Environmental Assessment of Upgrading Horticultural Side Streams—The Case of Unharvested Broccoli Leaves
Abstract
:1. Introduction
2. Materials and Methods
2.1. Life Cycle Inventory for ALCA
2.1.1. Harvest
2.1.2. Transportation from Farm to Processing
2.1.3. Processing
2.1.4. Transportation from Wholesale to Industry Application
2.1.5. Industry Application and Substitution
2.2. Life Cycle Inventory for CLCA
2.2.1. Cultivation and Harvest
2.2.2. Transportation and Processing
2.2.3. Industry Application and Substitution
3. Results
3.1. Comparing the Impact from Broccoli Side-Stream Products
3.2. Consequences of a Shift in Production System
3.3. Sensitivity Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- FAO. The State of Food and Agriculture 2019: Moving Forward on Food Loss and Waste Reduction; Food and Agricultural Organization of the United Nations: Rome, Italy, 2019. [Google Scholar]
- Fyles, H.; Madramootoo, C. Emerging Technologies for Promoting Food Security; Elsevier: Amsterdam, The Netherlands, 2016; ISBN 978-1-78242-335-5. [Google Scholar]
- Godfray, H.C.J.; Beddington, J.R.; Crute, I.R.; Haddad, L.; Lawrence, D.; Muir, J.F.; Pretty, J.; Robinson, S.; Thomas, S.M.; Toulmin, C. Food Security: The Challenge of Feeding 9 Billion People. Science 2010, 327, 812–818. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chai, B.C.; van der Voort, J.R.; Grofelnik, K.; Eliasdottir, H.G.; Klöss, I.; Perez-Cueto, F.J.A. Which Diet Has the Least Environmental Impact on Our Planet? A Systematic Review of Vegan, Vegetarian and Omnivorous Diets. Sustainability 2019, 11, 4110. [Google Scholar] [CrossRef] [Green Version]
- Scherer, L.; Svenning, J.-C.; Huang, J.; Seymour, C.L.; Sandel, B.; Mueller, N.; Kummu, M.; Bekunda, M.; Bruelheide, H.; Hochman, Z.; et al. Global Priorities of Environmental Issues to Combat Food Insecurity and Biodiversity Loss. Sci. Total Environ. 2020, 730, 139096. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, I.; Zia, M.A.; Afzal, H.; Ahmed, S.; Ahmad, M.; Akram, Z.; Sher, F.; Iqbal, H.M.N. Socio-Economic and Environmental Impacts of Biomass Valorisation: A Strategic Drive for Sustainable Bioeconomy. Sustainability 2021, 13, 4200. [Google Scholar] [CrossRef]
- Sadhukhan, J.; Dugmore, T.I.J.; Matharu, A.; Martinez-Hernandez, E.; Aburto, J.; Rahman, P.K.S.M.; Lynch, J. Perspectives on “Game Changer” Global Challenges for Sustainable 21st Century: Plant-Based Diet, Unavoidable Food Waste Biorefining, and Circular Economy. Sustainability 2020, 12, 1976. [Google Scholar] [CrossRef] [Green Version]
- Nellemann, C.; MacDevette, M.; Manders, T.; Eickhout, B.; Svihus, B.; Prins, A.G.; Kaltenborn, B.P. The Environmental Food Crisis: The Environment’s Role in Averting Future Food Crises: A UNEP Rapid Response Assessment; United Nations Environment Programme, GRID—Arendal, Ed.; UNEP: Arendal, Norway, 2009; ISBN 978-82-7701-054-0. [Google Scholar]
- Gustavsson, J.; Cederberg, C.; Sonesson, U. Global Food Losses and Food Waste: Extent, Causes and Prevention; Food and Agriculture Organization of the United Nations: Rome, Italy, 2011; ISBN 978-92-5-107205-9. [Google Scholar]
- Strid, I.; Eriksson, M.; Andersson, S.; Olsson, M. Svinn Av Isbergssallat i Primärproduktionen Och Grossistledet i Sverige; The Swedish Board of Agriculture: Jönköping, Sweden, 2014. [Google Scholar]
- Hartikainen, H.; Svanes, E.; Franke, U.; Mogensen, L.; Andersson, S.; Bond, R.; Burman, C.; Einarsson, E.; Eklöf, P.; Joensuu, K.; et al. Food Losses and Waste in Primary Production; TemaNord; 2016:557.; Nordic Council of Ministers: Copenhagen, Denmark, 2017; ISBN 978-92-893-4767-9. [Google Scholar]
