An Approach to Thresholds for Evaluating Post-Mining Site Reclamation
Abstract
:1. Introduction
2. Reclamation Success Evaluation Conceptual Model
2.1. Initial/Reference State (I0)
2.2. Soil Reconstruction (Backfilling) R−2
2.3. Revegetation R−1
2.4. Minimum Reclamation Threshold R0
2.5. Status Assessment/Decision Making
2.6. Reclamation Threshold 1 R1
2.7. Reclamation Threshold 2 R2
- (1)
- Activation of sulfuric acids by oxidation (e.g., lignite mine sites), it affects species (e.g., integument of earthworms), even if lime is used to increase the pH. Colonization of species with better acid tolerance is recommendable.
- (2)
- Potential dry condition of most mine sites that influence substrate water repellent ability, vegetation, etc., and are detrimental to ecological species (e.g., mucous cover of epidermis).
- (3)
- Limited availability of food especially at the beginning stage (e.g., litter falls) and microorganism biomass.
2.8. Reclamation Threshold 3 R3
3. Anticipated Targets and Endpoints
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cherlet, M.; Hutchinson, C.; Reynolds, J.; Hill, J.; Sommer, S.; von Maltitz, G. World Atlas of Dissertification; Publication Office of the European Union: Luxembourg, 2018. [Google Scholar]
- Nellemann, C.; Corcoran, E. Dead Planet, Living Planet—Biodiversity and Ecosystem Restoration for Sustainable Development; United Nations Environment Programme: GRID-Arendal, Norway, 2010; Available online: https://gridarendal-website-live.s3.amazonaws.com/production/documents/:s_document/103/original/RRAecosystems_screen.pdf?1483646564. (accessed on 14 May 2019).
- Maiti, S.K. Ecorestoration of the Coalmine Degraded Lands; Springer: Dhanbad, India, 2013. [Google Scholar] [CrossRef]
- Dudley, N.; Bhagwat, S.A.; Harris, J.; Maginnis, S.; Moreno, J.G.; Mueller, G.M.; Walters, G. Measuring progress in status of land under forest landscape restoration using abiotic and biotic indicators. Soc. Ecol. Restor. 2018, 26, 5–12. [Google Scholar] [CrossRef] [Green Version]
- Bradshaw, A. The use of natural processes in reclamation—Advantages and difficulties. Landsc. Urban. Plan. 2000, 51, 89–100. [Google Scholar] [CrossRef]
- Cooke, J.; Johnson, M. Ecological restoration of land with particular reference to the mining of metals and industrial minerals: A review of theory and practice. Environ. Rev. 2002, 10, 41–71. [Google Scholar] [CrossRef] [Green Version]
- Kuter, N. Reclamation of Degraded Landscapes due to Opencast Mining. In Advances in Landscape Architecture; Özyavuz, M., Ed.; InTech: Rijeka, Croatia, 2013; pp. 823–858. [Google Scholar] [CrossRef] [Green Version]
- Chambers, J.C.; Wade, G.L. Evaluating Reclamation Success: The Ecological Consideration-Proceedings of a Symposium; General Technical Report NE-164, United States Department of Agriculture, Forest Service: Charleston, WV, USA, 1992; Available online: https://www.nrs.fs.fed.us/pubs/gtr/gtr164.pdf (accessed on 15 May 2019).
