Smart City Ontologies and Their Applications: A Systematic Literature Review
Abstract
:1. Introduction
2. The Systematic Literature Review Process
- Planning & design;
- Papers gathering & semantic analysis;
- Takeaways.
2.1. Planning and Design
2.2. Knowledge Gathering and Semantic Analysis
2.3. Takeaways
3. Sectorial Results
3.1. Communities
3.1.1. Issues for Communities
3.1.2. Ontologies for Communities
3.1.3. Services and Technologies for Communities
3.2. Crisis Management
3.2.1. Issues for Crisis Management
3.2.2. Ontologies for Crisis Management
3.2.3. Services and Technologies for Crisis Management
3.3. Economics
3.3.1. Issues for Economics
3.3.2. Ontologies for Economics
3.3.3. Semantic Services and Technologies for Economics
3.4. eLearning
3.4.1. Issues for eLearning
3.4.2. Ontologies for eLearning
3.4.3. Services and Technologies for eLearning
3.5. Energy
3.5.1. Issues for Energy
3.5.2. Ontologies for Energy
3.5.3. Services and Technologies for Energy
3.6. Environment
3.6.1. Issues for Environment
3.6.2. Ontologies for Environment
3.6.3. Services and Technologies for Environment
3.7. Health
3.7.1. Issues for Health
3.7.2. Ontologies for Health
3.7.3. Services and Technologies for Health
3.8. Home
3.8.1. Issues for Home
3.8.2. Ontologies for Home
3.8.3. Services and Technologies for Home
3.9. Public Administration
3.9.1. Issues for Public Administration
3.9.2. Ontologies for Public Administration
3.9.3. Services and Technologies for Public Administration
3.10. Risk Management
3.10.1. Issues for Risk Management
3.10.2. Ontologies for Risk Management
3.10.3. Services and Technologies for Risk Management
3.11. Security and Privacy
3.11.1. Issues for Security and Privacy
3.11.2. Ontologies for Security and Privacy
3.11.3. Services and Technologies for Security and Privacy
3.12. Social Systems
3.12.1. Issues for Social Systems
3.12.2. Ontologies for Social Systems
3.12.3. Services and Technologies for Social Systems
3.13. Sustainable Development
3.13.1. Issues for Sustainable Development
3.13.2. Ontologies for Sustainable Development
3.13.3. Services and Technologies for Sustainable Development
3.14. Urban Planning
3.14.1. Issues for Urban Planning
3.14.2. Ontologies for Urban Planning
3.14.3. Services and Technologies for Urban Planning
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AAL | Ambient Assisted Living |
ACM | Association for Computing Machinery |
ADL | Activity recognition of Daily Life |
BFO | Basic Formal Ontology |
BIM | Building Information Modeling |
CCS | Computing Classification System |
ETS | Emission Trading System |
FOAF | Friend Of A Friend |
GDP | Gross Domestic Product |
GDPR | General Data Protection Regulation |
IoT | Internet of Things |
KPI | Key Performance Indicator |
MA | MultiAgent |
ODP | Ontology Design Pattern |
OGC | Open Geospatial Consortium |
OWL | Web Ontology Language |
QoS | Quality of Service |
SDT | Semantic Decision Table |
SPARQL | SPARQL Protocol and RDF Query Language |
SQL | Structured Query Language |
SSN | Semantic Sensor Network ontology |
SWRL | Semantic Web Rule Language |
UML | Unified Modeling Language |
V2X | Vehicle-to-everything |
W3C | World Wide Web Consortium |
WoT | Web of Thing |
Appendix A
Smart City Sector | SCOPUS Keywords |
---|---|
Communities | Communities. |
Crisis management | Situation awareness, accidents, monitoring, disasters. |
eLearning | e-learning, student, engineering education. |
Economics | Electronic commerce, economics, economic and social effects, quality of life, innovation. |
Energy | Energy conservation, energy management, smart-grids, distributed energy resources, energy-efficiency, energy resource, energy management systems, smart energy, renewable energy resources, energy utilization, electric power transmission networks, smart power grids, energy policy. |
Environment | Ecology, air quality, forestry, environmental monitoring, ecosystems, birds. |
Health | Physiological models, smart health, mhealth, diagnosis, ambient assisted living (aal), health, health monitoring, health risks, ehealth, patient monitoring, medical computing. |
Home | Building management systems, indoor positioning systems, smart environment, ambient assisted living, human activity, smart-home, home network, smart device, building information model - bim, building management, smart home technology, daily life activities, home health care, building automation, domestic appliances, attention mechanism., housing, smart buildings, built environment, residential homes, activities of daily living (adls), behavioral research, brick, smart space, bim, assistive living, surrounding environment, activity of daily livings, human activity recognition, home services, ambient intelligence systems, smart appliances, building information modeling, building, home automation, office buildings, building automation systems, activity recognition, intelligent buildings, ambient intelligent, smart-home system, home automation systems, activity modeling, home environment. |
Public administration | Public administration. |
Risk management | Risk management, risk assessment. |
Security | Security. |
Social systems | Social media, social systems. |
Sustainable development | Sustainable development. |
Urban planning | Planning, intelligent transport systems, transportation, waste management, smart mobility, crime, motor transportation, urban transport, smart parking, vehicles, urban planning, roads and streets, transportation system, traffic congestion, trajectory, traffic signs, sanitary sewers, traffic control, urban growth, intelligent vehicle highway systems. |
ACM Macro Areas | SCOPUS Keywords |
---|---|
Applied computing | forecasting, green computing, telecommunication services, metadata. |
Computer systems organization | smart object, cyber physical systems (cpss), sensors and actuators, internet-of-things, heterogeneous systems, cybernetics, pervasive environment, pervasive computing, sensors data, wireless networks, cyber-physical systems, actuators, real time systems, internet of thing (iots), ubiquitous environment, iot service, heterogeneous sensors, sensor nodes, wireless sensor networks, sensor, web of things, semantic sensors, sensors network, iot, gateways (computer networks), pervasive systems, iot applications, real-time, cyber-physical-social systems, remote sensing, ubiquitous computing, cloud computing, robot, reference architectures, fog computing, complex event processing, radio frequency identification (rfid), semantic sensor network, embedded systems |
Computing methodologies | deep neural networks, text mining, image segmentation, abstracting, automata theory, speech recognition, learning systems, feature extraction, mobile computing, knowledge management, video recording, knowledge based, context reasoning, topic modeling, conceptual framework, distributed computing systems, image classification, knowledge engines, image processing, decision making, knowledge-based systems, clustering algorithms, three dimensional computer graphics, knowledge graphs, intelligent agents, commonsense knowledge, anomaly detection, adaptive systems, deep learning, cameras, blockchain, multi-agent system, modeling languages, extraction, trees (mathematics), bayesian networks, decision making process, context aware service, machine learning techniques, clusters, knowledge representation, artificial intelligence, computer aided design, conceptual modeling, classification, context-aware system, natural language process, context-aware computing, video signal processing, linguistics, cognitive systems, multi agents, case-based reasoning, modelling, edge computing, context ontology, autonomous agents, neural networks, computational linguistics, real-time, learning algorithms, concurrent activities, transfer learning, text processing, convolutional neural networks, domain knowledge, long short-term memory, pattern recognition, adaptability, object detection, uncertainty, knowledge model, image analysis, machine learning, classification (of information), hierarchical systems, uncertainty analysis, syntactics, latent semantic analysis, natural language processing systems, software agents, intelligent computing, supervised learning, cluster analysis, context aware applications. |
General purpose technology or method | simulator, computational platforms, engineering, quality control, technology, information and communication technology, management, methodology, computer science, internet, technological solution, automation, computer simulation, iterative methods, information technology, algorithm, mathematical models, time series, websites, life cycle, computer, markup languages, runtime, software. |
Hardware | computer architecture, internet of thing (iots), digital devices, computer circuits, memory architecture, distributed systems. |
Human-centered computing | human-computer interaction, social networking online, mobile computing, social network, mobile devices, user models, mobile telecommunication systems, visualization, 3d modelling, user experience, social sciences computing, virtual reality, human robot interaction, flow visualization, 5g mobile communication systems, citygml, wireless telecommunication systems, user interfaces, interactive computer systems, digital twin, edge computing, computer-vision, user interaction, communications technology, graphical methods, smartphones, virtualizations, user profiling, augmented reality, mobile applications, man machine systems, graphical user interfaces. |