- Johnson, L.K.; Dunning, R.D.; Bloom, J.D.; Gunter, C.C.; Boyette, M.D.; Creamer, N.G. Estimating On-Farm Food Loss at the Field Level: A Methodology and Applied Case Study on a North Carolina Farm. Resour. Conserv. Recycl. 2018, 137, 243–250. [Google Scholar] [CrossRef]
- Nordic Council of Ministers, N.C. of M. Nordic Nutrition Recommendations 2012. Integr. Nutr. Phys. Act. 2008, 5, 1–3. [Google Scholar] [CrossRef]
- Konde, Å.B.; Bjerselius, R.; Haglund, L.; Jansson, A.; Pearson, M.; Färnstrand, J.S.; Johansson, A.-K. Swedish Dietary Guidelines-Risk and Benefit Management Report; Swedish National Food Agency: Uppsala, Sweden, 2015. [Google Scholar]
- Beausang, C.; Hall, C.; Toma, L. Food Waste and Losses in Primary Production: Qualitative Insights from Horticulture. Resour. Conserv. Recycl. 2017, 126, 177–185. [Google Scholar] [CrossRef]
- Johnson, L.K.; Dunning, R.D.; Gunter, C.C.; Dara Bloom, J.; Boyette, M.D.; Creamer, N.G. Field Measurement in Vegetable Crops Indicates Need for Reevaluation of On-Farm Food Loss Estimates in North America. Agric. Syst. 2018, 167, 136–142. [Google Scholar] [CrossRef]
- Ferreira, M.S.L.; Santos, M.C.P.; Moro, T.M.A.; Basto, G.J.; Andrade, R.M.S.; Gonçalves, É.C.B.A. Formulation and Characterization of Functional Foods Based on Fruit and Vegetable Residue Flour. J. Food Sci. Technol. 2015, 52, 822–830. [Google Scholar] [CrossRef] [Green Version]
- Eriksson, M.; Spångberg, J. Carbon Footprint and Energy Use of Food Waste Management Options for Fresh Fruit and Vegetables from Supermarkets. Waste Manag. 2017, 60, 786–799. [Google Scholar] [CrossRef]
- Berndtsson, E.; Andersson, R.; Johansson, E.; Olsson, M.E. Side Streams of Broccoli Leaves: A Climate Smart and Healthy Food Ingredient. IJERPH 2020, 17, 2406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Domínguez-Perles, R.; Martínez-Ballesta, M.C.; Carvajal, M.; García-Viguera, C.; Moreno, D.A. Broccoli-Derived By-Products-A Promising Source of Bioactive Ingredients. J. Food Sci. 2010, 75, C383–C392. [Google Scholar] [CrossRef] [PubMed]
- Mirabella, N.; Castellani, V.; Sala, S. Current Options for the Valorization of Food Manufacturing Waste: A Review. J. Clean. Prod. 2014, 65, 28–41. [Google Scholar] [CrossRef] [Green Version]
- Maina, S.; Kachrimanidou, V.; Koutinas, A. A Roadmap towards a Circular and Sustainable Bioeconomy through Waste Valorization. Curr. Opin. Green Sustain. Chem. 2017, 8, 18–23. [Google Scholar] [CrossRef]
- Bergström, P.; Malefors, C.; Strid, I.; Hanssen, O.J.; Eriksson, M. Sustainability Assessment of Food Redistribution Initiatives in Sweden. Resources 2020, 9, 27. [Google Scholar] [CrossRef] [Green Version]
- Eriksson, M.; Strid, I.; Hansson, P.-A. Carbon Footprint of Food Waste Management Options in the Waste Hierarchy–a Swedish Case Study. J. Clean. Prod. 2015, 93, 115–125. [Google Scholar] [CrossRef]
- Liu, M.; Zhang, L.; Ser, S.; Cumming, J.; Ku, K.-M. Comparative Phytonutrient Analysis of Broccoli By-Products: The Potentials for Broccoli By-Product Utilization. Molecules 2018, 23, 900. [Google Scholar] [CrossRef] [Green Version]
- Maina, S.; Misinzo, G.; Bakari, G.; Kim, H.-Y. Human, Animal and Plant Health Benefits of Glucosinolates and Strategies for Enhanced Bioactivity: A Systematic Review. Molecules 2020, 25, 3682. [Google Scholar] [CrossRef]
- International Organization for Standardization. Environmental Management-Life Cycle Assessment-Principles and Framework; ISO 14040:2006; International Organization for Standardization: Geneva, Switzerland, 2006. [Google Scholar]
- International Organization for Standardization. Environmental Management-Life Cycle Assessment-Requirements and Guidelines; ISO 14044:2006; International Organization for Standardization: Geneva, Switzerland, 2006. [Google Scholar]
- Grönsaksmästarna. 2020. Available online: https://www.gronsaksmastarna.se/en/ (accessed on 10 May 2021).
