A Bibliometric Analysis and Network Visualisation of Human Mobility Studies from 1990 to 2020: Emerging Trends and Future Research Directions
Abstract
:1. Introduction
2. Background
2.1. Human Mobility-Related Studies
2.2. Bibliometric Analyses and Network Visualisation of the Literature
3. Materials and Methods
3.1. Review Materials
3.2. Methods
4. Results
4.1. A Summary of Publications
4.2. Co-Citation Reference Analysis
4.3. Co-Authorship Analysis
4.4. Co-Occurring Keywords Analysis
5. Future Research Directions
5.1. The Involvement of Multi-Source Mobility Data
5.2. The Improvement of the Modelling of Individual and Collective Mobility Patterns
5.3. The Integration of Artificial Intelligence Techniques in Human Mobility Studies
5.4. The Contribution of Human Mobility Studies to Social Good
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hasan, S.; Schneider, C.M.; Ukkusuri, S.V.; González, M.C. Spatiotemporal patterns of urban human mobility. J. Stat. Phys. 2013, 151, 304–318. [Google Scholar] [CrossRef] [Green Version]
- González, M.C.; Hidalgo, C.A.; Barabási, A.-L. Understanding individual human mobility patterns. Nature 2008, 453, 779–782. [Google Scholar] [CrossRef] [PubMed]
- Hannam, K.; Sheller, M.; Urry, J. Mobilities, immobilities and moorings. Mobilities 2006, 1, 1–22. [Google Scholar] [CrossRef]
- Sheller, M.; Urry, J. Mobilizing the new mobilities paradigm. Appl. Mobilities 2016, 1, 10–25. [Google Scholar] [CrossRef]
- Barbosa, H.; Barthelemy, M.; Ghoshal, G.; James, C.R.; Lenormand, M.; Louail, T.; Menezes, R.; Ramasco, J.J.; Simini, F.; Tomasini, M. Human mobility: Models and applications. Phys. Rep. 2018, 734, 1–74. [Google Scholar] [CrossRef] [Green Version]
- Pappalardo, L.; Barlacchi, G.; Pellungrini, R.; Simini, F. Human Mobility from theory to practice: Data, Models and Applications. In Proceedings of the 2019 World Wide Web Conference, San Francisco, CA, USA, 13–17 May 2019. [Google Scholar]
- Jurdak, R.; Zhao, K.; Liu, J.; Aboujaoude, M.; Cameron, M.; Newth, D. Understanding human mobility from Twitter. PLoS ONE 2015, 10, e0131469. [Google Scholar] [CrossRef]
- Song, X.; Kanasugi, H.; Shibasaki, R. Deeptransport: Prediction and simulation of human mobility and transportation mode at a citywide level. In Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, New York, NY, USA, 9–15 July 2016; pp. 2618–2624. [Google Scholar]
- Faulconbridge, J.; Hui, A. Traces of a mobile field: Ten years of mobilities research. Mobilities 2016, 11, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Hugher, C. Population mobility in the USA. Am. J. Sociol. 1930, 36, 145–146. [Google Scholar]
- Corbally, J. Measures of intra-urban mobility. Sociol. Soc. Res. 1930, 14, 547–552. [Google Scholar]
- Bañgate, J.; Dugdale, J.; Adam, C.; Beck, E. A Review on the influence of social attachment on human mobility during rises. In Proceedings of the 14th ISCRAM Conference, Albi, France, 21–24 May 2017; pp. 110–126. [Google Scholar]
- Wang, D.; Pedreschi, D.; Song, C.; Giannotti, F.; Barabasi, A.L. Human mobility, social ties, and link prediction. In Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data mining, San Diego, CA, USA, 21–24 August 2011; pp. 1100–1108. [Google Scholar]
- Zhao, K.; Tarkoma, S.; Liu, S.; Vo, H. Urban human mobility data mining: An overview. In Proceedings of the 2016 IEEE International Conference on Big Data (Big Data), Washington, DC, USA, 5–8 December 2016; pp. 1911–1920. [Google Scholar]
- Ellegaard, O.; Wallin, J.A. The bibliometric analysis of scholarly production: How great is the impact? Scientometrics 2015, 105, 1809–1831. [Google Scholar] [CrossRef] [Green Version]
