Urban Ecosystem-Level Biomimicry and Regenerative Design: Linking Ecosystem Functioning and Urban Built Environments
Abstract
:1. Introduction
2. Methodology
3. Ecosystems as Models in Urban Planning and Design Practices
4. Understanding Ecosystems and Ecosystems Services Provision
5. Case Studies: Using Ecosystem-Level Biomimicry to Catalyse Urban Regeneration
5.1. The Lavasa Hill Project, Maharashtra, India
- water collection;
- solar gain;
- carbon sequestration;
- water filtration;
- evapotranspiration; and
- nitrogen and phosphorus cycling.
5.2. The Lloyd Crossing Project, Oregon, USA
6. Discussion
7. Conclusions
- (1)
- How are the regeneration and the ecosystem goals of these projects translated into technical solutions? Which strategies can projects implement to work toward human-designed ecosystem services provision and to catalyse socio-ecosystems regeneration and co-evolution?
- (2)
- How do regenerative projects draw on ecosystem functioning? Which ecological information and concepts are useful to urban designers to understand ecosystem functioning better and promote ecosystem regeneration?
- (3)
- How are the outcomes of such projects measured and monitored? Which ecological indicators do projects use to assess the impact of regenerative design on local ecosystems?
- (4)
- How do urban project phasing and stakeholder roles take account of and influence ecosystem properties and the overall ecological performance of a project?
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- United Nations—Department of Economic and Social Affairs—Population Division. World Urbanization Prospects: The 2018 Revision (ST/ESA/SER.A/420); United Nations: New York, NY, USA, 2019; Volume 12, ISBN 9789211483192. [Google Scholar]
- Alberti, M. The effects of urban patterns on ecosystem function. Int. Reg. Sci. Rev. 2005, 28, 168–192. [Google Scholar] [CrossRef]
- Millenium Ecosystem Assessment. Ecosystems and Human Well-Being: Synthesis; Island Press: Washington, DC, USA, 2005; ISBN 1597260401. [Google Scholar]
- Brown, M.; Haselsteiner, E.; Apró, D.; Kopeva, D.; Lucas, E.; Pulkkinen, K.; Vula Rizvanolli, B. Sustainability, Restorative to Regenerative. COST Action CA16114 RESTORE, Working Group One Report: Restorative Sustainability; Eurac Research: Bolzano, Italy, 2018. [Google Scholar]
- Cole, R.J. Regenerative design and development: Current theory and practice. Build. Res. Inf. 2012, 58, 1–6. [Google Scholar] [CrossRef]
- Pedersen Zari, M. Mimicking ecosystems for bio-inspired intelligent urban built environments. Intell. Build. Int. 2016, 8, 57–77. [Google Scholar] [CrossRef]
- Hayes, S.; Desha, C.; Gibbs, M. Findings of case-study analysis: System-Level biomimicry in built-environment design. Biomimetics 2019, 4, 73. [Google Scholar] [CrossRef] [Green Version]
- ISO. ISO 18458:2015—Biomimetics—Terminology, Concepts and Methodology; ISO: Geneva, Switzerland, 2015. [Google Scholar]
- Chayaamor-Heil, N.; Guéna, F.; Hannachi-Belkadi, N. Biomimétisme en architecture. État, méthodes et outils. Les Cah. Rech. Archit. Urbaine Paysag. 2018, 1, 0–33. [Google Scholar] [CrossRef]
- Buck, N.T. The art of imitating life: The potential contribution of biomimicry in shaping the future of our cities. Environ. Plan. B Urban Anal. City Sci. 2017, 44, 120–140. [Google Scholar] [CrossRef]
- Pedersen Zari, M. Regenerative Urban Design and Ecosystem Biomimicry; Routledge: London, UK, 2018; ISBN 978113807. [Google Scholar]
- Uchiyama, Y.; Blanco, E.; Kohsaka, R. Application of biomimetics to architectural and urban design: A review across scales. Sustainability 2020, 12, 9813. [Google Scholar] [CrossRef]