- Hunsberger, E.L.; Michaud, L.H. The development of a field method for evaluating the success of reclamation efforts on abandoned mine lands. Proc. Am. Soc. Min. Reclam. 1994, 304–313. [Google Scholar] [CrossRef]
- Paz-Kagan, T.; Shachak, M.; Zaady, E.; Karnieli, A. A spectral soil quality index (SSQI) for characterizing soil function in areas of changed land use. Geoderma 2014, 230–231, 171–184. [Google Scholar] [CrossRef]
- Obade, V.; Lai, R. A standardized soil quality index for diverse field conditions. Sci. Total Environ. 2016, 541, 424–434. [Google Scholar] [CrossRef]
- Mukhopadhyay, S.; Mastro, R.; Yadav, A.; George, J.; Shukla, S. Soil quality index for evaluation of reclaimed coal mine spoil. Sci. Total Environ. 2016, 542, 540–550. [Google Scholar] [CrossRef]
- Siddig, A.A.; Ellison, A.M.; Ochs, A.; Villar-Leeman, C.; Lau, M.K. How do ecologists select and use indicator species to monitor ecological change? Insigts from 14 years of publication in Ecological Indicators. Ecol. Indic. 2016, 60, 223–230. [Google Scholar] [CrossRef] [Green Version]
- Gatica-Saavedra, P.; Echeverria, C.; Nelson, C.R. Ecological indicators for assessing ecological success of forest restoration: A world review. Restor. Ecol. 2017, 25, 850–857. [Google Scholar] [CrossRef]
- Wortley, L.; Hero, J.-M.; Howes, M. Evaluating Ecological Restoration Success: A Review of the Literature. Restor. Ecol. 2013, 21, 537–543. [Google Scholar] [CrossRef]
- Zerbe, S. Renaturierung von Ökosystemen im Spannungsfeld von Mensch und Umwelt; Springer Spektrum: Berlin, Germany, 2019. [Google Scholar] [CrossRef]
- Erdos, L.; Batori, Z.; Penksza, K.; Denes, A.; Kevey, B.; Kevey, D.; Tolgyesi, C. Can naturalness indicator values reveal habitat degradation? A test of four methodological approaches. Pol. J. Ecol. 2017, 65, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Urban, N.A.; Swihart, R.K.; Malloy, M.C.; Dunning, J.B., Jr. Improving selection of indicators species when detection is imperfect. Ecol. Indic. 2012, 15, 188–197. [Google Scholar] [CrossRef]
- Rooney, R.C.; Bayley, S.E.; Schindler, D.W. Oil sands mining and reclamation cause massive loss of peatland and stored carbon. PNAS 2012, 109, 4933–4937. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dufrene, M.; Legendre, P. Species assemblages and indicator species: The need for a flexible asymmetrical approach. Ecol. Monogr. 1997, 67, 345–366. [Google Scholar] [CrossRef]
- Sengl, P.; Magnes, M.; Erdos, L.; Berg, C. A test of naturalness indicator values to evaluate success in grassland restoration. Commun. Ecol. 2017, 18, 184–192. [Google Scholar] [CrossRef]
- Sweeny, O.; Wilson, M.; Irwin, S.; Kelly, T.; O´Halloran, J. Are birds density, species richness and community structure similar between native woodlands and non-native plantations in an area with a generalist bird fauna? Biodivers. Conserv. 2010, 19, 2329–2342. [Google Scholar] [CrossRef]
- Nilsson, C.; Aradottir, A.L.; Hagen, D.; Halldörsson, G.; Hoegh, K.; Mitchell, R.J.; Wilson, S.D. Evaluating the process of ecological restoration. Ecol. Soc. 2016, 21, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Tischew, S.; Baasch, A.; Conrad, M.K.; Kirmer, A. Evaluating restoration success of frequently implemented sompensation measures: Results and demands for control procedures. Restor. Ecol. 2010, 18, 467–480. [Google Scholar] [CrossRef]
- Stahl, P.; Wick, A.; Dangi, S.; Regula, V.; Ingram, L.; Mummey, D. Ecosystem recovery on reclaimed surface minelands. Revitalizing the Environment: Proven Solutions and Innovative Approaches. Lexingt. J. Am. Soc. Min. Reclam. (JASMR) 2009, 1371–1393. [Google Scholar] [CrossRef]