- Jaffe, A.B.; Trajtenberg, M. International knowledge flows: Evidence from patent citations. Econ. Innov. New Technol. 1999, 8, 105–136. [Google Scholar] [CrossRef]
- Börner, K.; Penumarthy, S.; Meiss, M.; Ke, W. Mapping the diffusion of scholarly knowledge among major US research institutions. Scientometrics 2006, 68, 415–426. [Google Scholar] [CrossRef]
- Chen, C. CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature. J. Am. Soc. Inf. Sci. Technol. 2006, 57, 359–377. [Google Scholar] [CrossRef] [Green Version]
- Van Eck, N.J.; Waltman, L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 2010, 84, 523–538. [Google Scholar] [CrossRef] [Green Version]
- Australian Bureau of Statistics. 1297.0—Australian Standard Research Classification (ASRC). Available online: https://www.abs.gov.au/AUSSTATS/abs@.nsf/second+level+view?ReadForm&prodno=1297.0&viewtitle=Australian%20Standard%20Research%20Classification%20(ASRC)~1998~Previous~28/08/1998&&tabname=Past%20Future%20Issues&prodno=1297.0&issue=1998&num=&view=& (accessed on 5 December 2020).
- Song, C.; Qu, Z.; Blumm, N.; Barabási, A.L. Limits of predictability in human mobility. Science 2010, 327, 1018–1021. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simini, F.; González, M.C.; Maritan, A.; Barabási, A.-L. A universal model for mobility and migration patterns. Nature 2012, 484, 96–100. [Google Scholar] [CrossRef] [PubMed]
- Rhee, I.; Shin, M.; Hong, S.; Lee, K.; Kim, S.J.; Chong, S. On the levy-walk nature of human mobility. IEEE/ACM Trans. Netw. 2011, 19, 630–643. [Google Scholar] [CrossRef]
- Schneider, C.M.; Belik, V.; Couronné, T.; Smoreda, Z.; González, M.C. Unravelling daily human mobility motifs. J. R. Soc. Interface 2013, 10, 20130246. [Google Scholar] [CrossRef] [Green Version]
- Google Community Mobility Reports. Available online: https://www.google.com/covid19/mobility/ (accessed on 5 December 2020).
- Song, C.; Koren, T.; Wang, P.; Barabási, A.-L. Modelling the scaling properties of human mobility. Nat. Phys. 2010, 6, 818–823. [Google Scholar] [CrossRef] [Green Version]
- Wesolowski, A.; Eagle, N.; Tatem, A.J.; Smith, D.L.; Noor, A.M.; Snow, R.W.; Buckee, C.O. Quantifying the impact of human mobility on Malaria. Science 2012, 338, 267–270. [Google Scholar] [CrossRef] [Green Version]
- Balcan, D.; Colizza, V.; Goncalves, B.; Hu, H.; Ramasco, J.J.; Vespignani, A. Multiscale mobility networks and the spatial spreading of infectious diseases. Proc. Natl. Acad. Sci. USA 2009, 106, 21484–21489. [Google Scholar] [CrossRef] [Green Version]
- Hawelka, B.; Sitko, I.; Beinat, E.; Sobolevsky, S.; Kazakopoulos, P.; Ratti, C. Geo-located Twitter as proxy for global mobility patterns. Cartogr. Geogr. Inf. Sci. 2014, 41, 260–271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Noulas, A.; Scellato, S.; Lambiotte, R.; Pontil, M.; Mascolo, C. A tale of many cities: Universal patterns in human urban mobility. PLoS ONE 2012, 7, e37027. [Google Scholar] [CrossRef]
- Alexander, L.; Jiang, S.; Murga, M.; González, M.C. Origin–destination trips by purpose and time of day inferred from mobile phone data. Transp. Res. Part C Emerg. Technol. 2015, 58, 240–250. [Google Scholar] [CrossRef]
- Okraszewska, R.; Romanowska, A.; Wołek, M.; Oskarbski, J.; Birr, K.; Jamroz, K. Integration of a multilevel transport system model into sustainable urban mobility planning. Sustainability 2018, 10, 479. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Wang, S.; Xie, B. Evaluating the effects of public transport fare policy change together with built and non-built environment features on ridership: The case in South East Queensland, Australia. Transp. Policy 2019, 76, 78–89. [Google Scholar] [CrossRef]