Information systems | Conceptual modeling, control system, abstracting, social networking online, knowledge management, decision support, conceptual framework, information use, sentiment analysis, knowledge based, topic modeling, modeling languages, location-based services, information science, knowledge-based systems, context information, clustering algorithms, knowledge graphs, gis, recommendation systems, personal communication systems, social sciences computing, personalizations, information management, intelligent systems, crowdsourcing, classification (of information), trees (mathematics), information services, contextual information, knowledge representation, information exchanges, metadata, geographical information system, classification, knowledge engines, personalized services, scalability, decision support systems, information system, modelling, intelligent services, clusters, information retrieval, information model, domain knowledge, world wide web, commonsense knowledge, expert system, information dissemination, information analysis, uncertainty, knowledge model, collective intelligence, intelligent environment, hierarchical systems, uncertainty analysis, location information, multimedia systems, cluster analysis. |
Mathematics of computing | Graph theory, information theory, error analysis, markov processes, statistics, hidden markov model, topology |
Networks | World wide web, internet protocols, social networking online, complex networks, network architecture, topology. |
Security and privacy | Trusted computing, network security, access control. |
Social and professional topics | System analysis, systems engineering. |
Software and its engineering | soa, requirement engineering, control system, abstracting, service compositions, heterogeneous data, software design, service-oriented architecture, interoperations, topic modeling, conceptual framework, computer program, service discovery, electronic data interchange, service, computer programming languages, computer software reusability, software architecture, cloud services, integration, modeling languages, services and applications, service-oriented, service oriented architecture (soa), web services, software prototyping, description languages, computer software, conceptual modeling, quality of service, specifications, heterogeneous data sources, design and implements, mapping, modelling, heterogeneous devices, open source software, heterogeneous information, real-time, software engineering, architectural design, reusability, standardization, heterogeneous sources, machine-to-machine communication, service modeling, middleware, software applications, system architecture, architecture, seamless integration, design. |
Theory of computation | semantic network, social network, semantic data, data sets, data stream, large amounts of data, semantic interpretation, reasoning, big data, data exploration, modeling languages, ontology alignment, linked-data, semantic descriptions, word embeddings, data modeling, semantic analysis, data acquisition, distributed database systems, query languages, semantic segmentation, ontology approach, data fusion, ontological models, search engines, data analytics, ontology development, context model, data handling, semantic rules, ontological engineering, topic modeling, semantic technologies, descriptions logics, ontology-based context, semantic matching, computation theory, -linked-open-data, formal specification, linked open datum, model check, open datum, semantic representation, embeddings, semantic features, data-driven approaches, data structures, large dataset, predictability, semantic processing, rdf, query processing, linked datum, semantic information, data integration, owl, web ontology language, database systems, social networking online, conceptual framework, data mining, semantic web technologies, fuzzy sets, decision making, semantic web rule language (swrl), semantic enrichment, semantic knowledge, decision tree, data heterogeneity, semantic ontology, decision making process, advanced analytics, semantic interoperability, ontologies, data management, data sourcing, conceptual modeling, context reasoning, semantic similarity, heterogeneous data sources, semantic reasoner, semantic services, modelling, data processing, fuzzy logic, data collection, data visualization, data warehouses, domain ontology, probabilistic logics, data aggregators, optimization, digital storage, real-world datasets, abstracting, ontology reasoning, temporal logic, semantic web, formal languages, ontology representations, ontological frameworks, data sharing, -semantic, data interoperability, heterogeneous data, data communication systems, graph databases, semantic models, ontology-based, data privacy, semantic annotations, semantic approach, commonsense knowledge, sparql, open data, semantic integration, resource description framework, data description, formal methods, protege. |
References
- Quijano-Sánchez, L.; Cantador, I.; Cortés-Cediel, M.E.; Gil, O. Recommender systems for smart cities. Inf. Syst. 2020, 92, 101545. [Google Scholar] [CrossRef]
- Patriarca, R.; Falegnami, A.; Costantino, F.; Di Gravio, G.; De Nicola, A.; Villani, M.L. WAx: An integrated conceptual framework for the analysis of Cyber-Socio-Technical Systems. Saf. Sci. 2021, 136, 105–142. [Google Scholar] [CrossRef]
- Su, K.; Li, J.; Fu, H. Smart city and the applications. In Proceedings of the 2011 International Conference on Electronics, Communications and Control (ICECC), Ningbo, China, 9–11 September 2011; pp. 1028–1031. [Google Scholar] [CrossRef]
- Chourabi, H.; Nam, T.; Walker, S.; Gil-Garcia, J.R.; Mellouli, S.; Nahon, K.; Pardo, T.A.; Scholl, H.J. Understanding Smart Cities: An Integrative Framework. In Proceedings of the 2012 45th Hawaii International Conference on System Sciences (HICSS’12), Maui, HI, USA, 4–7 January 2012; pp. 2289–2297. [Google Scholar] [CrossRef]
- Moustaka, V.; Vakali, A.; Anthopoulos, L.G. A Systematic Review for Smart City Data Analytics. ACM Comput. Surv. 2018, 51. [Google Scholar] [CrossRef]
- Usman, M.; Jan, M.A.; He, X.; Chen, J. A Survey on Big Multimedia Data Processing and Management in Smart Cities. ACM Comput. Surv. 2019, 52. [Google Scholar] [CrossRef] [Green Version]
- Habibzadeh, H.; Kaptan, C.; Soyata, T.; Kantarci, B.; Boukerche, A. Smart City System Design: A Comprehensive Study of the Application and Data Planes. ACM Comput. Surv. 2019, 52. [Google Scholar] [CrossRef]
- Perera, C.; Qin, Y.; Estrella, J.C.; Reiff-Marganiec, S.; Vasilakos, A.V. Fog Computing for Sustainable Smart Cities: A Survey. ACM Comput. Surv. 2017, 50. [Google Scholar] [CrossRef] [Green Version]
- Santana, E.F.Z.; Chaves, A.P.; Gerosa, M.A.; Kon, F.; Milojicic, D.S. Software Platforms for Smart Cities: Concepts, Requirements, Challenges, and a Unified Reference Architecture. ACM Comput. Surv. 2017, 50. [Google Scholar] [CrossRef]
- Bhattacharya, S.; Somayaji, S.R.K.; Gadekallu, T.R.; Alazab, M.; Maddikunta, P.K.R. A review on deep learning for future smart cities. Internet Technol. Lett. 2020, e187. [Google Scholar] [CrossRef]
- Yigitcanlar, T.; Desouza, K.C.; Butler, L.; Roozkhosh, F. Contributions and Risks of Artificial Intelligence (AI) in Building Smarter Cities: Insights from a Systematic Review of the Literature. Energies 2020, 13, 1473. [Google Scholar] [CrossRef] [Green Version]
- Yigitcanlar, T.; Butler, L.; Windle, E.; Desouza, K.C.; Mehmood, R.; Corchado, J.M. Can Building “Artificially Intelligent Cities” Safeguard Humanity from Natural Disasters, Pandemics, and Other Catastrophes? An Urban Scholar’s Perspective. Sensors 2020, 20, 2988. [Google Scholar] [CrossRef]
- Shayan, S.; Kim, K.P.; Ma, T.; Nguyen, T.H.D. The First Two Decades of Smart City Research from a Risk Perspective. Sustainability 2020, 12, 9280. [Google Scholar] [CrossRef]
- Silva, B.N.; Khan, M.; Han, K. Towards sustainable smart cities: A review of trends, architectures, components, and open challenges in smart cities. Sustain. Cities Soc. 2018, 38, 697–713. [Google Scholar] [CrossRef]
- Gruber, T.R. A translation approach to portable ontology specifications. Knowl. Acquis. 1993, 5, 199–220. [Google Scholar] [CrossRef]
- Borst, W.N. Construction of Engineering Ontologies for Knowledge Sharing and Reuse. Ph.D. Thesis, University of Twente, Enschede, The Netherlands, 1997. [Google Scholar]
- De Nicola, A.; Missikoff, M. A Lightweight Methodology for Rapid Ontology Engineering. Commun. ACM 2016, 59, 79–86. [Google Scholar] [CrossRef]
- Bellini, P.; Benigni, M.; Billero, R.; Nesi, P.; Rauch, N. Km4City ontology building vs. data harvesting and cleaning for smart-city services. J. Vis. Lang. Comput. 2014, 25, 827–839. [Google Scholar] [CrossRef] [Green Version]
- Gyrard, A.; Zimmermann, A.; Sheth, A. Building IoT-Based Applications for Smart Cities: How Can Ontology Catalogs Help? IEEE Internet Things J. 2018, 5, 3978–3990. [Google Scholar] [CrossRef] [Green Version]
- READY4SmartCities Website. Available online: http://smartcity.linkeddata.es/ (accessed on 15 May 2021).