- Hobbs, R.; Harris, J. Restoration ecology: Repairing the earth’s ecosystems in the new millenium. Restor. Ecol. 2001, 9, 239–246. [Google Scholar] [CrossRef] [Green Version]
- Anderson, D.; Ostler, W. Revegetation of degraded lands at US Department of Energy and US Department of Defense Installations: Strategies and successes. Arid Land Res. Manag. 2002, 16, 197–212. [Google Scholar] [CrossRef]
- MEA, M.E. Ecosystems and Human Well-Being; Island Press: Washington, DC, USA, 2005. [Google Scholar]
- Kolodziej, B.; Bryk, M.; Slowinska-Jurkiewicz, A.; Otremba, K.; Gilewska, M. Soil physical properties of agriculturally reclaimed area after lignite mine: A case study from central Poland. Soil Tillage Res. 2016, 163, 54–63. [Google Scholar] [CrossRef]
- Whisenant, S.G. Repairing Damaged Wildlands: A Process-Oriented, Landscape Scale Approach; Cambridge University Press: Cambridge, UK, 1999. [Google Scholar]
- Parks Canada; The Canadian Parks Council. Principles and Guidelines for Ecological Restoration in Canada’s Protected Natural Areas; Parks Canada: Gatineau, QC, Canada, 2008. [Google Scholar]
- Anas, M.U.; Scott, K.A.; Wissel, B. Sustainability of presence vs. absence indicator species to characterize stress gradients: Lessons from zooplankton species of boreal lakes. Ecol. Indic. 2013, 30, 90–99. [Google Scholar] [CrossRef]
- Gonzalez, E.; Rochefort, L.; Boudreau, S.; Hugron, S.; Poulin, M. Can indicators species predict restoration outcomes early in the monitoring process? a case study with peatlands. Ecol. Indic. 2013, 32, 232–238. [Google Scholar] [CrossRef]
- Gonzalez, E.; Rochefort, L.; Boudreau, S.; Poulin, M. Combining indicator species and key environmental and management factors to predict restoration success of degraded ecosystems. Ecol. Indic. 2014, 46, 156–166. [Google Scholar] [CrossRef]
- Sherrouse, B.C.; Semmens, D.J.; Clement, J.M. An application of social values for ecosystem services (SolVES) to three national forests in Colorado and Wyoming. Ecol. Indic. 2014, 36, 68–79. [Google Scholar] [CrossRef]
- Ruiz-Jaen, M.; Aide, M.T. Restoration success: How is it being measured. Restor. Ecol. 2005, 13, 569–577. [Google Scholar] [CrossRef]
- Higgs, E.; Falk, D.; Guerrini, A.; Hall, M.; Harris, J.; Hobbs, R.; Throop, W. The changing role of history in restoration ecology. Front. Ecol. Environ. 2014, 12, 499–506. [Google Scholar] [CrossRef]
- Martin, D. Ecological restoration should be redefined for the twenty-first century. Restor. Ecol. 2017, 25, 668–673. [Google Scholar] [CrossRef]
- Naeth, M.; White, D.; Chanasyk, D.; Macyk, T.; Powter, C.; Thacker, D. Soil physical properties in reclamation. In Reclamation Research Technical Advisory Committee; Alberta Land Conservation and Reclamation Council: Edmonton, AB, USA, 1991. [Google Scholar]
- Anderson, J.; Ingram, I.; Stahl, P. Influence of reclamation management practices on microbial biomass carbon and soil organic carbon accumulation in semiarid mined lands of Wyoming. J. Appl. Soil Ecol. 2008, 40, 387–397. [Google Scholar] [CrossRef]
- Liu, X.; Bai, Z.; Zhou, W.; Cao, Y.; Zhang, G. Changes in soil properties in the soil profile after mining and reclamation in an opencast coal mine on the Loess Plateau, China. Ecol. Eng. 2017, 98, 228–239. [Google Scholar] [CrossRef] [Green Version]
- Krümmelbein, J.; Bens, O.; Raab, T.; Naeth, M. A history of lignite coal mining and reclamation practices in Lusatia, Eastern Germany. Can. J. Soil Sci. 2012, 92, 53–66. [Google Scholar] [CrossRef] [Green Version]