- Jiang, S.; Ferreira, J.; Gonzalez, M.C. Activity-based human mobility patterns inferred from mobile phone data: A case study of Singapore. IEEE Trans. Big Data 2017, 3, 208–219. [Google Scholar] [CrossRef] [Green Version]
- Huang, X.; Li, Z.; Jiang, Y.; Ye, X.; Deng, C.; Zhang, J.; Li, X. The characteristics of multi-source mobility datasets and how they reveal the luxury nature of social distancing in the U.S. during the COVID-19 pandemic. Int. J. Digit. Earth 2021, 14, 424–442. [Google Scholar] [CrossRef]
- Li, Z.; Huang, X.; Ye, X.; Li, X. ODT flow explorer: Extract, query, and visualize human mobility. arXiv 2020, arXiv:2011.12958. [Google Scholar]
- Huang, X.; Li, Z.; Jiang, Y.; Li, X.; Porter, D. Twitter reveals human mobility dynamics during the COVID-19 pandemic. PLoS ONE 2020, 15, e0241957. [Google Scholar] [CrossRef]
- De Montjoye, Y.-A.; Hidalgo, C.A.; Verleysen, M.; Blondel, V.D. Unique in the crowd: The privacy bounds of human mobility. Sci. Rep. 2013, 3, 1376. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jain, P.; Gyanchandani, M.; Khare, N. Big data privacy: A technological perspective and review. J. Big Data 2016, 3, 25. [Google Scholar] [CrossRef] [Green Version]
- D’Andrea, A.; Ciolfi, L.; Gray, B. Methodological challenges and innovations in mobilities research. Mobilities 2011, 6, 149–160. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Liu, Y.; Hu, T. Examining the change of human mobility adherent to social restriction policies and its effect on COVID-19 cases in Australia. Int. J. Environ. Res. Public Health 2020, 17, 7930. [Google Scholar] [CrossRef]
- Bian, X.; Kim, C.; Karniadakis, G.E. 111 years of Brownian motion. Soft Matter 2016, 12, 6331–6346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brockmann, D.; Hufnagel, L.; Geisel, T. The scaling laws of human travel. Nature 2006, 439, 462–465. [Google Scholar] [CrossRef]
- Sen, A.; Smith, T.E. Gravity Models of Spatial Interaction Behavior; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Yan, X.-Y.; Wang, W.-X.; Gao, Z.-Y.; Lai, Y.-C. Universal model of individual and population mobility on diverse spatial scales. Nat. Commun. 2017, 8, 1639. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boccaletti, S.; Bianconi, G.; Criado, R.; del Genio, C.I.; Gómez-Gardeñes, J.; Romance, M.; Sendiña-Nadal, I.; Wang, Z.; Zanin, M. The structure and dynamics of multilayer networks. Phys. Rep. 2014, 544, 1–122. [Google Scholar] [CrossRef] [Green Version]
- Kivelä, M.; Arenas, A.; Barthelemy, M.; Gleeson, J.P.; Moreno, Y.; Porter, M.A. Multilayer networks. J. Complex Netw. 2014, 2, 203–271. [Google Scholar] [CrossRef] [Green Version]
- Gallotti, R.; Barthelemy, M. Anatomy and efficiency of urban multimodal mobility. Sci. Rep. 2015, 4, 6911. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alessandretti, L.; Karsai, M.; Gauvin, L. User-based representation of time-resolved multimodal public transportation networks. R. Soc. Open Sci. 2016, 3, 160156. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Lu, H.; Güting, R.H. Understanding human mobility: A multi-modal and intelligent moving objects database. In Proceedings of the 16th International Symposium on Spatial and Temporal Databases, Vienna, Austria, 19–21 August 2019; pp. 222–225. [Google Scholar]
- Kim, D.Y.; Song, H.Y. Method of predicting human mobility patterns using deep learning. Neurocomputing 2018, 280, 56–64. [Google Scholar] [CrossRef]
- Ouyang, X.; Zhang, C.; Zhou, P.; Jiang, H.; Gong, S. DeepSpace: An online deep learning framework for mobile big data to understand human mobility patterns. arXiv 2018, arXiv:1610.07009. [Google Scholar]