- SCOPUS Website. Available online: https://www.scopus.com (accessed on 15 May 2021).
- Singh, V.; Singh, P.; Karmakar, M.; Leta, J.; Mayr, P. The journal coverage of Web of Science, Scopus and Dimensions: A comparative analysis. Scientometrics 2021. [Google Scholar] [CrossRef]
- ACM Computing Classification System. Available online: https://dl.acm.org/ccs (accessed on 15 May 2021).
- Maret, P.; Laforest, F.; Lanquetin, D. A semantic web model for Ad Hoc context-aware virtual communities application to the smart place scenario. In Proceedings of the 16th International Conference on Enterprise Information Systems (ICEIS), Lisbon, Portugal, 27–30 April 2014; Volume 2, pp. 591–598. [Google Scholar]
- Graves, M.; Constabaris, A.; Brickley, D. Foaf: Connecting people on the semantic web. Cat. Classif. Q. 2007, 43, 191–202. [Google Scholar] [CrossRef]
- Breslin, J.G.; Decker, S.; Harth, A.; Bojars, U. SIOC: An approach to connect web-based communities. Int. J. Web Based Commun. 2006, 2, 133–142. [Google Scholar] [CrossRef]
- SIOC (Semantically-Interlinked Online Communities) Core Ontology. Available online: http://rdfs.org/sioc/spec/ (accessed on 15 May 2021).
- Ciuciu, I.; Meersman, R.; Dillon, T. Social network of smart-metered homes and SMEs for grid-based renewable energy exchange. In Proceedings of the 2012 6th IEEE International Conference on Digital Ecosystems and Technologies (DEST), Campione d’Italia, Italy, 18–20 June 2012. [Google Scholar] [CrossRef]
- De Nicola, A.; Melchiori, M.; Villani, M.L. Creative Design of Emergency Management Scenarios Driven by Semantics: An Application to Smart Cities. Inf. Syst. 2019, 81, 21–48. [Google Scholar] [CrossRef]
- Endsley, M.R. Toward a Theory of Situation Awareness in Dynamic Systems. Hum. Factors 1995, 37, 32–64. [Google Scholar] [CrossRef]
- Sermet, Y.; Demir, I. An intelligent system on knowledge generation and communication about flooding. Environ. Model. Softw. 2018, 108, 51–60. [Google Scholar] [CrossRef]
- Chehade, S.; Matta, N.; Pothin, J.B.; Cogranne, R. Handling effective communication to support awareness in rescue operations. J. Contingencies Crisis Manag. 2020, 28, 307–323. [Google Scholar] [CrossRef]
- Elmhadhbi, L.; Karray, M.H.; Archimède, B.; Otte, J.N.; Smith, B. PROMES: An ontology-based messaging service for semantically interoperable information exchange during disaster response. J. Contingencies Crisis Manag. 2020, 28, 324–338. [Google Scholar] [CrossRef]
- Van de Walle, B.; Brugghemans, B.; Comes, T. Improving situation awareness in crisis response teams: An experimental analysis of enriched information and centralized coordination. Int. J. Hum. Comput. Stud. 2016, 95, 66–79. [Google Scholar] [CrossRef]
- Smart Cities & Emergency Management Ontology. Available online: http://tinyurl.com/crisismng4-0 (accessed on 15 May 2021).
- Kurte, K.; Potnis, A.; Durbha, S. Semantics-enabled spatio-temporal modeling of earth observation data: An application to flood monitoring. In Proceedings of the 2nd ACM SIGSPATIAL International Workshop on Advances on Resilient and Intelligent Cities, Chicago, IL, USA, 5 November 2019; pp. 41–50. [Google Scholar] [CrossRef]
- Elmhadhbi, L.; Karray, M.H.; Archimède, B. A modular ontology for semantically enhanced interoperability in operational disaster response. In Proceedings of the 16th International Conference on Information Systems for Crisis Response and Management—ISCRAM 2019, Valencia, Spain, 19–22 May 2019; pp. 1021–1029. [Google Scholar]
- Arp, R.; Smith, B.; Spear, A.D. Building Ontologies with Basic Formal Ontology; The MIT Press: Cambridge, MA, USA, 2015. [Google Scholar]
- POLARISCO Ontology. Available online: https://github.com/LindaElmhadhbi/POLARISCO (accessed on 15 May 2021).
- empathi Ontology. Available online: https://shekarpour.github.io/empathi.io (accessed on 15 May 2021).
- Gaur, M.; Shekarpour, S.; Gyrard, A.; Sheth, A. Empathi: An Ontology for Emergency Managing and Planning about Hazard Crisis. In Proceedings of the 2019 IEEE 13th International Conference on Semantic Computing (ICSC), Newport Beach, CA, USA, 30 Januanry–1 February 2019; pp. 396–403. [Google Scholar] [CrossRef] [Green Version]
- GeoNames Ontology. Available online: http://www.geonames.org/ontology (accessed on 15 May 2021).
- LODE Ontology. Available online: http://linkedevents.org/ontology (accessed on 15 May 2021).
- Benaben, F.; Fertier, A.; Montarnal, A.; Mu, W.; Jiang, Z.; Truptil, S.; Barthe-Delanoë, A.M.; Lauras, M.; Mace-Ramete, G.; Wang, T.; et al. An AI framework and a metamodel for collaborative situations: Application to crisis management contexts. J. Contingencies Crisis Manag. 2020, 28, 291–306. [Google Scholar] [CrossRef]
- De Nicola, A.; Melchiori, M.; Villani, M.L. M-CREAM: A Tool for Creative Modelling of Emergency Scenarios in Smart Cities. In The Semantic Web: ESWC 2018 Satellite Events; Gangemi, A., Gentile, A.L., Nuzzolese, A.G., Rudolph, S., Maleshkova, M., Paulheim, H., Pan, J.Z., Alam, M., Eds.; Lecture Notes in Computer Science; Springer International Publishing: Cham, Switzerland, 2018; Volume 11155, pp. 83–88. [Google Scholar]
- M-CREAM Website. Available online: https://sites.google.com/view/m-cream (accessed on 15 May 2021).