- Sahu, H.B.; Prakash, N.; Jayanthu, S. Underground mining for meeting environmental concerns-A strategic approach for sustainable mining in future. Procedia Earth Planet. Sci. 2015, 11, 232–241. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Li, M.; Taheri, A.; Zhang, W.; Wu, Z.; Song, W. Properties and application of backfill materials in coal mines in China. Minerals 2019, 9, 53. [Google Scholar] [CrossRef] [Green Version]
- Häge, K. Recultivation in the Lusatia mining region -Targets and Prospects. Mine Recultiv. 1996, 91, 43–57. [Google Scholar]
- Ghose, M. Restoration and revegetation strategies for degraded mine land for sustainable mine closure. Land Contam. Reclam. 2004, 12, 363–378. [Google Scholar] [CrossRef]
- Moreno-de las Heras, M.; Diaz-Sierra, R.; Nicolau, J.M.; Zavala, M.A. Evaluating restoration of man-made slopes:a threshold approach balancing vegetation and rill erosion. Earth Surf. Proc. Landf. 2011, 36, 1367–1377. [Google Scholar] [CrossRef]
- Leung, C. Land reclamation and ground improvement: Singapore experience. In Proceedings of the 36th HKIE Geotechnical Division Annual Seminar 2016, Hong Kong, China, 3 June 2016; The Geotechnical Division; Hong Kong Institution of Engineers: Singapore, 2016; pp. 1–21. [Google Scholar]
- Krümmelbein, J.; Raab, T. Development of soil physical parameters in agricultural reclamation after brown coal mining within the first four years. Soil Tillage Res. 2012, 125, 109–115. [Google Scholar] [CrossRef]
- Miao, Z.; Marrs, R. Ecological restoration and land reclamation in open-cast mines in Shanxi Province, China. J. Environ. Manag. 2000, 59, 205–215. [Google Scholar] [CrossRef]
- Larney, F.J.; Angers, D.A. The role of organic amendments in soil reclamation: A review. Can. J. Soil Sci. 2012, 92, 19–38. [Google Scholar] [CrossRef]
- Mukhopadhyay, S.; Maiti, S.K. Techniques for quantative evaluation of mine site reclamation success: Case study. In Bio-Geotechnologies for Mine Site Rehabilitation; Prasad, M.N., Favas, P.J., Maiti, S.K., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 415–438. [Google Scholar] [CrossRef]
- RCC State. Procedures and Standards for Determining Revegetation Success on Surface-Mined Lands in Texas. Surface Mining and Reclamation Division. 1999. Available online: http://www.rrc.state.tx.us/media/6443/revg_scs.pdf (accessed on 17 May 2019).
- DSE, D.O. Native Vegetation Revegetation Planting Standards—Guidelines for Establishing Native Vegetation for Net Gain Accounting. Victorian Government, Department of Sustainability and Environment. East Melbourne: Biodiversity and Natural Resources Division. 2006. Available online: http://www.dse.vic.gov.au/__data/assets/pdf_file/0005/97349/NativeVeg_Reveg.pdf (accessed on 17 May 2019).
- Skousen, J.; Zipper, C.E. Post-mining policies and practices in the Eastern USA coal region. Int. J. Coal Sci. Technol. 2014, 1, 135–151. [Google Scholar] [CrossRef] [Green Version]
- Mensah, A.K. Role of revegetation in restoring fertility of degraded mined soils in Ghana: A review. Int. J. Biodivers. Conserv. 2015, 7, 57–80. [Google Scholar] [CrossRef] [Green Version]
- Shu, W.; Ye, Z.; Zhang, Z.; Lan, C.; Wong, M. Natural colonization of plants on five lead/zinc mine tailings in Southern China. Restor. Ecol. 2005, 13, 49–60. [Google Scholar] [CrossRef]
- Courtney, R.; Mullen, G.; Harrington, T. An Evaluation of Revegetation Successon Bauxite Residue. Restor. Ecol. 2009, 17, 350–358. [Google Scholar] [CrossRef]
- FAO. Topsoil characterization. Food and Agriculture Organization of the United Nations, Land and Water Development Division Soil Resources; Management and Conservation Service: Rome, Italy, 1998; Available online: http://www.fao.org/tempref/agl/agll/docs/topsoil.pdf (accessed on 20 May 2019).