- Song, X.; Shibasaki, R.; Yuan, N.J.; Xie, X.; Li, T.; Adachi, R. DeepMob: Learning deep knowledge of human emergency behavior and mobility from big and heterogeneous data. ACM Trans. Inf. Syst. 2017, 35, 41. [Google Scholar] [CrossRef]
- Huang, X.; Lu, J.; Gao, S.; Wang, S.; Liu, Z.; Wei, H. Staying at home is a privilege: Evidence from fine-grained mobile phone location data in the U.S. during the COVID-19 pandemic. Ann. Am. Assoc. Geogr. 2021. [Google Scholar] [CrossRef]
- Corona, E.; Chen, R.; Sikora, M.; Morgan, A.A.; Patel, C.J.; Ramesh, A.; Bustamante, C.D.; Butte, A.J. Analysis of the genetic basis of disease in the context of worldwide human relationships and migration. PLoS Genet. 2013, 9, e1003447. [Google Scholar] [CrossRef] [Green Version]
- Isdory, A.; Mureithi, E.W.; Sumpter, D.J. The impact of human mobility on HIV transmission in Kenya. PLoS ONE 2015, 10, e0142805. [Google Scholar] [CrossRef] [Green Version]
- Wesolowski, A.; Qureshi, T.; Boni, M.F.; Sundsøy, P.R.; Johansson, M.A.; Rasheed, S.B.; Engø-Monsen, K.; Buckee, C.O. Impact of human mobility on the emergence of dengue epidemics in Pakistan. Proc. Natl. Acad. Sci. USA 2015, 112, 11887–11892. [Google Scholar] [CrossRef] [Green Version]
- Kraemer, M.U.; Yang, C.-H.; Gutierrez, B.; Wu, C.-H.; Klein, B.; Pigott, D.M.; Du Plessis, L.; Faria, N.R.; Li, R.; Hanage, W.P. The effect of human mobility and control measures on the COVID-19 epidemic in China. Science 2020, 368, 493–497. [Google Scholar] [CrossRef] [Green Version]
- Hadjidemetriou, G.M.; Sasidharan, M.; Kouyialis, G.; Parlikad, A.K. The impact of government measures and human mobility trend on COVID-19 related deaths in the UK. Transp. Res. Interdiscip. Perspect. 2020, 6, 100167. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, S.; Hu, T.; Fu, X.; Wang, X.; Hu, Y.; Bao, S. Human mobility and COVID-19 transmission: A systematic review and future directions. medRxiv 2021. [Google Scholar] [CrossRef]
- Kaur, S.; Bherwani, H.; Gulia, S.; Vijay, R.; Kumar, R. Understanding COVID-19 transmission, health impacts and mitigation: Timely social distancing is the key. Environ. Dev. Sustain. 2020, 23, 6681–6697. [Google Scholar] [CrossRef] [PubMed]
- Adey, P.; Hannam, K.; Sheller, M.; Tyfield, D. Pandemic (Im)mobilities. Mobilities 2021, 16, 1–19. [Google Scholar] [CrossRef]
- Alfano, V.; Ercolano, S. The efficacy of lockdown against COVID-19: A cross-country panel analysis. Appl. Health Econ. Health Policy 2020, 18, 509–517. [Google Scholar] [CrossRef]
- O’Sullivan, D.; Gahegan, M.; Exeter, D.J.; Adams, B. Spatially explicit models for exploring COVID-19 lockdown strategies. Trans. GIS 2020, 24, 967–1000. [Google Scholar] [CrossRef]
- Cresswell, T. Valuing mobility in a post COVID-19 world. Mobilities 2021, 16, 51–65. [Google Scholar] [CrossRef]
- Nam, T.; Pardo, T.A. Conceptualizing smart city with dimensions of technology, people, and institutions. In Proceedings of the 12th Annual International Digital Government Research Conference: Digital Government Innovation in Challenging Times, College Park, ML, USA, 12–15 June 2011; pp. 282–291. [Google Scholar]
- Urry, J. Mobilities: New Perspectives on Transport and Society; Routledge: Milton, UK, 2016. [Google Scholar]
- Hillier, B.; Turner, A.; Yang, T.; Park, H.T. Metric and topo-geometric properties of urban street networks: Some convergences, divergences and new results. J. Space Syntax Stud. 2009. Available online: https://discovery.ucl.ac.uk/id/eprint/18583/1/18583.pdf (accessed on 5 December 2020).