- Baumeister, D.; Pedersen Zari, M.; Hayes, S. Biomimicry: An Opportunity to Relate to Place. In Ecologies Design: Transforming Architecture, Landscape, and Urbanism; Pedersen Zari, M., Conolly, P., Southcombe, M., Eds.; Routledge: Abingdon, UK, 2020. [Google Scholar]
- Zhang, X.; Skitmore, M.; De Jong, M.; Huisingh, D.; Gray, M. Regenerative sustainability for the built environment—From vision to reality: An introductory chapter. J. Clean. Prod. 2015, 109, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Hes, D.; Stephan, A.; Moosavi, S. Evaluating the practice and outcomes of applying regenerative development to a large-scale project in Victoria, Australia. Sustainability 2018, 10, 460. [Google Scholar] [CrossRef] [Green Version]
- Gibbons, L.V.; Pearthree, G.; Cloutier, S.A.; Ehlenz, M.M. The development, application, and refinement of a Regenerative Development Evaluation Tool and indicators. Ecol. Indic. 2020, 108, 105698. [Google Scholar] [CrossRef]
- Krippendorff, K. Content Analysis: An Introduction to its Methodology, 2nd ed.; Sage Publications: Thousand Oaks, CA, USA, 2004; ISBN 0761915443. [Google Scholar]
- Francis, M. A Case Study Method For Landscape Architecture. Landsc. J. 2001, 20, 15–29. [Google Scholar] [CrossRef]
- Groat, L.; Wang, D. Architectural Research Methods; John Wiley & Sons: Hoboken, NJ, USA, 2013; ISBN 9780470908556. [Google Scholar]
- Steiner, F.; Young, G.; Zube, E. Ecological Planning: Retrospect and Prospect. In The Ecological Design and Planning Reader; Ndubisi, F.O., Ed.; Island Press/Center for Resource Economics: Washington, DC, USA, 2014; pp. 72–90. ISBN 978-1-61091-491-8. [Google Scholar]
- Pickett, S.T.A.; Cadenasso, M.L.; Grove, J.M.; Nilon, C.H.; Pouyat, R.V.; Zipperer, W.C.; Costanza, R. Urban ecological systems: Linking terrestrial ecological, physical, and socioeconomic components of metropolitan areas. Urban Ecol. Int. Perspect. Interact. Hum. Nat. 2008, 99–122. [Google Scholar] [CrossRef]
- Steiner, F. Frontiers in urban ecological design and planning research. Landsc. Urban Plan. 2014, 125, 304–311. [Google Scholar] [CrossRef]
- McHarg, I.L. Design with Nature; John Wiley & Sons: Hoboken, NJ, USA, 1969. [Google Scholar]
- Ndubisi, F. Ecological Planning: A Historical and Comparative Synthesis; Johns Hopkins University Press: Baltimore, MD, USA, 2002. [Google Scholar]
- Harrison, P.A.; Dunford, R.; Barton, D.N.; Kelemen, E.; Martín-López, B.; Norton, L.; Termansen, M.; Saarikoski, H.; Hendriks, K.; Gómez-Baggethun, E.; et al. Selecting methods for ecosystem service assessment: A decision tree approach. Ecosyst. Serv. 2018, 29, 481–498. [Google Scholar] [CrossRef] [Green Version]
- Lyle, J.T. Regenerative Design for Sustainable Development; John Wileys & Sons, Inc.: Hoboken, NJ, USA, 1994. [Google Scholar]
- Reed, B. Shifting from “sustainability” to regeneration. Build. Res. Inf. 2007, 35, 674–680. [Google Scholar] [CrossRef]
- Odum, E.P. The strategy of ecosystem development. Science 1969, 164, 262–270. [Google Scholar] [CrossRef] [Green Version]
- Costanza, R.; D’Arge, R.; de Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’Neil, R.V.; Paruelo, J.; et al. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Potschin, M.; Haines-Young, R.; Görg, C.; Heink, U.; Jax, K.; Schleyer, C. Understanding the role of conceptual frameworks: Reading the ecosystem service cascade. Ecosyst. Serv. 2018, 29, 428–440. [Google Scholar] [CrossRef]