- Google. Google Maps; Google: Mountain View, CA, USA, 2020. [Google Scholar]
- Ecoinvent. Ecoinvent; Ecoinvent: Zurich, Switzerland, 2020. [Google Scholar]
- Eriksson, M.; Ghosh, R.; Hansson, E.; Basnet, S.; Lagerkvist, C.-J. Environmental Consequences of Introducing Genetically Modified Soy Feed in Sweden. J. Clean. Prod. 2018, 176, 46–53. [Google Scholar] [CrossRef]
- Potter, H.K.; Röös, E. Multi-criteria evaluation of plant-based foods –use of environmental footprint and LCA data for consumer guidance. J. Clean. Prod. 2021, 280. [Google Scholar] [CrossRef]
- Shi, J.; Visschers, V.H.M.; Bumann, N.; Siegrist, M. Consumers’ Climate-Impact Estimations of Different Food Products. J. Clean. Prod. 2018, 172, 1646–1653. [Google Scholar] [CrossRef]
- Krizanova, A.; Masarova, G.; Štefanikova, U.; Rypakova, M. Building a Brand in the Context of Sustainable Development. In Proceedings of the 2015 International Conference on Management Engineering and Management Innovation (icmemi-15), Changsha, China, 10–11 January 2015. [Google Scholar]
- López-Pérez, M.E.; Melero, I.; Javier Sese, F. Management for Sustainable Development and Its Impact on Firm Value in the SME Context: Does Size Matter?: Management for Sustainable Development: Doses Size Matter? Bus. Strat. Environ. 2017, 26, 985–999. [Google Scholar] [CrossRef]
- Porter, S.D.; Reay, D.S.; Bomberg, E.; Higgins, P. Avoidable Food Losses and Associated Production-Phase Greenhouse Gas Emissions Arising from Application of Cosmetic Standards to Fresh Fruit and Vegetables in Europe and the UK. J. Clean. Prod. 2018, 201, 869–878. [Google Scholar] [CrossRef] [Green Version]
- Winans, K.; Marvinney, E.; Gillman, A.; Spang, E. An Evaluation of On-Farm Food Loss Accounting in Life-Cycle Assessment (LCA) of Four California Specialty Crops. Front. Sustain. Food Syst. 2020, 4, 10. [Google Scholar] [CrossRef]
- Scherhaufer, S.; Davis, J.; Metcalfe, P.; Gollnow, S.; Colin, F.; De Menna, F.; Vittuari, M.; Östergren, K. Environmental Assessment of the Valorisation and Recycling of Selected Food Production Side Flows. Resour. Conserv. Recycl. 2020, 161, 104921. [Google Scholar] [CrossRef]
- De Menna, F.; Davis, J.; Bowman, M.; Brenes Peralta, L.; Bygrave, K.; Garcia Herrero, L.; Luyckx, K.; McManus, W.; Vittuari, M.; van Zanten, H.; et al. LCA & LCC of food waste case studies: Assessment of food side flow prevention and valorisation routes in selected supply chains. REFRESH 2019. [Google Scholar] [CrossRef] [Green Version]
- Eriksson, M.; Strid, I.; Hansson, P.-A. Food Losses in Six Swedish Retail Stores: Wastage of Fruit and Vegetables in Relation to Quantities Delivered. Resour. Conserv. Recycl. 2012, 68, 14–20. [Google Scholar] [CrossRef]
- Ghosh, R.; Eriksson, M. Food Waste Due to Retail Power in Supply Chains: Evidence from Sweden. Glob. Food Secur. 2019, 20, 1–8. [Google Scholar] [CrossRef]
- Brancoli, P.; Lundin, M.; Bolton, K.; Eriksson, M. Bread Loss Rates at the Supplier-Retailer Interface–Analysis of Risk Factors to Support Waste Prevention Measures. Resour. Conserv. Recycl. 2019, 147, 128–136. [Google Scholar] [CrossRef]