- Pan, G.; Qi, G.; Zhang, W.; Li, S.; Wu, Z.; Yang, L.T. Trace analysis and mining for smart cities: Issues, methods, and applications. IEEE Commun. Mag. 2013, 51, 120–126. [Google Scholar] [CrossRef]
- Bienzeisler, L.; Lelke, T.; Wage, O.; Thiel, F.; Friedrich, B. Development of an agent-based transport model for the city of hanover using empirical mobility data and data fusion. Transp. Res. Procedia 2020, 47, 99–106. [Google Scholar] [CrossRef]
- Canzler, W.; Knie, A. Mobility in the age of digital modernity: Why the private car is losing its significance, intermodal transport is winning and why digitalisation is the key. Appl. Mobilities 2016, 1, 56–67. [Google Scholar] [CrossRef]
- Liu, G.; Krishnamurthy, S.; Wesemael, P.J.V. Conceptualizing cycling experience in urban design research: A systematic literature review. Appl. Mobilities 2018, 6, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Kitamura, R.; Chen, C.; Pendyala, R.M.; Narayanan, R. Micro-simulation of daily activity-travel patterns for travel demand forecasting. Transportation 2000, 27, 25–51. [Google Scholar] [CrossRef]
- Sirkeci, I.; Cohen, J.H. Cultures of migration and conflict in contemporary human mobility in Turkey. Eur. Rev. 2016, 24, 381–396. [Google Scholar] [CrossRef]
- Afifi, T.; Milan, A.; Etzold, B.; Schraven, B.; Rademacher-Schulz, C.; Sakdapolrak, P.; Reif, A.; Van Der Geest, K.; Warner, K. Human mobility in response to rainfall variability: Opportunities for migration as a successful adaptation strategy in eight case studies. Migr. Dev. 2016, 5, 254–274. [Google Scholar] [CrossRef]
- Bengtsson, L.; Lu, X.; Thorson, A.; Garfield, R.; Von Schreeb, J. Improved response to disasters and outbreaks by tracking population movements with mobile phone network data: A post-earthquake geospatial study in Haiti. PLoS Med. 2011, 8, e1001083. [Google Scholar] [CrossRef]
- Bank, A.; Fröhlich, C.; Schneiker, A. The political dynamics of human mobility: Migration out of, as and into violence. Glob. Policy 2017, 8, 12–18. [Google Scholar] [CrossRef] [Green Version]
- Adey, P. Emergency mobilities. Mobilities 2016, 11, 32–48. [Google Scholar] [CrossRef]
- Liu, Y.; Batty, M.; Wang, S.; Corcoran, J. Modelling urban change with cellular automata: Contemporary issues and future research directions. Prog. Hum. Geogr. 2019, 45, 3–24. [Google Scholar] [CrossRef]
Research Protocol | Detail Description |
---|---|
Research database | WOS core collection: SCI-Expanded and SSCI |
Publication type | All types: articles, review and editorial, conference proceeding papers, book chapters and review, meeting abstract, data papers, reprints, letters, correction and retracted publications. |
Language | English |
Year range | 1990 to 2020 September |
Search field | Topic including titles, abstracts, and keywords |
Search term | Human mobility; mobility pattern; human trajectory; human migration; human immigration; population migration; population immigration; population mobility; rural mobility; urban mobility; migration flow; immigration flow; mobility network; migration network; immigration network |
Data extraction | Export with full records and cited references in plain text format |
Data analysis and visualisation | CiteSpace, VOSviewer |
Sample size | 5728 publications |
Type | Number | % |
---|---|---|
Articles | 5022 | 87.67 |
Review and editorial | 378 | 6.60 |
Conference proceeding papers | 166 | 2.89 |
Book chapter and review | 80 | 1.40 |
Others * | 82 | 1.43 |
Author | No. of Publication | Main Focuses |
---|---|---|
Liu Y | 35 | Urban studies, travel pattern, transportation |
Ratti C | 29 | Mobile phone and big data, urban mobility |
Tatem AJ | 29 | Malaria transmission, disease and health |
