Organic Agroforestry Long-Term Field Experiment Designing Trough Actors’ Knowledge towards Food System Sustainability
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Local Context
2.2. The AgroforSyLL Experience
2.2.1. Phase 1: Identification of the Cultural Broker and Actor Platform Definition
2.2.2. Phase 2: Research Demand and Main Criteria for LTE Setup
2.2.3. Phase 3: Agroecological Living Lab Definition
3. Results
3.1. Stakeholder Platform Composition and Research Survey
3.2. Questionnaire Analysis
3.3. Workshop and Open Discussion Output
3.4. Second Face-to-Face Meeting and Criteria Selection
3.5. The Biophysical Component: The LTE Proposal
4. Discussion
Next Steps and AGROFORSYLL Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Food and Agriculture Organization of the United Nations (FAO). The Future of Food and Agriculture—Trends and Challenges; FAO: Rome, Italy, 2017. [Google Scholar]
- The International Panel of Experts on Sustainable Food Systems (IPES-Food). From Uniformity to Diversity: A Paradigm Shift from Industrial Agriculture to Diversified Agroecological Systems. In International Panel of Experts on Sustainable Food Systems; IPES-Food: Brussels, Belgium, 2016; Available online: www.ipes-food.org/img/upload/files/UniformityToDiversity_FULL.pdf (accessed on 27 October 2020).
- Béné, C.; Oosterveer, P.; Lamotte, L.; Brouwer, I.D.; de Haan, S.; Prager, S.D.; Talsma, E.F.; Khoury, C.K. When food systems meet sustainability—Current narratives and implications for actions. World Dev. 2019, 113, 116–130. [Google Scholar] [CrossRef]
- Kremen, C.; Iles, A.; Bacon, C. Diversified Farming Systems: An Agroecological, Systems-based Alternative to Modern Industrial Agriculture. Ecol. Soc. 2012, 17, 44. [Google Scholar] [CrossRef]
- Gliessman, S.R. Transforming food and agriculture systems with agroecology. Agric. Hum. Values 2020, 37, 547–548. [Google Scholar] [CrossRef] [PubMed]
- Anderson, F. Food Sovereignty Now! EUROPEAN Coordination via Campesina. 2018. Available online: https://viacampesina.org/en/wp-content/uploads/sites/2/2018/02/Food-Sovereignty-A-guide-Low-Res-Vresion.pdf (accessed on 27 October 2020).
- Loker, A.; Francis, C. Commentary: Urban food sovereignty: Urgent need for agroecology and systems thinking in a post-Covid 19 future. Agroecol. Sustain. Food Syst. 2020, 44, 1118–1123. [Google Scholar] [CrossRef]
- Mottet, A.; Bicksler, A.; Lucantoni, D.; De Rosa, F.; Scherf, B.; Scopel, E.; López-Ridaura, S.; Gemmil-Herren, B.; Kerr, R.B.; Sourisseau, J.-M.; et al. Assessing Transitions to Sustainable Agricultural and Food Systems: A Tool for Agroecology Performance Evaluation (TAPE). Front. Sustain. Food Syst. 2020, 4, 579154. [Google Scholar] [CrossRef]
- Aspenson, A. True Costs for Food System Reform: An Overview of True Cost Accounting Literature and Initiatives; Center for a Livable Future (CLF), Johns Hopkins Bloomberg School of Public Health: Baltimore, MD, USA, 2020; p. 24. [Google Scholar]
- Rossi, A. From Co-Learning to Shared Commitment to Agroecology. Some Insights from Initiatives Aimed at Reintroducing Agrobiodiversity. Sustainability 2020, 12, 7766. [Google Scholar] [CrossRef]
- Barrios, E.; Gemmill-Herren, B.; Bicksler, A.; Siliprandi, E.; Brathwaite, R.; Moller, S.; Batello, C.; Tittonell, P. The 10 Elements of Agroecology: Enabling transitions towards sustainable agriculture and food systems through visual narratives. Ecosyst. People 2020, 16, 230–247. [Google Scholar] [CrossRef]
- Alonso-Fradejas, A.; Forero, L.F.; Ortega-Espès, D.; Drago, M.; Chandrasekaran, K. ‘Junk Agroecology’: The corporate Capture of Agroecology for a Partial Ecological Transition without Social Justice. 2020. ATI, TNI, Crocevia. Available online: https://www.foei.org/wp-content/uploads/2020/10/Junk-Agroecology-FOEI-TNI-Crocevia-report-ENG.pdf (accessed on 27 October 2020).