- Czúcz, B.; Arany, I.; Potschin-young, M.; Bereczki, K.; Kertész, M.; Kiss, M.; Aszalós, R.; Haines-young, R. Where concepts meet the real world: A systematic review of ecosystem service indicators and their classification using CICES. Ecosyst. Serv. 2018, 29, 145–157. [Google Scholar] [CrossRef]
- Haase, D.; Larondelle, N.; Andersson, E.; Artmann, M.; Borgström, S.; Breuste, J.; Gomez-Baggethun, E.; Gren, Å.; Hamstead, Z.; Hansen, R.; et al. A quantitative review of urban ecosystem service assessments: Concepts, models, and implementation. Ambio 2014, 43, 413–433. [Google Scholar] [CrossRef] [Green Version]
- Luederitz, C.; Brink, E.; Gralla, F.; Hermelingmeier, V.; Meyer, M.; Niven, L.; Panzer, L.; Partelow, S.; Rau, A.L.; Sasaki, R.; et al. A review of urban ecosystem services: Six key challenges for future research. Ecosyst. Serv. 2015, 14, 98–112. [Google Scholar] [CrossRef] [Green Version]
- Haines-Young, R.; Potschin, M. The links between biodiversity, ecosystem services and human well-being. Ecosyst. Ecol. New Synth. 2010, 1, 110–139. [Google Scholar] [CrossRef]
- La Notte, A.; D’Amato, D.; Mäkinen, H.; Paracchini, M.L.; Liquete, C.; Egoh, B.; Geneletti, D.; Crossman, N.D. Ecosystem services classification: A systems ecology perspective of the cascade framework. Ecol. Indic. 2017, 74, 392–402. [Google Scholar] [CrossRef] [PubMed]
- Kandziora, M.; Burkhard, B.; Müller, F. Interactions of ecosystem properties, ecosystem integrity and ecosystem service indicators: A theoretical matrix exercise. Ecol. Indic. 2013, 28, 54–78. [Google Scholar] [CrossRef]
- Müller, F. Indicating ecosystem and landscape organisation. Ecol. Indic. 2005, 5, 280–294. [Google Scholar] [CrossRef]
- Gómez-Baggethun, E.; Barton, D.N. Classifying and valuing ecosystem services for urban planning. Ecol. Econ. 2013, 86, 235–245. [Google Scholar] [CrossRef]
- Suchocka, M.; Błaszczyk, M.; Juźwiak, A.; Duriasz, J.; Bohdan, A.; Stolarczyk, J. Transit versus Nature. Depreciation of Environmental Values of the Road Alleys. Case Study: Gamerki-Jonkowo, Poland. Sustainability 2019, 11, 1816. [Google Scholar] [CrossRef] [Green Version]
- Datta, A. India’s ecocity? environment, urbanisation, and mobility in the making of Lavasa. Environ. Plan. C Gov. Policy 2012, 30, 982–996. [Google Scholar] [CrossRef]
- Lazarus, M.A.; Crawford, C. Returning Genius to the Place. Archit. Des. 2011, 86, 48–53. [Google Scholar] [CrossRef]
- Hayter, J.A. Lloyd Crossing Sustainable Urban Design Plan and Catalyst Project—Portland, Oregon. Places 2005, 17, 14–17. [Google Scholar]
- Mithūn. Lloyd Crossing—Sustainable Urban Design Plan & Catalyst Project; Mithūn Inc.: Seattle, WA, USA, 2004. [Google Scholar]
- Thomson, G.; Newman, P. Urban fabrics and urban metabolism—From sustainable to regenerative cities. Resour. Conserv. Recycl. 2018, 132, 218–229. [Google Scholar] [CrossRef]
- Elliot, T.; Almenar, J.B.; Niza, S.; Proença, V.; Rugani, B. Pathways to modelling ecosystem services within an urban metabolism framework. Sustainability 2019, 11, 2766. [Google Scholar] [CrossRef] [Green Version]
- Golubiewski, N. Is there a metabolism of an urban ecosystem? An ecological critique. Ambio 2012, 41, 751–764. [Google Scholar] [CrossRef]
- Thérivel, R.; Caratti, P.; Partidärio, M.D.R.; Theodórsdóttir, Á.H.; Tyldesley, D. Writing strategic environmental assessment guidance. Impact Assess. Proj. Apprais. 2004, 22, 259–270. [Google Scholar] [CrossRef]
- Clergeau, P. La biodiversité dans les stratégies d’améNagement Urbain. Available online: https://www.metropolitiques.eu/La-biodiversite-dans-les-strategies-d-amenagement-urbain.html (accessed on 19 August 2020).
