
Puyana-Romero V, Maffei L, Brambilla G, Nuñez-Solano D. Sound Water Masking to Match a Waterfront Soundscape with the Users’ Expectations: The Case Study of the Seafront in Naples, Italy. Sustainability. 2021; 13(1):371. https://doi.org/10.3390/su13010371
Chicago/Turabian StylePuyana-Romero, Virginia, Luigi Maffei, Giovanni Brambilla, and Daniel Nuñez-Solano. 2021. "Sound Water Masking to Match a Waterfront Soundscape with the Users’ Expectations: The Case Study of the Seafront in Naples, Italy" Sustainability 13, no. 1: 371. https://doi.org/10.3390/su13010371
APA StylePuyana-Romero, V., Maffei, L., Brambilla, G., & Nuñez-Solano, D. (2021). Sound Water Masking to Match a Waterfront Soundscape with the Users’ Expectations: The Case Study of the Seafront in Naples, Italy. Sustainability, 13(1), 371. https://doi.org/10.3390/su13010371