- Brancoli, P.; Bolton, K.; Eriksson, M. Environmental Impacts of Waste Management and Valorisation Pathways for Surplus Bread in Sweden. Waste Manag. 2020, 117, 136–145. [Google Scholar] [CrossRef]
- Melini, V.; Melini, F.; Luziatelli, F.; Ruzzi, M. Functional Ingredients from Agri-Food Waste: Effect of Inclusion Thereof on Phenolic Compound Content and Bioaccessibility in Bakery Products. Antioxidants 2020, 9, 1216. [Google Scholar] [CrossRef]
- Bartek, L.; Strid, I.; Henryson, K.; Junne, S.; Rasi, S.; Eriksson, M. Life cycle assessment of fish oil substitute produced by microalgae using food waste. Sustain. Prod. Consum. 2021. [Google Scholar] [CrossRef]
- Tassoni, A.; Tedeschi, T.; Zurlini, C.; Cigognini, I.M.; Petrusan, J.-I.; Rodríguez, Ó.; Neri, S.; Celli, A.; Sisti, L.; Cinelli, P.; et al. State-of-the-Art Production Chains for Peas, Beans and Chickpeas—Valorization of Agro-Industrial Residues and Applications of Derived Extracts. Molecules 2020, 25, 1383. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Messner, R.; Johnson, H.; Richards, C. From surplus-to-waste: A study of systemic overproduction, surplusand food waste in horticultural supply chains. J. Clean. Prod. 2021, 278, 123952. [Google Scholar] [CrossRef]
Environmental Impact Category | Units | Bread Additive | Soup Additive | Sliced Broccoli |
---|---|---|---|---|
Acidification | mol H+ eq. | 9.5 × 10−4 | −3.0 × 10−3 | −3.0 × 10−3 |
Climate change | kg CO2 eq. | 6.8 × 10−2 | −4.5 × 10−1 | −3.5 × 10−1 |
Freshwater ecotoxicity | CTUe | 4.4 × 10−1 | −4.5 × 10−1 | −4.6 × 10−1 |
Freshwater eutrophication | kg P eq. | 1.3 × 10−4 | −6.8 × 10−5 | −6.9 × 10−5 |
Human toxicity—carcinogenics | CTUh | 1.4 × 10−8 | −2.8 × 10−8 | −1.2 × 10−8 |
Human toxicity—non-carcinogenics | CTUh | 2.5 × 10−8 | −2.8 × 10−7 | −2.5 × 10−7 |
Ionising radiation—ecosystems | CTUe | 7.2 × 10−7 | −6.5 × 10−8 | −6.9 × 10−8 |
Ionising radiation—human health | kg U235 eq. | 2.8 × 10−1 | −1.5 × 10−2 | −1.5 × 10−2 |
Land use | kg SOC | 4.8 × 10−1 | −3.9 × 10−1 | −4.2 × 10−1 |
Marine eutrophication | kg N eq. | −1.1 × 10−4 | −4.2 × 10−3 | −4.2 × 10−3 |
Ozone depletion | kg CFC-11 eq. | 4.3 × 10−8 | −2.3 × 10−8 | −2.4 × 10−8 |
Particulate matter/respiratory inorganics | kg PM2.5 eq. | 6.5 × 10−5 | −2.3 × 10−4 | −2.3 × 10−4 |
Photochemical ozone formation | kg C2H4 eq. | 2.4 × 10−4 | −1.6 × 10−3 | −1.6 × 10−3 |
Resource depletion 1 | kg Sb eq. | 1.2 × 10−8 | −2.3 × 10−8 | −9.4 × 10−9 |
Resource depletion—water | m3 | −1.6 × 10−4 | −3.0 × 10−3 | −3.0 × 10−3 |
Terrestrial eutrophication | mol N eq. | 3.0 × 10−3 | −1.1 × 10−2 | −1.1 × 10−2 |
Environmental Impact Category | Units | Shift to New Production | Shift to Optimised New Production |
---|---|---|---|
Acidification | mol H+ eq. | 3.00 × 10−3 | −2.60 × 10−3 |
Climate change | kg CO2 eq. | −1.70 × 10−1 | −1.0 × 100 |
Freshwater ecotoxicity | CTUe | 9.40 × 10−1 | −5.00 × 10−1 |
Freshwater eutrophication | kg P eq. | 8.10 × 10−4 | −1.0 × 10−4 |
Human toxicity—carcinogenics | CTUh | −1.1 × 10−8 | −9.3 × 10−8 |
Human toxicity—non-carcinogenics | CTUh | −1.5 × 10−7 | −4.9 × 10−7 |
Ionising radiation—ecosystems | CTUe | −3.5 × 10−8 | −4.8 × 10−8 |