- Pérez, J.; Arenas, M.; Gutierrez, C. Semantics and complexity of SPARQL. ACM Trans. Database Syst. (TODS) 2009, 34, 1–45. [Google Scholar] [CrossRef] [Green Version]
- Hamdaoui, B.; Alkalbani, M.; Znati, T.; Rayes, A. Unleashing the Power of Participatory IoT with Blockchains for Increased Safety and Situation Awareness of Smart Cities. IEEE Netw. 2020, 34, 202–209. [Google Scholar] [CrossRef]
- Chehade, S.; Matta, N.; Pothin, J.B.; Cogranne, R. Ontology-Based Approach for Designing User Interfaces: Application for Rescue Actors. In Proceedings of the ISCRAM 2020 Conference Proceedings—17th International Conference on Information Systems for Crisis Response and Management, Blacksburg, VA, USA, 24–27 May 2020; pp. 54–65. [Google Scholar]
- Zheng, Z.; Xie, S.; Dai, H.N.; Chen, W.; Chen, X.; Weng, J.; Imran, M. An overview on smart contracts: Challenges, advances and platforms. Future Gener. Comput. Syst. 2020, 105, 475–491. [Google Scholar] [CrossRef] [Green Version]
- Forde, A.N.; Fox, M.S. Residency and service towards a standard for representing telecommunications and innovation open data. Int. J. Innov. Learn. 2017, 22, 407–423. [Google Scholar] [CrossRef]
- Fox, M.S. The role of ontologies in publishing and analyzing city indicators. Comput. Environ. Urban Syst. 2015, 54, 266–279. [Google Scholar] [CrossRef]
- Baracho, R.M.A.; Soergel, D.; Pereira Junior, M.; Henriques, M. A Proposal for Developing a Comprehensive Ontology for Smart Cities/Smart Buildings/Smart Life. In Proceedings of the 10th International Multi-Conference on Complexity, Informatics and Cybernetics, Orlando, FL, USA, 12–15 March 2019; pp. 110–115. [Google Scholar]
- Baracho, R.; Soergel, D.; Mullarkey, M. Toward a Comprehensive Smart Ecosystem Ontology a Smart Cities, Smart Buildings, Smart Life. J. Syst. Cybern. Inform. 2020, 18, 25. [Google Scholar]
- De Nicola, A.; Vicoli, G.; Villani, M.L. Gamified Software to Support the Design of Business Innovation. Information 2018, 9, 324. [Google Scholar] [CrossRef] [Green Version]
- Business Innovation Ontology for Smart Cities. Available online: https://tinyurl.com/BIOforSmartCities (accessed on 15 May 2021).
- Osterwalder, A. The Business Model Ontology a Proposition in a Design Science Approach. Ph.D. Thesis, Université de Lausanne, Faculté des Hautes études Commerciales, Lausanne, Switzerland, 2004. [Google Scholar]
- de Kruijff, J.; Weigand, H. Understanding the Blockchain Using Enterprise Ontology. In Advanced Information Systems Engineering; Dubois, E., Pohl, K., Eds.; Springer International Publishing: Cham, Switzeland, 2017; pp. 29–43. [Google Scholar]
- Cantone, D.; Longo, C.F.; Nicolosi-Asmundo, M.; Santamaria, D.F.; Santoro, C. Ontological Smart Contracts in OASIS: Ontology for Agents, Systems, and Integration of Services. arXiv 2020, arXiv:2012.01410. [Google Scholar]
- Choudhury, O.; Rudolph, N.; Sylla, I.; Fairoza, N.; Das, A. Auto-Generation of Smart Contracts from Domain-Specific Ontologies and Semantic Rules. In Proceedings of the 2018 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData), Halifax, NS, Canada, 30 July–3 August 2018; pp. 963–970. [Google Scholar] [CrossRef]
- Horrocks, I.; Patel-Schneider, P.F.; Boley, H.; Tabet, S.; Grosof, B.; Dean, M. SWRL: A semantic web rule language combining OWL and RuleML. W3C Memb. Submiss. 2004, 21, 1–31. [Google Scholar]
- Petrović, N.; Tošić, M. Semantic Approach to Smart Contract Verification. Facta Univ. Ser. Autom. Control. Robot. 2020, 19, 21–37. [Google Scholar]
- Wang, H. Application and Research of Information Technology in Art Teaching. Adv. Intell. Syst. Comput. 2021, 1303, 1646–1651. [Google Scholar] [CrossRef]
- Abyaa, A.; Idrissi, M.K.; Bennani, S. An Adult Learner’s Knowledge Model Based on Ontologies and Rule Reasoning. In Proceedings of the Mediterranean Symposium on Smart City Application; SCAMS ’17; Association for Computing Machinery: New York, NY, USA, 2017. [Google Scholar] [CrossRef]
- Challco, G.C.; Moreira, D.; Mizoguchi, R.; Isotani, S. Towards an Ontology for Gamifying Collaborative Learning Scenarios. In Intelligent Tutoring Systems; Springer International Publishing: Cham, Switzerland, 2014; Volume 8474, pp. 404–409. [Google Scholar] [CrossRef]
- Le, T.T.; Luu, S.T.; Nguyen, H.D.; Do, N.V. Knowledge representation for designing an Intelligent Tutoring System in learning of courses about Algorithms. In Proceedings of the 2019 25th Asia-Pacific Conference on Communications (APCC), Ho Chi Minh City, Vietnam, 6–8 November 2019; pp. 310–315. [Google Scholar] [CrossRef]
- Hafidh, R.; Sharif, M.; Al-Bayatti, A.; Alfakeeh, A.; Alassafi, M.; Alqarni, M. An effective knowledge-based modeling approach towards a “Smart-School Care Coordination system” for children and young people with special educational needs and disabilities. Symmetry 2020, 12, 1495. [Google Scholar] [CrossRef]
- Kutzner, I.; Hauke, K.; Marciniak, K.; Owoc, M. Creation of the Urban Knowledge Portal: E-Learning and Knowledge Inventor Context. In Proceedings of the 2015 11th International Conference on Semantics, Knowledge and Grids (SKG) (SKG ’15), Beijing, China, 19–21 August 2015; pp. 97–104. [Google Scholar] [CrossRef]
- Chimalakonda, S.; Nori, K. An ontology based modeling framework for design of educational technologies. Smart Learn. Environ. 2020, 7. [Google Scholar] [CrossRef]
- Bouzidi, R.; De Nicola, A.; Nader, F.; Chalal, R. OntoGamif: A modular ontology for integrated gamification. Appl. Ontol. 2019, 14, 215–249. [Google Scholar] [CrossRef]
- OntoGamif Ontology. Available online: https://data.mendeley.com/datasets/6gx487xb4c/2 (accessed on 15 May 2021).
- Chun, S.; Jung, J.; Jin, X.; Seo, S.; Lee, K.H. Designing an integrated knowledge graph for smart energy services. J. Supercomput. 2020, 76, 8058–8085. [Google Scholar] [CrossRef]
- Daniele, L. SAREF4ENER: An Extension of SAREF for the Energy Domain Created in Collaboration with Energy@Home and EEBus Associations; Technical Report; ETSI: Madrid, Spain, 2020. [Google Scholar]
- International Electrotechnical Commission. Definition of Microgrid. Available online: https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=617-04-22 (accessed on 19 March 2021).
- Kott, J.; Kott, M. Generic ontology of energy consumption households. Energies 2019, 12, 3712. [Google Scholar] [CrossRef] [Green Version]
- Bonino, D.; Corno, F.; De Russis, L. Poweront: An ontology-based approach for power consumption estimation in smart homes. In Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, LNICST; Springer: Cham, Switzerland, 2015; Volume 150, pp. 3–8. [Google Scholar] [CrossRef] [Green Version]
- Bonino, D.; Corno, F. DogOnt—Ontology Modeling for Intelligent Domotic Environments. In Proceedings of the 7th International Conference on the Semantic Web (ISWC ’08), Karlsruhe, Germany, 26–30 October 2008; pp. 790–803. [Google Scholar] [CrossRef] [Green Version]
- Fensel, A.; Tomic, S.; Kumar, V.; Stefanovic, M.; Aleshin, S.; Novikov, D. SESAME-S: Semantic smart home system for energy efficiency. Informatik-Spektrum 2013, 36, 46–57. [Google Scholar] [CrossRef]
- Shah, N.; Chao, K.M.; Zlamaniec, T.; Matei, A. Ontology for Home Energy Management Domain. In Digital Information and Communication Technology and Its Applications; Cherifi, H., Zain, J.M., El-Qawasmeh, E., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 337–347. [Google Scholar]
- Reinisch, C.; Kofler, M.; Iglesias, F.; Kastner, W. ThinkHome Energy Efficiency in Future Smart Homes. EURASIP J. Embed. Syst. 2011, 2011. [Google Scholar] [CrossRef] [Green Version]
- Gillani, S.; Laforest, F.; Picard, G. A Generic Ontology for Prosumer-Oriented Smart Grid. In Proceedings of the Workshops of the EDBT/ICDT 2014 Joint Conference, Athens, Greece, 28 March 2014. [Google Scholar]
- Daniele, L.; Solanki, M.; den Hartog, F.; Roes, J. Interoperability for Smart Appliances in the IoT World. In The Semantic Web—ISWC 2016; Groth, P., Simperl, E., Gray, A., Sabou, M., Krötzsch, M., Lecue, F., Flöck, F., Gil, Y., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 21–29. [Google Scholar]
- Daniele, L.; den Hartog, F.; Roes, J. Created in close interaction with the industry: The smart appliances reference (SAREF) ontology. In Proceedings of the International Workshop Formal Ontologies Meet Industries, Berlin, Germany, 5 August 2015; pp. 100–112. [Google Scholar]
- SAREF Ontology. Available online: https://sites.google.com/site/smartappliancesproject/ontologies/reference-ontology (accessed on 15 May 2021).