- Ghose, M.K. Management of topsoil for geo-thermal environmental reclamation of coal mining areas. Environ. Geol. 2001, 40, 1405–1410. [Google Scholar]
- Bowen, C.; Schuman, G.; Olson, R.; Ingram, J. Influence of topsoil depth on plant and soil attributes of 24-year old reclaimed mined lands. Arid Land Res. Manag. 2005, 19, 267–284. [Google Scholar] [CrossRef]
- Sheoran, V.; Sheoran, A.; Poonia, P. Soil reclamation of abandoned mine land by revegetation: A review. Int. J. Soil Sediment. Water 2010, 3, 1–20. [Google Scholar]
- Shrestha, R.; Lai, R. Changes in physical and chemical properties of soilafter surface mining and reclamation. Geoderma 2011, 161, 168–176. [Google Scholar] [CrossRef]
- Jorgensen, S.; Burkhard, B.; Müller, F. Twenty volumes of ecological indicators—An accounting short review. Ecol. Indic. 2013, 28, 4–9. [Google Scholar] [CrossRef]
- Nielsen, S.; Jorgensen, S. Goal functions, orientors and indicators (GoFOrIt’s) in ecology, Application and functional aspects—Strengths and weakness. Ecol. Indic. 2013, 28, 31–47. [Google Scholar] [CrossRef]
- Rapport, D.J.; Hilden, M. An evolving role for ecological indicators: From documenting ecological conditions to monitoring drivers and policy responses. Ecol. Indic. 2013, 28, 10–15. [Google Scholar] [CrossRef]
- Zerbe, S.; Pieretti, L.; Elsen, S.; Asanidze, Z.; Asanidze, I.; Mumladze, L. Forest restoration potential in a deforested mountain area: An ecosiological approach towards sustainability. For. Sci. 2019, 66, 326–336. [Google Scholar] [CrossRef]
- Bian, Z.; Inyang, H.; Daniel, J.; Otto, F.; Struthers, S. Environmental Issues from coal mining and their solutions. Min. Sci. Technol. 2010, 20, 215–223. [Google Scholar] [CrossRef]
- Hosonuma, N.; Herold, M.; De Sy, V.; De Fries, R.S.; Brockhaus, M.; Verchot, L.; Romijin, E. An assessment of deterioration and forest degradation drivers in developing countries. Envion. Res. 2012, 7, 044009. [Google Scholar]
- Suding, K.; Gross, K.L.; Houseman, G.R. Alternative states and positive feedbacks in restoration ecology. Trends Ecol. Evol. 2004, 19, 46–53. [Google Scholar] [CrossRef]
- Barry, H.J. The Surface Mining Control and Reclamation Act of 1977; University of Colorado Law School: Colorado, CO, USA, 1980; pp. 1–47. [Google Scholar]
- Chang, J.; Gerhards, N.; Borchard, K. The development of land reclamation in Germany. In Mine Land Reclamation and Ecological Restoration for the 21st Century; Xinshe, L., Guangxi, Z.W., Eds.; China Coal Industry Publishing House: Beijing, China, 2000; pp. 60–70. [Google Scholar]
- ACSMP, A.C. A Guide to Leading Practice Sustainable Development in Mining; Department of Industry, Australian Government: Canberra Australia, 2011. [Google Scholar]
- Nayak, S. Sustainability of land reclamation: Insights from Sodic land reclamation project, Uttar Pradesh India. J. Land Rural Stud. 2015, 3, 237–252. [Google Scholar] [CrossRef]
- Vrablikova, J.; Wildova, E.; Vrablik, P. Sustainable development and restoring the landscape after coal mining in the Northern part of the Czech Republic. J. Environ. Prot. 2016, 7, 1483–1496. [Google Scholar] [CrossRef] [Green Version]
- Yurnita, A.; Trisutomo, S.; Ali, M. Assessing the sustainable development of coastal reclamation: A case of Makassar using GIS application. IOP Conf. Series Earth Environ. Sci. 2017, 79, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Egan, A.; Estrada-Bustillo, V. Socioeconomic Indicators for Forest Restoration Projects; New Mexico Forest and Watershed Restoration Institute: Las Vegas, NM, USA, 2011. [Google Scholar]