- Wezel, A.; Bellon, S.; Dore, T.; Francis, C.; Vallod, D.; De David, C. Agroecology as a science, a movement and a practice. A review. Agron. Sustain. Dev. 2009, 29, 503–515. [Google Scholar] [CrossRef] [Green Version]
- Ciaccia, C.; Di Pierro, M.; Testani, E.; Roccuzzo, G.; Cutuli, M.; Ceccarelli, D. Participatory Research towards Food System Redesign: Italian Case Study and Perspectives. Sustainability 2019, 11, 7138. [Google Scholar] [CrossRef] [Green Version]
- Lacombe, C.; Couix, N.; Hazard, L. Designing agroecological farming systems with farmers: A review. Agric. Syst. 2018, 165, 208–220. [Google Scholar] [CrossRef]
- High Lecel Panel of Experts (HLPE). Agroecological and Other Innovative Approaches for Sustainable Agriculture and Food Systems that Enhance Food Security and Nutrition; HLPE: Rome, Italy, 2019. [Google Scholar]
- Mosquera-Losada, M.; Santiago-Freijanes, J.; Rois-Díaz, M.; Moreno, G.; Herder, M.D.; Aldrey-Vázquez, J.; Ferreiro-Domínguez, N.; Pantera, A.; Pisanelli, A.; Rigueiro-Rodríguez, A. Agroforestry in Europe: A land management policy tool to combat climate change. Land Use Policy 2018, 78, 603–613. [Google Scholar] [CrossRef]
- Rosati, A.; Borek, R.; Canali, S. Agroforestry and organic agriculture. Agrofor. Syst. 2020, 1–17. [Google Scholar] [CrossRef]
- Ciaccia, C.; Ceccarelli, D.; Antichi, D.; Canali, S. Long-term experiments on agroecology and organic farming: The Italian long-term experiment network. In Long-Term Farming Systems Research; Elsevier: Amsterdam, The Netherlands, 2020; pp. 183–196. [Google Scholar]
- MACS-G20 (Meetings of Agricultural Chief Scientists of G20 States). Agroecosystem Living Laboratories. Executive Report. 2019. Available online: http://www.macs-g20.org (accessed on 5 November 2020).
- SINAB (Sistema Informativo Nazionale Agricoltura Biologica). Italian National Organic Agriculture Statistics; Bio in cifre 2020; Sistema Informativo Nazionale Agricoltura Biologica: Rome, Italy, 2020; Available online: http://www.sinab.it/ (accessed on 15 November 2020). (In Italian)
- UNESCO-FAO. Bioclimatic Map of the Mediterranean Zone; NS162/III, 22A; UNESCO: Paris, France; FAO: Rome, Italy, 1963; p. 60. [Google Scholar]
- Bentivenga, M.; Giano, S.I.; Piccarreta, M. Recent Increase of Flood Frequency in the Ionian Belt of Basilicata Region, Southern Italy: Human or Climatic Changes? Water 2020, 12, 2062. [Google Scholar] [CrossRef]
- Diacono, M.; Fiore, A.; Farina, R.; Canali, S.; Di Bene, C.; Testani, E.; Montemurro, F. Combined agro-ecological strategies for adaptation of organic horticultural systems to climate change in Mediterranean environment. Ital. J. Agron. 2016, 11, 85–91. [Google Scholar] [CrossRef]
- Diacono, M.; Persiani, A.; Testani, E.; Montemurro, F.; Ciaccia, C. Recycling Agricultural Wastes and By-products in Organic Farming: Biofertilizer Production, Yield Performance and Carbon Footprint Analysis. Sustainability 2019, 11, 3824. [Google Scholar] [CrossRef] [Green Version]
- USDA-NRCS. Soil Taxonomy, A Basic System of Soil Classification for Making and Interpreting Soil Surveys; Agriculture Handbook 436; USDA-NRCS: Washington, DC, USA, 1999.