Ionising radiation—human health | kg U235 eq. | −1.6 × 10−2 | −1.0 × 10−2 |
Land use | kg SOC | 1.4 × 10−1 | −4.0 × 10−1 |
Marine eutrophication | kg N eq. | −1.5 × 10−3 | −4.2 × 10−3 |
Ozone depletion | kg CFC-11 eq. | −5.6 × 10−9 | −2.2 × 10−8 |
Particulate matter/respiratory inorganics | kg PM2.5 eq. | 8.6 × 10−4 | −2.5 × 10−4 |
Photochemical ozone formation | kg C2H4 eq. | 8.7 × 10−4 | −1.5 × 10−3 |
Resource depletion 1 | kg Sb eq. | −6.3 × 10−9 | −2.6 × 10−8 |
Resource depletion—water | m3 | −1.5 × 10−3 | −3.0 × 10−3 |
Terrestrial eutrophication | mol N eq. | 8.5 × 10−4 | −1.1 × 10−2 |
Parameter Tested | Change in Parameter Value (%) | |||||
---|---|---|---|---|---|---|
ALCA Scenario: | CLCA Scenario: | |||||
Bread Additive | Soup Additive | Sliced Broccoli | Old Prod. | New Prod. | Optimised New Prod. | |
Original value (kg CO2e/FU) | 0.068 | −0.45 | −0.35 | 0.36 | 0.15 | −0.66 |
Harvest and farm transport (from 3 to 10 km) | 4% | −1% | 0% | 0% | 1% | 0% |
Harvest and farm transport (from 3 to 1 km) | −1% | 0% | 0% | 0% | 0% | 0% |
Transport of broccoli (distance farm–processing × 2) | 33% | −5% | −3% | 7% | 33% | −7% |
Transport of broccoli (distance farm–wholesale × 0.5) | −16% | 2% | 2% | −3% | −17% | 4% |
Transport of broccoli powder (distance wholesale–industry × 2) | 7% | 0% | 0% | 0% | 1% | 0% |
Transport of broccoli powder (distance wholesale–industry × 0.5) | −3% | 0% | 0% | 0% | −1% | 0% |
Transport of German broccoli powder (distance production–industry × 2) | 0% | 1% | 0% | 0% | −1% | 1% |
Transport of German broccoli powder (distance production–industry × 0.5) | 0% | 0% | 0% | 0% | 0% | 0% |
Energy for drying (from Swedish/Danish mix to Swedish mix) | −82% | 15% | 0% | 0% | −174% | 63% |
Energy for drying (from Swedish/Danish mix to Danish mix) | 82% | −15% | 0% | 0% | 174% | −63% |
Substitution proportion of wheat or broccoli powder (from 1:1 to 1:2) | −84% | 79% | 0% | 0% | −66% | 51% |
Substitution proportion of wheat or broccoli powder (from 1:1 to 2:1) | 42% | −40% | 0% | 0% | 33% | −26% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eriksson, M.; Bartek, L.; Löfkvist, K.; Malefors, C.; Olsson, M.E. Environmental Assessment of Upgrading Horticultural Side Streams—The Case of Unharvested Broccoli Leaves. Sustainability 2021, 13, 5327. https://doi.org/10.3390/su13105327
Eriksson M, Bartek L, Löfkvist K, Malefors C, Olsson ME. Environmental Assessment of Upgrading Horticultural Side Streams—The Case of Unharvested Broccoli Leaves. Sustainability. 2021; 13(10):5327. https://doi.org/10.3390/su13105327
Chicago/Turabian StyleEriksson, Mattias, Louise Bartek, Klara Löfkvist, Christopher Malefors, and Marie E. Olsson. 2021. "Environmental Assessment of Upgrading Horticultural Side Streams—The Case of Unharvested Broccoli Leaves" Sustainability 13, no. 10: 5327. https://doi.org/10.3390/su13105327
APA StyleEriksson, M., Bartek, L., Löfkvist, K., Malefors, C., & Olsson, M. E. (2021). Environmental Assessment of Upgrading Horticultural Side Streams—The Case of Unharvested Broccoli Leaves. Sustainability, 13(10), 5327. https://doi.org/10.3390/su13105327