- Böhm, C.; Quinkenstein, A.; Freese, D.; Hüttl, R.F. Assessing the short rotation woody biomass production on marginal post.mining areas. J. For. Sci. 2011, 57, 303–311. [Google Scholar] [CrossRef] [Green Version]
- Dey, D.C.; Schweitzer, C. Restoration for the future: Endpoints, targets and indicators of progress and success. J. Sustain. For. 2014, 33, 543–565. [Google Scholar] [CrossRef]
- Techen, A.-K.; Helming, K. Pressures on soil functions from soil management in Germany. A foresight review. Agron. Sustain. Dev. 2017, 37, 1–29. [Google Scholar] [CrossRef] [Green Version]
- Stahl, P.D.; Anderson, J.D.; Ingram, L.J.; Schuman, G.E.; Mummey, D.L. Accumulation of organic carbon in reclaimed coal mine soils of Wyoming. In America Society of Mining and Reclamation; ASMR: Lexington, KY, USA, 2003; pp. 1206–1215. [Google Scholar] [CrossRef]
- Riley, J. The indicator explosion: Local needs and international challenges. Agric. Ecosyst. Environ. 2001, 87, 119–120. [Google Scholar] [CrossRef]
- Stein, A.; Riley, J.; Halberg, N. Issues of scale for environmental indicators. Agric. Ecosyst. Environ. 2001, 87, 215–232. [Google Scholar] [CrossRef] [Green Version]
- Dale, V.H.; Kline, K.L. Issues in using landscape indicators to assess land changes. Ecol. Indic. 2013, 28, 91–99. [Google Scholar] [CrossRef]
- Higgs, E.S.; Harris, J.A.; Heger, T.; Hobbs, R.J.; Murphy, S.D.; Suding, K.N. Keep ecological restoration open and flexible. Nat. Ecol. Evol. 2018, 2, 580. [Google Scholar] [CrossRef]
- Uuemaa, E.; Mander, Ü.; Marja, R. Trends in the use of landscape spatial metrics as landscape indicators: A review. Ecol. Indic. 2013, 28, 100–106. [Google Scholar] [CrossRef]
- Skalos, J.; Berchova, K.; Pokorny, J.; Sedmidubsky, T.; Pecharova, E.; Trpakova, I. Landscape water potential as a new indicator for monitoring macrostructural landscape changes. Ecol. Indic. 2014, 36, 80–93. [Google Scholar] [CrossRef]
- Walz, U. Indicators to monitor the structural diversity of landscapes. Ecol. Indic. 2015, 295, 88–106. [Google Scholar] [CrossRef]
- Dworschak, U. Earthworm populations in a reclaimed lignite open-cast mine of the Rhineland. Eur. J. Soil Biol. 1997, 33, 75–81. [Google Scholar]
- Dunger, W.; Voigtländer, K. Soil fauna (Lumbricidae, Collembola, Diplopoda and Chilopoda) as indicators of soil eco-subsystem development in post-mining sites of eatern Germany—A review. Soil Organ. 2009, 81, 1–51. [Google Scholar]
- Pankhurst, C.; Doube, B.; Gupta, V. Biological Indicators of Soil Health; CAB international: Wallinford, UK, 1997. [Google Scholar]
- Doran, J.; Zeiss, M. Soil health and sustainability: Managing the biotic component of soil quality. Appl. Soil Ecol. 2000, 15, 3–11. [Google Scholar] [CrossRef] [Green Version]
- Hartley, W.; Uffindell, L.; Plumb, A.; Rawlinson, H.; Putwain, P.; Dickinson, N. Assessing biological indicators for remediated anthropogenic urban soils. Sci. Total Environ. 2008, 405, 358–369. [Google Scholar] [CrossRef] [PubMed]
Environment | Economy | Social | |||
---|---|---|---|---|---|
Class | Recommendable Considerations | Class | Recommendable Considerations | Class | Recommendable Considerations |
Soil | The soil physicochemical and biological conditions, land use options and other supporting functions and services. | Costs | Pros and cons of direct costs (e.g., capital, operational cost), indirect cost (e.g., legal actions) and alternatives | Health and safety | Human health risks, on/off-site workers risks, public and neighbors, hazardous emissions, etc. |