- Spoladore, D.; Mahroo, A.; Trombetta; Sacco, M. ComfOnt: A Semantic Framework for Indoor Comfort and Energy Saving in Smart Homes. Electronics 2019, 8, 1449. [Google Scholar] [CrossRef] [Green Version]
- Compton, M.; Barnaghi, P.; Bermudez, L.; Garcà a-Castro, R.; Corcho, O.; Cox, S.; Graybeal, J.; Hauswirth, M.; Henson, C.; Herzog, A.; et al. The SSN ontology of the W3C semantic sensor network incubator group. J. Web Semant. 2012, 17, 25–32. [Google Scholar] [CrossRef]
- Wendel, J.; Simons, A.; Nichersu, A.; Murshed, S. Rapid development of semantic 3D city models for urban energy analysis based on free and open data sources and software. In Proceedings of the 3rd ACM SIGSPATIAL Workshop on Smart Cities and Urban Analytics, Redondo Beach, CA, USA, 7–10 November 2017. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez-Molina, J.; Martínez, J.F.; Castillejo, P.; De Diego, R. SMArc: A proposal for a smart, semantic middleware architecture focused on smart city energy management. Int. J. Distrib. Sens. Netw. 2013, 2013. [Google Scholar] [CrossRef] [Green Version]
- Tang, Y.; Ciuciu, I. Semantic decision support models for energy efficiency in smart-metered homes. In Proceedings of the 2012 IEEE 11th International Conference on Trust, Security and Privacy in Computing and Communications, Liverpool, UK, 25–27 June 2012; pp. 1777–1784. [Google Scholar] [CrossRef]
- Oprea, M.M. AIR_POLLUTION_Onto: An Ontology for Air Pollution Analysis and Control. In Artificial Intelligence Applications and Innovations III; Springer: Boston, MA, USA, 2009; pp. 135–143. [Google Scholar]
- Metral, C.; Falquet, G.; Karatzas, K. Ontologies for the integration of air quality models and 3D city models. arXiv 2012, arXiv:1201.6511. [Google Scholar]
- CityGML Website. Available online: https://www.ogc.org/standards/citygml (accessed on 15 May 2021).
- Camporeale, C.; De Nicola, A.; Villani, M.L. Semantics-based Services for a Low Carbon Society: An Application on Emissions Trading System data and scenarios management. Environ. Model. Softw. 2015, 64, 124–142. [Google Scholar] [CrossRef] [Green Version]
- Ahmedi, L.; Jajaga, E.; Ahmedi, F. An Ontology Framework for Water Quality Management. In Proceedings of the 6th International Conference on Semantic Sensor Networks, Sydney, Australia, 21–25 October 2013; pp. 35–50. [Google Scholar]
- Howell, S.; Rezgui, Y.; Beach, T. Integrating building and urban semantics to empower smart water solutions. Autom. Constr. 2017, 81, 434–448. [Google Scholar] [CrossRef]
- Du, H.; Dimitrova, V.; Magee, D.; Stirling, R.; Curioni, G.; Reeves, H.; Clarke, B.; Cohn, A. An ontology of soil properties and processes. In Proceedings of the International Semantic Web Conference, Kobe, Japan, 17–21 October 2016; pp. 30–37. [Google Scholar]
- Hu, X.; Chen, Q.; Du, M. Ontology-based multi-sensor information integration model for urban gardens and green spaces. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2020; Volume 615, p. 012023. [Google Scholar]
- Cagliero, L.; Cerquitelli, T.; Chiusano, S.; Garza, P.; Ricupero, G.; Xiao, X. Modeling correlations among air pollution-related data through generalized association rules. In Proceedings of the 2016 IEEE International Conference on Smart Computing (SMARTCOMP), St. Louis, MO, USA, 18–20 May 2016; pp. 1–6. [Google Scholar]
- Agrawal, R.; Srikant, R. Fast algorithms for mining association rules. In Proceedings of the 20th International Conference on Very Large Data Bases, Santiago de Chile, Chile, 12–15 September 1994; Volume 1215, pp. 487–499. [Google Scholar]
- García-Díaz, J.A.; Noguera-Arnaldos, J.Á.; Hernández-Alcaraz, M.L.; Robles-Marín, I.M.; García-Sánchez, F.; Valencia-García, R. AllergyLESS. An Intelligent Recommender System to Reduce Exposition Time to Allergens in Smart-Cities. In Distributed Computing and Artificial Intelligence, 15th International Conference; De La Prieta, F., Omatu, S., Fernández-Caballero, A., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 61–68. [Google Scholar]
- D2RQ Website. Available online: http://d2rq.org (accessed on 15 May 2021).
- Bizer, C.; Seaborne, A. D2RQ-treating non-RDF databases as virtual RDF graphs. In Proceedings of the 3rd International Semantic Web Conference (ISWC2004), Hiroshima, Japan, 7–11 November 2004. [Google Scholar]
- Zgheib, R.; De Nicola, A.; Villani, M.L.; Conchon, E.; Bastide, R. A Flexible Architecture for Cognitive Sensing of Activities in Ambient Assisted Living. In Proceedings of the 2017 IEEE 26th International Conference on Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE), Poznan, Poland, 21–23 June 2017; pp. 284–289. [Google Scholar] [CrossRef]
- Usman Sarwar, M.; Rehman Javed, A.; Kulsoom, F.; Khan, S.; Tariq, U.; Kashif Bashir, A. PARCIV: Recognizing physical activities having complex interclass variations using semantic data of smartphone. Softw. Pract. Exp. 2020. [Google Scholar] [CrossRef]
- Fouquet, K.; Faraut, G.; Lesage, J.J. Life Habits Modeling with Stochastic Timed Automata in Ambient Assisted Living. IEEE Trans. Syst. Man Cybern. Syst. 2020, 2020, 2740–2745. [Google Scholar] [CrossRef]
- Baldassini, D.; Colombo, V.; Spoladore, D.; Sacco, M.; Arlati, S. Customization of domestic environment and physical training supported by virtual reality and semantic technologies: A use-case. In Proceedings of the 2017 IEEE 3rd International Forum on Research and Technologies for Society and Industry (RTSI), Modena, Italy, 11–13 September 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Martínez-Santiago, F.; García-Viedma, M.; Williams, J.; Slater, L.; Gkoutos, G. Aging Neuro-Behavior Ontology. Appl. Ontol. 2020, 15, 219–239. [Google Scholar] [CrossRef]
- Latfi, F.; Lefebvre, B.; Descheneaux, C. Ontology-Based Management of the Telehealth Smart Home, Dedicated to Elderly in Loss of Cognitive Autonomy. In Proceedings of the OWLED 2007 Workshop on OWL: Experiences and Directions, Innsbruck, Austria, 6–7 June 2007. [Google Scholar]
- Bae, I.H. An Ontology-Based Approach to ADL Recognition in Smart Homes. Future Gener. Comput. Syst. 2014, 33, 32–41. [Google Scholar] [CrossRef]
- Moreira, J.L.R.; Pires, L.; Sinderen, M.; Daniele, L.; Girod-Genet, M. SAREF4health: Towards IoT standard-based ontology-driven cardiac e-health systems. Appl. Ontol. 2020, 15, 385–410. [Google Scholar] [CrossRef]
- Peng, C.; Goswami, P. Meaningful Integration of Data from Heterogeneous Health Services and Home Environment Based on Ontology. Sensors 2019, 19, 1747. [Google Scholar] [CrossRef] [Green Version]
- CoSSN Ontology. Available online: https://data.mendeley.com/datasets/437rdzzfbd/1 (accessed on 15 May 2021).
- ETSI Website. Available online: https://www.etsi.org/about (accessed on 15 May 2021).