- Kemmis, S.; McTaggart, R. Participatory Action Research: Communicative Action and the Public Sphere. In The Sage Handbook of Qualitative Research; Denzin, N.K., Lincoln, Y.S., Eds.; Sage Publications Ltd.: Thousand Oaks, CA, USA, 2005; pp. 559–603. [Google Scholar]
- O’Brien, R. Um Exame da Abordagem Metodológica da Pesquisa Ação [An Overview of the Methodological Approach of Action Research]. In Teoria e Prática da Pesquisa Ação [Theory and Practice of Action Research]; English Version; Richardson, R., Ed.; Universidade Federal da Paraíba: João Pessoa, Brazil, 2001; Available online: http://www.web.ca/~robrien/papers/arfinal.html (accessed on 14 November 2020).
- Neef, A.; Neubert, D. Stakeholder participation in agricultural research projects: A conceptual framework for reflection and decision-making. Agric. Hum. Values 2010, 28, 179–194. [Google Scholar] [CrossRef] [Green Version]
- Van de Fliert, E.; Braun, A.R. Conceptualizing integrative, farmer participatory research for sustainable agriculture: From opportunities to impact. Agric. Hum. Values 2002, 19, 25–38. [Google Scholar] [CrossRef]
- Kivimaa, P.; Hyysalo, S.; Boon, W.; Klerkx, L.; Martiskainen, M.; Schot, J. Passing the baton: How intermediaries advance sustainability transitions in different phases. Environ. Innov. Soc. Transit. 2019, 31, 110–125. [Google Scholar] [CrossRef]
- Jezewski, M.A.; Sotnik, P. The Rehabilitation Service Provider as Culture Broker: Providing Culturally Competent Services to Foreign Born Persons; Center for International Rehabilitation Research Information and Exchange: Buffalo, NY, USA, 2001. [Google Scholar]
- Pimbert, M. Participatory Research and On-Farm Management of Agricultural Biodiversity in Europe; Pimbert, M., Ed.; International Institute for Environment and Development (IIED): London, UK, 2011; p. 80. [Google Scholar]
- Delate, K.; Canali, S.; Turnbull, R.; Tan, R.; Colombo, L. Participatory organic research in the USA and Italy: Across a continuum of farmer–researcher partnerships. Renew. Agric. Food Syst. 2016, 32, 331–348. [Google Scholar] [CrossRef]
- Gillham, B. Developing a Questionnaire, 2nd ed.; Continuum International Publishing Group Ltd.: London, UK, 2008. [Google Scholar]
- Guion, L.A.; Diehl, D.C.; McDonald, D. Conducting an In-Depth Interview; University of Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences EDIS: Gainesville, FL, USA, 2001. [Google Scholar]
- Chonkova, B. Crowd Wise. In D3.2 Public Engagement Methods and Tools; Report of “Engage 2020, Tools and instruments for a better societal engagement in Horizon 2020”; 2014; pp. 49–51. Available online: http://engage2020.eu/media/Fact-sheet-on-the-current-praxis-of-methods-tools-and-instruments.pdf (accessed on 14 November 2020).
- Raggi, L.; Ciancaleoni, S.; Torricelli, R.; Terzi, V.; Ceccarelli, S.; Negri, V. Evolutionary breeding for sustainable agriculture: Selection and multi-environmental evaluation of barley populations and lines. Field Crop. Res. 2017, 204, 76–88. [Google Scholar] [CrossRef]
- Kleijn, D.; Bommarco, R.; Fijen, T.P.; Garibaldi, L.A.; Potts, S.G.; van der Putten, W.H. Ecological Intensification: Bridging the Gap between Science and Practice. Trends Ecol. Evol. 2019, 34, 154–166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silva, E.; Hendrickson, J.; Mitchell, P.; Bietila, E. From the field: A participatory approach to assess labor inputs on organic diversified vegetable farms in the Upper Midwestern USA. Renew. Agric. Food Syst. 2017, 34, 1–6. [Google Scholar] [CrossRef]
- Hoffman, V.; Probst, K.; Christinck, A. Farmers and researchers: How can collaborative advantages be created in participatory research and technology development? Agric. Hum. Values 2007, 24, 355–368. [Google Scholar] [CrossRef]
- Hernández-Morcillo, M.; Burgess, P.; Mirck, J.; Pantera, A.; Plieninger, T. Scanning agroforestry-based solutions for climate change mitigation and adaptation in Europe. Environ. Sci. Policy 2018, 80, 44–52. [Google Scholar] [CrossRef] [Green Version]
