Understanding Farmers’ Trait Preferences for Dual-Purpose Crops to Improve Mixed Crop–Livestock Systems in Zimbabwe
Abstract
:1. Introduction
2. Dual-Purpose Crops in Zimbabwe
3. Methodology
3.1. Study Context, Sampling, and Data Collection
3.2. Statistical Analysis
4. Results
4.1. Study Population and Farming Systems
4.2. Importance of Maize, Sorghum, and Groundnut in Mixed Farming Systems
4.3. Farmers’ Preferences for Dual-Purpose Crop Traits
4.4. Trait Preferences and Adoption of Dual-Purpose Crops and Varieties
5. Discussions
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lenné, J.M.; Thomas, D. Integrating crop—Livestock research and development in sub-Saharan Africa: Option, imperative or impossible? Outlook Agric. 2006, 35, 167–175. [Google Scholar] [CrossRef] [Green Version]
- FAO. The Economic Lives of Smallholder Farmers: An Analysis Based on Household Data from Nine Countries; FAO: Rome, Italy, 2015. [Google Scholar]
- McIntire, J.; Gryseels, G. Crop-Livestock Interactions in Sub-Saharan Africa and their Implications for Farming Systems Research. Exp. Agric. 1987, 23, 235–243. [Google Scholar] [CrossRef]
- FAO. Mixed Crop-Livestock Systems; FAO: Rome, Italy, 2001. [Google Scholar]
- Salmon, G.; Teufel, N.; Baltenweck, I.; van Wijk, M.; Claessens, L.; Marshall, K. Trade-offs in livestock development at farm level: Different actors with different objectives. Glob. Food Secur. 2018, 17, 103–112. [Google Scholar] [CrossRef]
- Tarawali, S.; Herrero, M.; Descheemaeker, K.; Grings, E.; Blümmel, M. Pathways for sustainable development of mixed crop livestock systems: Taking a livestock and pro-poor approach. Livest. Sci. 2011, 139, 11–21. [Google Scholar] [CrossRef]
- Valbuena, D.; Erenstein, O.; Homann-Kee Tui, S.; Abdoulaye, T.; Claessens, L.; Duncan, A.J.; Gerard, B.; Rufino, M.C.; Teufel, N.; van Rooyen, A.; et al. Conservation agriculture in mixed crop-livestock systems: Scoping crop residue trade-offs in Sub-Saharan Africa and South Asia. Field Crop. Res. 2012, 132, 175–184. [Google Scholar] [CrossRef] [Green Version]
- Garrett, R.D.; Niles, M.; Gil, J.D.B.; Dy, P.; Reis, J.; Valentim, J. Policies for Reintegrating Crop and Livestock Systems: A Comparative Analysis. Sustainability 2017, 9, 473. [Google Scholar] [CrossRef] [Green Version]
- Katema, T.; Mwakiwa, E.; Hanyani-Mlambo, B.T.; Gomera, M.R.; Chamboko, T. An analysis of the profitability of groundnut production by smallholder farmers in Chegutu district, Zimbabwe. J. Econ. Sustain. Dev. 2017, 8, 167–175. [Google Scholar]
- Mapiye, C.; Mwale, M.; Chikumba, N.; Poshiwa, X.; Mupangwa, J.F.; Mugabe, P.H. A review of improved forage grasses in Zimbabwe. Trop. Subtrop. Agroecosystems 2006, 6, 125–131. [Google Scholar]
- De Groote, H.; Dema, G.; Sonda, G.B.; Gitonga, Z.M. Maize for food and feed in East Africa—The farmers’ perspective. Field Crop. Res. 2013, 153, 22–36. [Google Scholar] [CrossRef]
- Herrero, M.; Thornton, P.K.; Notenbaert, A.; Msangi, S.; Wood, S.; Kruska, R.; Dixon, J.; Bossio, D.; Steeg, J.V.D.; Freeman, H.A.; et al. Drivers of Change in Crop-Livestock Systems and Their Potential Impacts on Agroecosystems Services and Human Wellbeing to 2030: A Study Commissioned by the CGIAR Systemwide Livestock Programme; ILRI: Nairobi, Kenya, 2007. [Google Scholar]