- Tiwari, S.; Abraham, A. Semantic assessment of smart healthcare ontology. Int. J. Web Inf. Syst. 2020, 16, 475–491. [Google Scholar] [CrossRef]
- Rhayem, A.; Mhiri, M.; Gargouri, F. HealthIoT ontology for data semantic representation and interpretation obtained from medical connected objects. In Proceedings of the 2017 IEEE/ACS 14th International Conference on Computer Systems and Applications (AICCSA), Hammamet, Tunisia, 30 October–3 November 2017; pp. 1470–1477. [Google Scholar] [CrossRef]
- Alirezaie, M.; Renoux, J.; Köckemann, U.; Kristoffersson, A.; Karlsson, L.; Blomqvist, E.; Tsiftes, N.; Voigt, T.; Loutfi, A. An Ontology-based Context-aware System for Smart Homes: E-care@home. Sensors 2017, 17, 1586. [Google Scholar] [CrossRef] [Green Version]
- Riboni, D.; Bettini, C.; Civitarese, G.; Janjua, Z.H.; Helaoui, R. SmartFABER: Recognizing fine-grained abnormal behaviors for early detection of mild cognitive impairment. Artif. Intell. Med. 2016, 67, 57–74. [Google Scholar] [CrossRef] [Green Version]
- Berat Sezer, O.; Can, S.Z.; Dogdu, E. Development of a smart home ontology and the implementation of a semantic sensor network simulator: An Internet of Things approach. In Proceedings of the 2015 International Conference on Collaboration Technologies and Systems (CTS), Atlanta, GA, USA, 1–5 June 2015; pp. 12–18. [Google Scholar] [CrossRef]
- Gómez-Romero, J.; Serrano, M.A.; Patricio, M.A.; García, J.; Molina, J.M. Context-Based Scene Recognition from Visual Data in Smart Homes: An Information Fusion Approach. Pers. Ubiquitous Comput. 2012, 16, 835–857. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Tian, G.; Zhang, S.; Li, C. A Knowledge-Based Approach for Multiagent Collaboration in Smart Home: From Activity Recognition to Guidance Service. IEEE Trans. Instrum. Meas. 2020, 69, 317–329. [Google Scholar] [CrossRef]
- Ye, J.; Stevenson, G.; Dobson, S. KCAR: A knowledge-driven approach for concurrent activity recognition. Pervasive Mob. Comput. 2015, 19, 47–70. [Google Scholar] [CrossRef] [Green Version]
- Noor, M.M.; Salcic, Z.; Wang, K. Ontology-based sensor fusion activity recognition. J. Ambient. Intell. Humaniz. Comput. 2020, 11, 3073–3087. [Google Scholar] [CrossRef]
- Stavropoulos, T.G.; Vrakas, D.; Vlachava, D.; Bassiliades, N. BOnSAI: A Smart Building Ontology for Ambient Intelligence. In Proceedings of the 2nd International Conference on Web Intelligence, Mining and Semantics (WIMS ’12), Craiova, Romania, 6–8 June 2012. [Google Scholar] [CrossRef]
- Balaji, B.; Bhattacharya, A.; Fierro, G.; Gao, J.; Gluck, J.; Hong, D.; Johansen, A.; Koh, J.; Ploennigs, J.; Agarwal, Y.; et al. Brick: Metadata schema for portable smart building applications. Appl. Energy 2018, 226, 1273–1292. [Google Scholar] [CrossRef]
- Kofler, M.J.; Reinisch, C.; Kastner, W. A semantic representation of energy-related information in future smart homes. Energy Build. 2012, 47, 169–179. [Google Scholar] [CrossRef]
- Tao, M.; Zuo, J.; Liu, Z.; Castiglione, A.; Palmieri, F. Multi-layer cloud architectural model and ontology-based security service framework for IoT-based smart homes. Future Gener. Comput. Syst. 2018, 78, 1040–1051. [Google Scholar] [CrossRef]
- Ni, Q.; Pau, I.; García Hernando, A. A foundational ontology-based model for human activity representation in smart homes. J. Ambient. Intell. Smart Environ. 2016, 8, 47–61. [Google Scholar] [CrossRef]
- Civitarese, G.; Sztyler, T.; Riboni, D.; Bettini, C.; Stuckenschmidt, H. POLARIS: Probabilistic and ontological activity recognition in smart-homes. IEEE Trans. Knowl. Data Eng. 2021, 33, 209–223. [Google Scholar] [CrossRef]
- Alsukhayri, A.; Aslam, M.; Saeedi, K.; Malik, M. A linked open data-oriented sustainable system for transparency and open access to government data: A case study of the public’s response to women’s driving in Saudi Arabia. Sustainability 2020, 12, 8608. [Google Scholar] [CrossRef]
- Porwol, L.; Ojo, A.; Breslin, J.G. An ontology for next generation e-Participation initiatives. Gov. Inf. Q. 2016, 33, 583–594. [Google Scholar] [CrossRef]
- Bellini, P.; Nesi, P.; Paolucci, M.; Zaza, I. Smart City Architecture for Data Ingestion and Analytics: Processes and Solutions. In Proceedings of the 2018 IEEE Fourth International Conference on Big Data Computing Service and Applications (BigDataService), Bamberg, Germany, 26–29 March 2018; pp. 137–144. [Google Scholar] [CrossRef]
- Ardito, C.; Caivano, D.; Colizzi, L.; Verardi, L. BPMN Extensions and Semantic Annotation in Public Administration Service Design. In Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Springer International Publishing: Cham, Switzerland, 2020; Volume 12481 LNCS, pp. 118–129. [Google Scholar] [CrossRef]
- Muñoz-Soro, J.; EstebAn, G.; Corcho, O.; Serón, F. PPROC, an ontology for transparency in public procurement. Semant. Web 2016, 7, 295–309. [Google Scholar] [CrossRef] [Green Version]
- Younsi Dahbi, K.; Lamharhar, H.; Chiadmi, D. Towards a knowledge graph for open healthcare data. Int. J. Adv. Trends Comput. Sci. Eng. 2020, 9, 5654–5662. [Google Scholar] [CrossRef]
- Bianchini, D.; De Antonellis, V.; Garda, M.; Melchiori, M. Exploiting Smart City Ontology and Citizens’ Profiles for Urban Data Exploration. In Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Springer International Publishing: Cham, Switzerland, 2018; Volume 11229 LNCS, pp. 372–389. [Google Scholar] [CrossRef]
- Ardito, C.; Caivano, D.; Colizzi, L.; Verardi, L. Towards a model to address the interplay between IoT applications and users in complex heterogeneous contexts. In Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Springer International Publishing: Cham, Switzerland, 2019; Volume 11262 LNCS, pp. 283–293. [Google Scholar] [CrossRef]
- Consoli, S.; Mongiovic, M.; Nuzzolese, A.G.; Peroni, S.; Presutti, V.; Reforgiato Recupero, D.; Spampinato, D. A Smart City Data Model Based on Semantics Best Practice and Principles. In Proceedings of the 24th International Conference on World Wide Web, WWW ’15 Companion, Florence, Italy, 18–22 May 2015; pp. 1395–1400. [Google Scholar] [CrossRef]
- Ullah, F.; Qayyum, S.; Thaheem, M.J.; Al-Turjman, F.; Sepasgozar, S.M. Risk management in sustainable smart cities governance: A TOE framework. Technol. Forecast. Soc. Chang. 2021, 167, 120743. [Google Scholar] [CrossRef]
- Provitolo, D.; Müller, J.P.; Dubos-Paillard, E. Validation of an ontology of risk and disaster through a case study of the 1923 Great Kanto Earthquake. In Proceedings of the 3rd International Conference on Complex Systems and Applications, Le Havre, France, 29 June–2 July 2009. [Google Scholar]
- Coletti, A.; De Nicola, A.; Villani, M.L. Building Climate Change into Risk Assessments. Nat. Hazards 2016, 84, 1307–1325. [Google Scholar] [CrossRef]