- Camilli, F.; Pisanelli, A.; Seddaiu, G.; Franca, A.; Bondesan, V.; Rosati, A.; Moreno, G.M.; Pantera, A.; Hermansen, J.E.; Burgess, P.J. How local stakeholders perceive agroforestry systems: An Italian perspective. Agrofor. Syst. 2017, 92, 849–862. [Google Scholar] [CrossRef]
- Viaene, J.; Van Lancker, J.; Vandecasteele, B.; Willekens, K.; Bijttebier, J.; Ruysschaert, G.; De Neve, S.; Reubens, B. Opportunities and barriers to on-farm composting and compost application: A case study from northwestern Europe. Waste Manag. 2016, 48, 181–192. [Google Scholar] [CrossRef]
- Fantappiè, M.; Lorenzetti, R.; De Meo, I.; Costantini, E.A. How to improve the adoption of soil conservation practices? Suggestions from farmers’ perception in western Sicily. J. Rural Stud. 2020, 73, 186–202. [Google Scholar] [CrossRef]
- Renna, M.; Montesano, F.F.; Signore, A.; Gonnella, M.; Santamaria, P. BiodiverSO: A Case Study of Integrated Project to Preserve the Biodiversity of Vegetable Crops in Puglia (Southern Italy). Agriculture 2018, 8, 128. [Google Scholar] [CrossRef] [Green Version]
- Conversa, G.; Lazzizera, C.; Bonasia, A.; Cifarelli, S.; Losavio, F.; Sonnante, G.; Elia, A. Exploring on-farm agro-biodiversity: A study case of vegetable landraces from Puglia region (Italy). Biodivers. Conserv. 2019, 29, 747–770. [Google Scholar] [CrossRef]
- Di Silvestro, S.; Strano, M.C.; Ferlito, F.; Torrisi, B.; Allegra, M.; Neri, D.; Lodolini, E.M.; Bella, S. A new emergency for the Mediterranean fruit trees: Detection and characterization of a fungal disease on fig (Ficus carica L.) in Sicily. Acta Hortic. 2021, in press. [Google Scholar]
- Lodolini, E.M.; Ferlito, F.; Neri, D. Pruning fig (Ficus carica L.) during the early stages after planting. Acta Hortic. 2021, in press. [Google Scholar]
- Cicala, A.; Continella, A.; Ferlito, F. Preliminary Results of Primocane-Fruiting Red Raspberry Cultivars in Sicily. Acta Hortic. 2002, 585, 191–195. [Google Scholar] [CrossRef]
- Stati Generali Agricoltura: Stato di SALUTE DEL COMParto. AGR Basilicata. Available online: https://www.regione.basilicata.it/giunta/site/Giunta/detail.jsp?otype=1012&id=3052391#:~:text=Donne.,regioni%20con%20incidenza%20pi%C3%B9%20alta (accessed on 7 May 2021).
- Ceccarelli, D.; Ciaccia, C.; Canali, S. I Dispositivi Sperimentali di Lungo Periodo per l’agricoltura Biologica. In BIOREPORT 2019. L’agricoltura biologica in Italia; Abitabile, C., Marras, F., Viganò, L., Eds.; Rete Rurale Nazionale 2014–2020: Roma, Italy, 2020; pp. 161–179. [Google Scholar]
- Eyhorn, F.; Muller, A.; Reganold, J.P.; Frison, E.; Herren, H.R.; Luttikholt, L.; Mueller, A.; Sanders, J.; Scialabba, N.E.-H.; Seufert, V.; et al. Sustainability in global agriculture driven by organic farming. Nat. Sustain. 2019, 2, 253–255. [Google Scholar] [CrossRef] [Green Version]
- Wezel, A.; Brives, H.; Casagrande, M.; Clément, C.; Dufour, A.; Vandenbroucke, P. Agroecology territories: Places for sustainable agricultural and food systems and biodiversity conservation. Agroecol. Sustain. Food Syst. 2015, 40, 132–144. [Google Scholar] [CrossRef]
Panel | Actor Platform | Researcher Platform | ||
---|---|---|---|---|
Number of participants | 16 | 22 | 9 1 | |
Gender (n) | Male | 15 | 21 | 5 |
Female | 1 | 1 | 4 | |
Age (n) | 18–39 | 4 | 4 | 2 |
40–59 | 11 | 15 | 7 | |
over 60 | 1 | 3 | - | |
Stakeholder profile (%) 2 | Farmers | 81 | 68 | - |
Technicians | 50 | 50 | - | |
Association | 19 | 23 | - | |
Scientists | - | - | 100 | |
Other | 6 | 8 | - |
Species | Market Opportunities | Notes | Diffusion at Local Scale |
---|---|---|---|
Diospyros kaki (L.) | Fresh and processed products | Needs for post-harvest organization. Interest towards non astringent cultivar | X |
Ficus carica (L.) | Growing interest in fresh product in Central Europe and lack of organic production of dry fruits | Cultivation was widespread until the 1950s. Currently, there are a few specialized organic farms in the area | X |