- Romney, D.L.; Thorne, P.; Lukuyu, B.; Thornton, P.K. Maize as food and feed in in-tensive smallholder systems: Management options for improved integration in mixed farming systems of east and southern Africa. Field Crop. Res. 2003, 84, 159–168. [Google Scholar] [CrossRef]
- Rufino, M.C.; Dury, J.; Tittonell, P.; van Wijk, M.T.; Herrero, M.; Zingore, S.; Mapfumo, P.; Giller, K.E. Competing use of organic resources, village-level interactions between farm types and climate variability in a communal area of NE Zimbabwe. Agric. Syst. 2011, 104, 175–190. [Google Scholar] [CrossRef]
- Erenstein, O.; Blümmel, M.; Grings, E. Potential for dual-purpose maize varieties to meet changing maize demands: Overview. Field Crop. Res. 2013, 153, 1–4. [Google Scholar] [CrossRef]
- Snapp, S.; Rahmanian, M.; Batello, C. Pulse Crops for Sustainable Farms in Sub-Saharan Africa; United Nations Publications: Rome, Italy, 2018. [Google Scholar]
- Hall, A.; Blümmel, M.; Thorpe, W.; Bidinger, F.R.; Hash, C.T. Sorghum and Pearl Millet as food-feed-crops in India. Anim. Nutr. Feed Technol. 2004, 4, 1–15. [Google Scholar]
- Blümmel, M.; Anandan, S.; Wright, I.A. Improvement of feed resources and livestock feeding in mixed cropping systems. In Animal Nutrition Advances and Development; Mehra, U.R., Singh, P., Verma, A.K., Eds.; Satish Serial Publishing House: New Delhi, India, 2012; pp. 459–475. [Google Scholar]
- Hassan, S.A.; Mohammed, M.I.; Yagoub, S.O. Breeding for dual purpose attributes in sorghum: Effect of harvest option and genotype on fodder and grain yields. J. Plant Breed. Crop Sci. 2015, 7, 101–106. [Google Scholar]
- Bell, L.W.; Moore, A.D.; Kirkegaard, J.A. Evolution in crop-livestock integration systems that improve farm productivity and environmental performance in Australia. Eur. J. Agron. 2014, 57, 10–20. [Google Scholar] [CrossRef]
- Mkuhlani, S.; Mupangwa, W.; MacLeod, N.; Gwiriri, L.; Nyagumbo, I.; Manyawu, G.; Chigede, N. Crop-livestock integration in smallholder farming systems of Goromonzi and Murehwa, Zimbabwe. Renew. Agric. Food Syst. 2018, 35, 249–260. [Google Scholar] [CrossRef]
- Lenne, J.M.; Fernandez-Rivera, S.; Blümmel, M. Approaches to improve the utilization of food-feed crops: Synthesis. Field Crop. Res. 2003, 84, 213–222. [Google Scholar] [CrossRef]
- Sharma, K.; Pattanaik, A.K.; Anandan, S.; Blümmel, M. Food-Feed crops research: A synthesis. Anim. Nutr. Feed Technol. 2010, 10, 1–10. [Google Scholar]
- Edilegnaw, W.; Asmare, Y. Farmers’ variety attribute preferences: Implications for breeding priority setting and agricultural extension policy in Ethiopia. Afr. Dev. Rev. 2007, 19, 379–396. [Google Scholar]
- Edmeades, S. A hedonic approach to estimating the supply of variety attributes of a sub-sistence crop. Agric. Econ. 2007, 37, 19–28. [Google Scholar] [CrossRef]
- Mupangwa, W.; Thierfelder, C. Intensification of conservation agriculture systems for increased livestock feed and maize production in Zimbabwe. Int. J. Agric. Sustain. 2013, 12, 425–439. [Google Scholar] [CrossRef]
- Tui, S.H.-K.; Blümmel, M.; Valbuena, D.; Chirima, A.; Masikati, P.; van Rooyen, A.F.; Kassie, G.T. Assessing the potential of dual-purpose maize in southern Africa: A multi-level approach. Field Crop. Res. 2013, 153, 37–51. [Google Scholar] [CrossRef] [Green Version]