- Coletti, A.; De Nicola, A.; Di Pietro, A.; La Porta, L.; Pollino, M.; Rosato, V.; Vicoli, G.; Villani, M.L. A Comprehensive System for Semantic Spatiotemporal Assessment of Risk in Urban Areas. J. Contingencies Crisis Manag. 2020, 28, 178–193. [Google Scholar] [CrossRef]
- Mohammad, M.A.; Kaloskampis, I.; Hicks, Y.; Setchi, R. Ontology-based Framework for Risk Assessment in Road Scenes Using Videos. Procedia Comput. Sci. 2015, 60, 1532–1541. [Google Scholar] [CrossRef] [Green Version]
- Meng, X.; Wang, F.; Xie, Y.; Song, G.; Ma, S.; Hu, S.; Bai, J.; Yang, Y. An Ontology-Driven Approach for Integrating Intelligence to Manage Human and Ecological Health Risks in the Geospatial Sensor Web. Sensors 2018, 18, 3619. [Google Scholar] [CrossRef] [Green Version]
- Sales, T.P.; Baião, F.; Guizzardi, G.; Almeida, J.P.A.; Guarino, N.; Mylopoulos, J. The Common Ontology of Value and Risk. In Conceptual Modeling; Trujillo, J.C., Davis, K.C., Du, X., Li, Z., Ling, T.W., Li, G., Lee, M.L., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 121–135. [Google Scholar]
- Yang, Q.; Zuo, C.; Liu, X.; Yang, Z.; Zhou, H. Risk Response for Municipal Solid Waste Crisis Using Ontology-Based Reasoning. Int. J. Environ. Res. Public Health 2020, 17, 3312. [Google Scholar] [CrossRef]
- Sirin, E.; Parsia, B.; Grau, B.C.; Kalyanpur, A.; Katz, Y. Pellet: A practical owl-dl reasoner. J. Web Semant. 2007, 5, 51–53. [Google Scholar] [CrossRef]
- Musen, M.A. The protégé project: A look back and a look forward. AI Matters 2015, 1, 4–12. [Google Scholar] [CrossRef]
- Wu, Z.; Shen, Y.; Wang, H.; Wu, M. Urban Flood Disaster Risk Evaluation Based on Ontology and Bayesian Network. J. Hydrol. 2020, 583, 124596. [Google Scholar] [CrossRef]
- Coletti, A.; De Nicola, A.; Vicoli, G.; Villani, M.L. Semantic Modeling of Cascading Risks in Interoperable Socio-technical Systems. In Enterprise Interoperability VIII; Popplewell, K., Thoben, K.D., Knothe, T., Poler, R., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 119–129. [Google Scholar]
- Yu, F.; Fan, B.; Li, X. Improving emergency preparedness to cascading disasters: A case-driven risk ontology modelling. J. Contingencies Crisis Manag. 2020, 28, 194–214. [Google Scholar] [CrossRef]
- Wei, L.; Du, H.; Mahesar, Q.A.; Al Ammari, K.; Magee, D.; Clarke, B.; Dimitrova, V.; Gunn, D.; Entwisle, D.; Reeves, H.; et al. A decision support system for urban infrastructure inter-asset management employing domain ontologies and qualitative uncertainty-based reasoning. Expert Syst. Appl. 2020, 158. [Google Scholar] [CrossRef]
- Schwee, J.; Sangogboye, F.; Johansen, A.; Kjærgaard, M. Ontology-based modeling of privacy vulnerabilities for data sharing. IFIP Adv. Inf. Commun. Technol. 2020, 576 LNCS, 109–125. [Google Scholar] [CrossRef]
- Fernández, J.; Sabou, M.; Kirrane, S.; Kiesling, E.; Ekaputra, F.; Azzam, A.; Wenning, R. User consent modeling for ensuring transparency and compliance in smart cities. Pers. Ubiquitous Comput. 2020, 24, 465–486. [Google Scholar] [CrossRef]
- Gonzalez-Gil, P.; Martinez, J.A.; Skarmeta, A.F. Lightweight Data-Security Ontology for IoT. Sensors 2020, 20, 801. [Google Scholar] [CrossRef] [Green Version]
- Gyrard, A.; Bonnet, C.; Boudaoud, K. An Ontology-Based Approach for Helping to Secure the ETSI Machine-to-Machine Architecture. In Proceedings of the 2014 IEEE International Conference on Internet of Things (iThings), and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom), Taipei, Taiwan, 1–3 September 2014; pp. 109–116. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez-Gil, P.; Skarmeta, A.F.; Martinez, J.A. Towards an Ontology for IoT Context-Based Security Evaluation. In Proceedings of the 2019 Global IoT Summit (GIoTS), Aarhus, Denmark, 17–21 June 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Arruda, M.F.; Bulcão Neto, R.F. Toward a Lightweight Ontology for Privacy Protection in IoT. In Proceedings of the 34th ACM/SIGAPP Symposium on Applied Computing (SAC ’19), Limassol, Cyprus, 8–12 April 2019; pp. 880–888. [Google Scholar] [CrossRef]
- Joshi, K.P.; Banerjee, A. Automating Privacy Compliance Using Policy Integrated Blockchain. Cryptography 2019, 3, 7. [Google Scholar] [CrossRef] [Green Version]
- Androulaki, E.; Barger, A.; Bortnikov, V.; Cachin, C.; Christidis, K.; De Caro, A.; Enyeart, D.; Ferris, C.; Laventman, G.; Manevich, Y.; et al. Hyperledger fabric: A distributed operating system for permissioned blockchains. In Proceedings of the Thirteenth EuroSys Conference, Porto, Portugal, 23–26 April 2018; pp. 1–15. [Google Scholar]
- Panori, A.; Kakderi, C.; Tsarchopoulos, P. Designing the Ontology of a Smart City Application for Measuring Multidimensional Urban Poverty. J. Knowl. Econ. 2019, 10, 921–940. [Google Scholar] [CrossRef]
- Nasim, Z.; Khan, I. Solving Poverty using Ontology. In Proceedings of the 10th International Conference on Knowledge Engineering and Ontology Development, Seville, Spain, 18–20 September 2018; pp. 271–278. [Google Scholar] [CrossRef]
- Fernandez, M.; Alani, H. Contextual Semantics for Radicalisation Detection on Twitter. In Proceedings of the Semantic Web for Social Good Workshop (SW4SG) at International Semantic Web Conference, Monterey, CA, USA, 9 October 2018. [Google Scholar]
- Barhamgi, M.; Lara-Cabrera, R.; Benslimane, D.; Camacho, D. Ontology Uses for Radicalisation Detection on Social Networks. In Intelligent Data Engineering and Automated Learning—IDEAL 2018; Yin, H., Camacho, D., Novais, P., Tallón-Ballesteros, A.J., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 3–8. [Google Scholar]
- De Nicola, A.; D’Agostino, G. Assessment of Gender Divide in Scientific Communities. Scientometrics 2021. [Google Scholar] [CrossRef]
- Rahman, M.A.; Hossain, M.S.; Hassanain, E.; Muhammad, G. Semantic Multimedia Fog Computing and IoT Environment: Sustainability Perspective. IEEE Commun. Mag. 2018, 56, 80–87. [Google Scholar] [CrossRef]
- Schwarz, J.S.; Witt, T.; Nieße, A.; Geldermann, J.; Lehnhoff, S.; Sonnenschein, M. Towards an Integrated Development and Sustainability Evaluation of Energy Scenarios Assisted by Automated Information Exchange. In Smart Cities, Green Technologies, and Intelligent Transport Systems; Donnellan, B., Klein, C., Helfert, M., Gusikhin, O., Pascoal, A., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 3–26. [Google Scholar]
- Massaro, E.; Athanassiadis, A.; Psyllidis, A.; Binder, C. Ontology-Based Integration of Urban Sustainability Indicators. In Sustainability Assessments of Urban Systems; Cambridge University Press: Cambridge, UK, 2020; pp. 332–350. [Google Scholar] [CrossRef]
- Kuster, C.; Hippolyte, J.L.; Rezgui, Y. The UDSA ontology: An ontology to support real time urban sustainability assessment. Adv. Eng. Softw. 2020, 140, 102731. [Google Scholar] [CrossRef]
- Konys, A. An Ontology-Based Knowledge Modelling for a Sustainability Assessment Domain. Sustainability 2018, 10, 300. [Google Scholar] [CrossRef] [Green Version]