Malus domestica (Borch.) | Interest in local varieties, answering to a growing demand of these products | The crop is not widespread in the plains due to its high chilling requirement | |
Morus alba (L.); M. nigra (L.) | Interest for fresh product, opportunity offered by sericulture | In traditional farm, few plants were common. It can provide valuable materials for composting (pruning residues) | |
Opuntia ficus-indica (L.) | Interest in organic fresh production | Naturalized species, it is commonly used also in the hedgerows | X |
Pistacia vera (L.) | Growing demand for processed product | Suitable for intensive systems thank to high mechanization level of harvest | |
Prunus dulcis (Mill.) | Interest in organic processed products | Suitable for intensive systems thank to high mechanization level of pruning and harvest | X |
Punica granatum (L.) | Fresh and processed products | Widely cultivated on the Ionian coast, presence of organic specialized farms for juice production | X |
Pyrus communis (L.) | Interest in local varieties, answering to a growing demand of these products | The crop is not widespread in the plains due to its high chilling requirement | |
Berry fruits | Interest in connecting their production with the distribution chain of strawberry | In the area, strawberry is widespread also in rotation with vegetable crops | |
Officinal plants | Growing demand of dry products | Presence of organic producers in the area | X |
LTE System | Crop | Pros | Cons |
---|---|---|---|
AF1 | Persimmon | Availability of local varieties. Constant and high production | Large root systems, able to explore up to 5 m from the trunk. Needs for post-harvest organization. Fly protection |
AF1 | Fig | Production after 2 to 3 years from planting. Possibility to reduce the height of brunches and to obtain two crops’ branches. Few pests | Extensive root systems in case of reduced water availability. Increase in alien pest diseases |
AF2 | Blackberry | Low workload requested; high product value | Initial investment for training system materials (V-shape) |
AF2 | Red Raspberry | Availability of primocane-fruiting (double production) low chilling cultivars. Lack of production in the area | Subacid soil; suggested shading systems; daily harvest for long period |
AF2 | Officinal plants | Satisfying market request | Limited knowledge on their agronomic needs |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ciaccia, C.; Testani, E.; Fiore, A.; Iocola, I.; Di Pierro, M.; Mele, G.; Ferlito, F.; Cutuli, M.; Montemurro, F.; Farina, R.; et al. Organic Agroforestry Long-Term Field Experiment Designing Trough Actors’ Knowledge towards Food System Sustainability. Sustainability 2021, 13, 5532. https://doi.org/10.3390/su13105532
Ciaccia C, Testani E, Fiore A, Iocola I, Di Pierro M, Mele G, Ferlito F, Cutuli M, Montemurro F, Farina R, et al. Organic Agroforestry Long-Term Field Experiment Designing Trough Actors’ Knowledge towards Food System Sustainability. Sustainability. 2021; 13(10):5532. https://doi.org/10.3390/su13105532
Chicago/Turabian StyleCiaccia, Corrado, Elena Testani, Angelo Fiore, Ileana Iocola, Marta Di Pierro, Giuseppe Mele, Filippo Ferlito, Marcello Cutuli, Francesco Montemurro, Roberta Farina, and et al. 2021. "Organic Agroforestry Long-Term Field Experiment Designing Trough Actors’ Knowledge towards Food System Sustainability" Sustainability 13, no. 10: 5532. https://doi.org/10.3390/su13105532
APA StyleCiaccia, C., Testani, E., Fiore, A., Iocola, I., Di Pierro, M., Mele, G., Ferlito, F., Cutuli, M., Montemurro, F., Farina, R., Ceccarelli, D., Persiani, A., Canali, S., & Diacono, M. (2021). Organic Agroforestry Long-Term Field Experiment Designing Trough Actors’ Knowledge towards Food System Sustainability. Sustainability, 13(10), 5532. https://doi.org/10.3390/su13105532