Water | Portability based on regulatory standards (e.g., contaminants), ecological (e.g., ecosystem functions), chemical, water abstraction effects, groundwater tables, acidification, etc. | Benefits | Internal investment, multiple stakeholders, collaboration, international funding, etc. | Ethical and equity | Social justice, equity, ethical values, aesthetic, culture, spiritual and vitality (e.g., ‘polluter pays principle’). |
Biota | Both direct and indirect influence on flora, fauna, and food chain, invasive/alien/native species, alterations in ecological community, structure, services and functions, etc. | Risk and life span | Unpredictable project life span, unforeseen project risks (e.g., community, contractual, environment, procurement, technology, etc.) | Community | Compensations, services (residential, transportation, occupation, education, etc.), public participation, transparency, compliance/satisfaction assessment, national/local authority policies, etc. |
Air | Emissions influencing climate change/ozone/air quality, e.g., CO2, CH4, N2O, NOx, SOx, O3, VOCs, etc. | Socio-economical influence | Employment opportunities short/long term education, innovations, training, seminars, workshops, skilled laborers, etc. | External Impacts | Off-site impacts on neighborhoods and region (dust, GHG emissions, odor, vibrations, traffic, etc.), operational inconveniences (e.g., weekend and night shift), loss (e.g., environmental, archaeological) |
Natural resources depletion /Waste | Ratio of exploited resources, left overs and substitutions, renewable energy and alternatives, etc./Measures of waste disposal, short and long term management, etc. | Flexibility | Project flexibility to time-scales, additional contamination, etc., and economic beneficial robust plan. | Laws and regulations | Policies compliance, regulatory standards, evidences showing quality assessments and accuracy, and plans for uncertainties. |
Species | Brief Description | Years |
---|---|---|
Lumbricus rubellus rubellus | Epigeic species, saprophage, exhibit preference for high organic substrate | After 7 years |
Lumbricus terrestris | Potentially used in stabilizing organic materials. | After 14 years |
Dendrobaena octaedra | Small (2–4 cm), litter dwelling species, native to Europe. | After 6 years |
Dendrodrilus rubidus rubidus | Native to Europe, small (<10 cm), pigmented epigeic species. | After 33 years |
Aporrectodea caliginosa caliginosa | Endogeic species, found in first 15 cm temperate zones, used in ecotoxicological tests. | After 3 years |
Aporrectodea rosea rosea | Has distinct seasonal clone structure, which proves ecological differentiation of clones. | After 10 years |
Octolasion tyrtaeum | Cosmopolite species with two genetic forms small (4–8 cm) and large (10–14 cm). | After 10 years |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adesipo, A.A.; Freese, D.; Zerbe, S.; Wiegleb, G. An Approach to Thresholds for Evaluating Post-Mining Site Reclamation. Sustainability 2021, 13, 5618. https://doi.org/10.3390/su13105618
Adesipo AA, Freese D, Zerbe S, Wiegleb G. An Approach to Thresholds for Evaluating Post-Mining Site Reclamation. Sustainability. 2021; 13(10):5618. https://doi.org/10.3390/su13105618
Chicago/Turabian StyleAdesipo, Adegbite Adeleke, Dirk Freese, Stefan Zerbe, and Gerhard Wiegleb. 2021. "An Approach to Thresholds for Evaluating Post-Mining Site Reclamation" Sustainability 13, no. 10: 5618. https://doi.org/10.3390/su13105618
APA StyleAdesipo, A. A., Freese, D., Zerbe, S., & Wiegleb, G. (2021). An Approach to Thresholds for Evaluating Post-Mining Site Reclamation. Sustainability, 13(10), 5618. https://doi.org/10.3390/su13105618