- Sosunova, I.; Zaslavsky, A.; Anagnostopoulos, T.; Fedchenkov, P.; Sadov, O.; Medvedev, A. SWM-PnR: Ontology-based context-driven knowledge representation for IoT-enabled waste management. In Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Springer: Cham, Switzerland, 2017; Volume 10531 LNCS, pp. 151–162. [Google Scholar] [CrossRef]
- Stratigea, A.; Panagiotopoulou, M.; Kokla, M. Conceptualizing Small and Medium-Sized Smart Cities in the Mediterranean Region: An Ontological Approach. Int. J. E-Plan. Res. 2019, 8, 17–41. [Google Scholar] [CrossRef]
- Hellmund, T.; Hertweck, P.; Hilbring, D.; Mossgraber, J.; Alexandrakis, G.; Pouli, P.; Siatou, A.; Padeletti, G. Introducing the HERACLES Ontology—Semantics for Cultural Heritage Management. Heritage 2018, 1, 26. [Google Scholar] [CrossRef] [Green Version]
- De Nicola, A.; Giovinazzi, S.; Guarascio, M.; Rizzi, P.; Villani, M.L. Gamified Decision Making for a Participatory Post-Crisis Recovery: A Model Based Process. In Proceedings of the 30th European Safety and Reliability Conference—ESREL 2020, Venice, Italy, 1–6 November 2020. [Google Scholar] [CrossRef]
- Qi, J.; Ding, L.; Lim, S. Ontology-based knowledge representation of urban heat island mitigation strategies. Sustain. Cities Soc. 2020, 52, 101875. [Google Scholar] [CrossRef]
- Rocha, B.; Silva, L.; Batista, T.; Cavalcante, E.; Gomes, P. An Ontology-based Information Model for Multi-Domain Semantic Modeling and Analysis of Smart City Data. In Proceedings of the Brazilian Symposium on Multimedia and the Web, São Luís, Brazil, 30 November–4 December 2020; pp. 73–80. [Google Scholar] [CrossRef]
- Brutti, A.; De Sabbata, P.; Frascella, A.; Gessa, N.; Ianniello, R.; Novelli, C.; Pizzuti, S.; Ponti, G. Smart City Platform Specification: A Modular Approach to Achieve Interoperability in Smart Cities. In The Internet of Things for Smart Urban Ecosystems; Cicirelli, F., Guerrieri, A., Mastroianni, C., Spezzano, G., Vinci, A., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 25–50. [Google Scholar]
- Chinnici, M.; Ponti, G.; Santomauro, G. Smart City Platform: Scalability, Interoperability and Replicability Platform to Manage Urban Applications. In Sensors and Microsystems; Di Francia, G., Di Natale, C., Eds.; Lecture Notes in Electrical Engineering; Springer International Publishing: Cham, Switzerland, 2021; pp. 1–7. [Google Scholar]
- Sobral, T.; Galvão, T.; Borges, J. Knowledge-Assisted Visualization of Multi-Level Origin-Destination Flows Using Ontologies. IEEE Trans. Intell. Transp. Syst. 2021. [Google Scholar] [CrossRef]
- Swarnamugi, M.; Chinnaiyan, R. Context—Aware Smart Reliable Service Model for Intelligent Transportation System Based on Ontology. In Proceedings of ICRIC 2019; Singh, P.K., Kar, A.K., Singh, Y., Kolekar, M.H., Tanwar, S., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 23–30. [Google Scholar]
- Colace, F.; De Santo, M.; Lombardi, M.; Pascale, F.; Santaniello, D.; Tucker, A. A Multilevel Graph Approach for Predicting Bicycle Usage in London Area. In Fourth International Congress on Information and Communication Technology; Yang, X.S., Sherratt, S., Dey, N., Joshi, A., Eds.; Springer: Singapore, 2020; pp. 353–362. [Google Scholar]
- Fernandez, S.; Hadfi, R.; Ito, T.; Marsa-Maestre, I.; Velasco, J.R. Ontology-Based Architecture for Intelligent Transportation Systems Using a Traffic Sensor Network. Sensors 2016, 16, 1287. [Google Scholar] [CrossRef]
- Barbancho, J.; Ropero, J.; Luque, J.; Caraballo, A.; León, C. Social Parking: Applying the Citizens as Sensors Paradigm to Parking Guidance and Information. Sustainability 2019, 11, 6549. [Google Scholar] [CrossRef] [Green Version]
- Sotres, P.; Lanza, J.; Sánchez, L.; Santana, J.R.; López, C.; Muñoz, L. Breaking Vendors and City Locks through a Semantic-enabled Global Interoperable Internet-of-Things System: A Smart Parking Case. Sensors 2019, 19, 229. [Google Scholar] [CrossRef] [Green Version]
- Viktorović, M.; Yang, D.; Vries, B.D. Connected Traffic Data Ontology (CTDO) for Intelligent Urban Traffic Systems Focused on Connected (Semi) Autonomous Vehicles. Sensors 2020, 20, 2961. [Google Scholar] [CrossRef]
- Janowicz, K.; Haller, A.; Cox, S.J.; Le Phuoc, D.; Lefrançois, M. SOSA: A lightweight ontology for sensors, observations, samples, and actuators. J. Web Semant. 2019, 56, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Gröger, G.; Plümer, L. CityGML—Interoperable semantic 3D city models. ISPRS J. Photogramm. Remote Sens. 2012, 71, 12–33. [Google Scholar] [CrossRef]
- Espinoza-Arias, P.; Poveda-Villalón, M.; García-Castro, R.; Corcho, O. Ontological Representation of Smart City Data: From Devices to Cities. Appl. Sci. 2019, 9, 32. [Google Scholar] [CrossRef] [Green Version]
- Ju, J.; Liu, L.; Feng, Y. Citizen-centered big data analysis-driven governance intelligence framework for smart cities. Telecommun. Policy 2018, 42, 881–896. [Google Scholar] [CrossRef]
- Troncy, R.; Rizzo, G.; Jameson, A.; Corcho, O.; Plu, J.; Palumbo, E.; Ballesteros Hermida, J.C.; Spirescu, A.; Kuhn, K.D.; Barbu, C.; et al. 3cixty: Building comprehensive knowledge bases for city exploration. J. Web Semant. 2017, 46-47, 2–13. [Google Scholar] [CrossRef] [Green Version]
- Juric, R.; Madland, O. Semantic Framework for Creating an Instance of the IoE in Urban Transport: A Study of Traffic Management with Driverless Vehicles. In Proceedings of the 2020 IEEE International Conference on Human-Machine Systems (ICHMS), Rome, Italy, 7–9 September 2020; pp. 1–8. [Google Scholar] [CrossRef]
- D’Aniello, G.; Gaeta, M.; Orciuoli, F.; Sansonetti, G.; Sorgente, F. Knowledge-based smart city service system. Electronics 2020, 9, 965. [Google Scholar] [CrossRef]
- The Event Ontology. Available online: http://motools.sourceforge.net/event/event.html (accessed on 15 May 2021).
Communities |
---|
|
Crisis management |
|
eLearning |
|
Economics |
|
Energy |
|
Environment |
|
Health |
|
Home |
|
Public administration |
|
Risk management |
|
Security and privacy |
|
Social systems |
|
Sustainable development |
|
Urban planning |
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Nicola, A.; Villani, M.L. Smart City Ontologies and Their Applications: A Systematic Literature Review. Sustainability 2021, 13, 5578. https://doi.org/10.3390/su13105578
De Nicola A, Villani ML. Smart City Ontologies and Their Applications: A Systematic Literature Review. Sustainability. 2021; 13(10):5578. https://doi.org/10.3390/su13105578
Chicago/Turabian StyleDe Nicola, Antonio, and Maria Luisa Villani. 2021. "Smart City Ontologies and Their Applications: A Systematic Literature Review" Sustainability 13, no. 10: 5578. https://doi.org/10.3390/su13105578
APA StyleDe Nicola, A., & Villani, M. L. (2021). Smart City Ontologies and Their Applications: A Systematic Literature Review. Sustainability, 13(10), 5578. https://doi.org/10.3390/su13105578