Landscape Suitability Analysis | Ecosystem-Level Biomimicry | |
---|---|---|
| Analyse the fitness of a project for a specific area; select urbanisation strategies that reduce negative environmental impacts [23,24]. | Design urban projects that rely on ecological data to deeply connect urban systems with ecological system patterns; reduce negative environmental impacts and catalyse positive ones for both social and ecological systems [10,11]. |
| Macroscopic information, using aerial and remote sensing data [20,23,24]. | Detailed information using ecological indicators [7,11]. |
| Ecosystem information is treated discretely in a cake-layer approach [23,24]. | Ecosystem information is treated holistically with an emphasis on understanding relationships, synergies and trade-offs [7,10,11,13]. |
Lavasa Hill | Lloyd Crossing | |
---|---|---|
Location | Mumbai-Pune region, India | Portland, Oregon, USA |
Motivation for the biomimetic approach | “To prevent this [ecosystem disturbance] from happening, the design team established strict ecological performance standards and specific strategies for maintaining each ecosystem service” [41]. | “The Lloyd Crossing Sustainable Urban Design Plan looks at an urban ecosystem in which individual properties and the neighborhood public realm function together as an environmentally low- impact unit with high economic potential” [43]. |
Ecosystem used as model | Moist deciduous forest [41]. | Mixed-conifer forest [42]. |
Main ecological concepts used in the biomimetic design process | Ecosystems services [41]. | Biophysical structure and ecosystem processes [43]. |
Integration of ecological information on the design process | Identification and assessment of main ecosystem services essential for the area and for the project viability. Replication of these ecosystem services metrics mainly using built and technological strategies [10,40,41]. | Assessment of original ecosystem biophysical structure and ecosystems process. To reach the original metrics, designers proposed technological and educational strategies to reduce pressures on ecosystems, and nature-based solutions to recover ecological structure and integrity [11,42,43]. |
Ecological indicators used | Water collection; Solar gain; Carbon sequestration; Water filtration; Evapotranspiration; Nitrogen and phosphorus cycling [41]. | Tree canopy cover Wildlife species Total precipitation Stormwater runoff Groundwater recharge Transpiration Evaporation Incident solar energy Energy used by photosynthesis Energy reflected/absorbed/radiated Carbon dioxide used Oxygen released Carbon fixed as biomass [43] |
Potential regenerative impact from the biomimetic approach | Efficient rainwater management Mitigation of soil erosion processes [41] | Restore pre-development habitat metrics Water autonomy (only rainwater used) Energy autonomy (only local renewable sources used) Carbon neutrality Increasing urban density with a higher Floor Area Ratio [43] |
# | Pre-Development Metrics | Related Ecological Integrity Criteria |
---|---|---|
1 | Tree cover | Exergy capture/Entropy production |
2 | Wildlife species | Biotic diversity |
3 | Total precipitation | Water flows (abiotic) |
4 | Stormwater runoff | Water flows (abiotic) |
5 | Groundwater recharge | Water flows (abiotic) |
6 | Transpiration | Water flows (biotic) |
7 | Evaporation | Water flows (abiotic) |
8 | Incident solar energy | Exergy capture |
9 | Energy used by photosynthesis | Exergy capture/Entropy production |
10 | Energy reflected/absorbed/radiated | Exergy capture |
11 | CO2 used | Exergy capture/Entropy production/Metabolic efficiency |
12 | Oxygen released | Metabolic efficiency |
13 | Carbon fixed as biomass | Exergy capture/Storage capacity |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Blanco, E.; Pedersen Zari, M.; Raskin, K.; Clergeau, P. Urban Ecosystem-Level Biomimicry and Regenerative Design: Linking Ecosystem Functioning and Urban Built Environments. Sustainability 2021, 13, 404. https://doi.org/10.3390/su13010404
Blanco E, Pedersen Zari M, Raskin K, Clergeau P. Urban Ecosystem-Level Biomimicry and Regenerative Design: Linking Ecosystem Functioning and Urban Built Environments. Sustainability. 2021; 13(1):404. https://doi.org/10.3390/su13010404
Chicago/Turabian StyleBlanco, Eduardo, Maibritt Pedersen Zari, Kalina Raskin, and Philippe Clergeau. 2021. "Urban Ecosystem-Level Biomimicry and Regenerative Design: Linking Ecosystem Functioning and Urban Built Environments" Sustainability 13, no. 1: 404. https://doi.org/10.3390/su13010404
APA StyleBlanco, E., Pedersen Zari, M., Raskin, K., & Clergeau, P. (2021). Urban Ecosystem-Level Biomimicry and Regenerative Design: Linking Ecosystem Functioning and Urban Built Environments. Sustainability, 13(1), 404. https://doi.org/10.3390/su13010404