Gonzalez MC | 25 | Modelling, individual trajectory, big data |
Li Y | 25 | Mobile phone data, trajectory, modelling |
Li X | 23 | Travel, big data, spatiotemporal modelling |
Kwan MP | 31 | Geo-spatial studies, individual behaviours |
Mari L | 20 | Epidemic, disease transmission |
Rinaldo A | 20 | Epidemic cholera, disease transmission |
Bertuzzo E | 19 | Epidemic, forecasting, transmission and outbreak |
Broad Categories | No. of Default Categories | No. of Publications * |
---|---|---|
Social Sciences | 23 | 2557 (25.08%) |
Environmental Sciences | 6 | 1319 (12.94%) |
Medical and Health Sciences | 21 | 1252 (12.28%) |
Information and Computing Sciences | 7 | 1096 (10.75%) |
Technology | 3 | 1010 (9.90%) |
Multidisciplinary | 5 | 864 (8.47%) |
Engineering | 8 | 811 (7.95%) |
Biological Sciences | 11 | 637 (6.25%) |
Mathematical Sciences | 5 | 262 (2.57%) |
Chemical Sciences | 3 | 160 (1.57%) |
Earth Sciences | 4 | 154 (1.51%) |
Physical Sciences | 2 | 57 (0.56%) |
Education | 1 | 18 (0.18%) |
No. of Being Cited | Centrality | Author | Title | Journal | Category | Year |
---|---|---|---|---|---|---|
2832 | 35 | Gonzalez MC | Understanding individual human mobility patterns | Nature | Multidisciplinary Sciences; Computer science and technology | 2008 |
1469 | 39 | Song CM | Limits of Predictability in Human Mobility | Science | Multi-disciplinary sciences; Computer science and technology | 2010 |
678 | 38 | Wesolowski A | Quantifying the Impact of Human Mobility on Malaria | Science | Medical and health science | 2012 |
539 | 52 | Balcan D | Multi-scale mobility networks and the spatial spreading of infectious diseases | Proceedings of the National Academy of Sciences of the United States of America | Multi-disciplinary sciences; Computer science; Medical and health science | 2009 |
524 | 58 | Simini F | A universal model for mobility and migration patterns | Nature | Multi-disciplinary sciences; Computer science and technology | 2012 |
519 | 38 | Song CM | Modelling the scaling properties of human mobility | Nature Physics | Multi-disciplinary sciences; Physics | 2010 |
454 | 11 | Rhee I | On the Levy-Walk Nature of Human Mobility | IEEE ACM Transactions on Network | Computer science; Engineering; Telecommunications | 2011 |
294 | 37 | Noulas A | A Tale of Many Cities: Universal Patterns in Human Urban Mobility | PLoS ONE | Multi-disciplinary; Social science (Urban studies) | 2012 |
274 | 33 | Hawelka B | Geo-located Twitter as proxy for global mobility patterns | Cartography and Geographic Information Science | Social science (Geography) | 2014 |
188 | 49 | Schneider CM | Unravelling daily human mobility motifs | Journal of The Royal Society Interface | Multi-disciplinary sciences; Computer science and technology | 2013 |
185 | 40 | Alexander L | Origin–destination trips by purpose and time of day inferred from mobile phone data | Transportation Research Part C: Emerging Technologies | Transportation science & Technology | 2015 |
1990–1999 | 2000–2009 | 2010–2019 | 2020 |
---|---|---|---|
Transportation | |||
Cost, city, transport | Simulation, policy inequality, accessibility system, urbanisation, travel, urban mobility, poverty | Travel behaviour, built environment, participation, CO2 emission, city logistics, public transport, infrastructure, market, public transit, suitability, space, vehicle, sustainable transport | automated vehicle, violence, vehicle usage |
Genetics & Heredity | |||
Human evolution, mutation, migration, New Guinea, population sequence, distance | Genotype, selection, structure, epidemiology, poly-morphology, diversity, dispersal, geography, sequence, gene nucleus, population | Expansion, susceptibility, inference, mixture, ethnic group, South America, genome, association, admittance | N/A |
Infectious diseases | |||
Malaria, sexuality, Africa, mortality, infection impact, transmitted diseases, epidemiology aid, risk transmission, infection, impact, demography, health | Tuberculosis trend, developing country, efficiency, virus, immigrant, prevalence, HIV care, diffusion, outbreak, risk factor, community, transmitted diseases, association, epidemiology | Surveillance, sex, plasma, dengue, population dynamics, Thailand, human transmission, plasmodium, hem magic, influenza, temperature, dynamic index, weather | Sar-cov-1, coronavirus, covid-19 |
Demography | |||
Determinate, migration, conflict, Indonesia, agriculture, climate change, immigration, population, sequence | Spain, refugee, Latin America, displacement, migration, immigration, globalisation, family | Variability, citizenship, livelihood, natural disaster, sea level rise, vulnerability, identify, house limit, adaptation, migration, resettlement, income | Artefact, synchrony, mitigation |
Telecommunications | |||
N/A | Global mobility, network, location, management, authentication, scheme, movement, optimisation, mobility model | Internet, wireless network, robustness, clustering, travel time, framework, wireless sensor, delivery, opportunities | Wireless communication, smart mobility, road |
Physics, multidisciplinary | |||
Network pattern | Random walk, epidemics, movement, classification, dynamics, network mobility | Urban mobility, vehicle, predictability, trajectory, GP location, travel pattern, smart card data, complex network, global position system, twitter, analytics, activity, spatial pattern | Urban agglomeration, geographically weighted regression, deep learning |
Archaeology | |||
Australia, beverage, water, age, mobility, sea, archaeology | Bone, record, diet, ratio, reconstruction, Neolithic, Europe, strontium isotope, residential mobility, direction | Fractionates, states, late Pleistocene, stable isotope, carbon, bronze, bone collagen | N/A |
Business | |||
Amazon, deforestation, vegetation | Country, conservation, biodiversity, forest | Soil, pollution, exposure, barrier, decision making, environmental health, intervention, decision making, mental health, adolescent, air pollution, living quality, social network | Air pollution exposure, population exposure |
Microbiology | |||
Gene culture, growth, DNA, protein, gene behaviour, differentiation, birthplace, degradation, amplification, | Gram, negative bacteria, cellulite, cell migration, | In vitro, urbanisation, landscape, proliferation, apoptosis | N/A |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Zhang, M.; Hu, T.; Fu, X.; Gao, Z.; Halloran, B.; Liu, Y. A Bibliometric Analysis and Network Visualisation of Human Mobility Studies from 1990 to 2020: Emerging Trends and Future Research Directions. Sustainability 2021, 13, 5372. https://doi.org/10.3390/su13105372
Wang S, Zhang M, Hu T, Fu X, Gao Z, Halloran B, Liu Y. A Bibliometric Analysis and Network Visualisation of Human Mobility Studies from 1990 to 2020: Emerging Trends and Future Research Directions. Sustainability. 2021; 13(10):5372. https://doi.org/10.3390/su13105372
Chicago/Turabian StyleWang, Siqin, Mengxi Zhang, Tao Hu, Xiaokang Fu, Zhe Gao, Briana Halloran, and Yan Liu. 2021. "A Bibliometric Analysis and Network Visualisation of Human Mobility Studies from 1990 to 2020: Emerging Trends and Future Research Directions" Sustainability 13, no. 10: 5372. https://doi.org/10.3390/su13105372
APA StyleWang, S., Zhang, M., Hu, T., Fu, X., Gao, Z., Halloran, B., & Liu, Y. (2021). A Bibliometric Analysis and Network Visualisation of Human Mobility Studies from 1990 to 2020: Emerging Trends and Future Research Directions. Sustainability, 13(10), 5372. https://doi.org/10.3390/su13105372