- Henderson, B.; Godde, C.; Medina-Hidalgo, D.; van Wijk, M.; Silvestri, S.; Douxchamps, S.; Stephenson, E.; Power, B.; Rigolot, C.; Cacho, O.; et al. Closing system-wide yield gaps to increase food production and mitigate GHGs among mixed crop–livestock smallholders in Sub-Saharan Africa. Agric. Syst. 2016, 143, 106–113. [Google Scholar] [CrossRef] [PubMed]
- Ryschawy, J.; Choisis, N.; Choisis, J.; Joannon, A.; Gibon, A. Mixed crop-livestock systems: An economic and environmental-friendly way of farming? Animals 2012, 6, 1722–1730. [Google Scholar] [CrossRef] [Green Version]
- Chikobvu, S.; Kassie, G.T.; Lunduka, R.W. Socio-Economics Program Working Paper. In Adoption of Drought Tolerant Maize Varieties in Zimbabwe. Country Report—DT Maize Adoption Monitoring Survey-Zimbabwe; CIMMYT: Mexico City, Mexico, 2014. [Google Scholar]
- Musara, J.P.; Musemwa, L.; Mutenje, M.; Mushunje, A.; Pfukwa, C. Determinants of sorghum adoption and land allocation intensity in the smallholder sector of semi-arid Zimbabwe. Span. J. Agric. Res. 2019, 17, e0105. [Google Scholar] [CrossRef] [Green Version]
- Mohanraj, K.; Gopalan, A.; Durai, A.A.; Ravinder, K. Genetic variability for grain cum fodder yield and contributing traits in F2 generations of dual-purpose sorghum. Plant Arch. 2011, 11, 151–156. [Google Scholar]
- Tekle, D.; Gebru, G. The effect of haulms of groundnut and cowpea supplementations on growth performance of Abergelle goats. Livest. Res. Rural Dev. 2018, 30, 3. [Google Scholar]
- Kassie, G.T.; Abdulai, A.; Greene, W.H.; Shiferaw, B.; Abate, T.; Tarekegne, A.; Sutcliffe, C. Modeling Preference and Willingness to Pay for Drought Tolerance (DT) in Maize in Rural Zimbabwe. World Dev. 2017, 94, 465–477. [Google Scholar] [CrossRef] [PubMed]
- Kristjanson, P.M.; Zerbini, E. Genetic enhancement of sorghum and millet residues fed to ruminants: An ex ante assessment of returns to research. In Impact Assessment Series 3; ILRI: Nairobi, Kenya, 1999. [Google Scholar]
- Boone, H.N.; Boone, D.A. Analyzing Likert Data. Journal of Extension 50, Article Number 2TOT2. 2012. Available online: http://www.joe.org/joe/2012april/tt2.php (accessed on 12 November 2020).
- Greene, W.H. Econometric Analysis; Pearson Education Inc.: Upper Saddle River, NJ, USA, 2003. [Google Scholar]
- Muzhingi, T.; Langyintuo, A.S.; Malaba, L.C.; Banziger, M. Consumer acceptability of yellow maize products in Zimbabwe. Food Policy 2008, 33, 352–361. [Google Scholar] [CrossRef]
- Ekpa, O.; Palacios-Rojas, N.; Kruseman, G.; Fogliano, V.; Linnemann, A.R. Sub-Saharan African maize-based foods: Technological perspectives to increase the food and nutrition security impacts of maize breeding programmes. Glob. Food Secur. 2018, 17, 48–56. [Google Scholar] [CrossRef]
- Phiri, K.; Dube, T.; Moyo, P.; Ncube, C.; Ndlovu, S.; Buchenrieder, G. Small grains “resistance”? Making sense of Zimbabwean smallholder farmers’ cropping choices and patterns within a climate change context. Cogent Soc. Sci. 2019, 5, 1622485. [Google Scholar] [CrossRef]
- Khanal, U.; Adhikari, A.; Wilson, C. Evaluating smallholder farmers’ demand for rice variety attributes in Nepal. J. Crop. Improv. 2017, 92, 1–15. [Google Scholar] [CrossRef]
- Daudi, H.; Shimelis, H.; Laing, M.; Okori, P.; Mponda, O. Groundnut production constraints, farming systems, and farmer-preferred traits in Tanzania. J. Crop. Improv. 2018, 32, 812–828. [Google Scholar] [CrossRef]
- Zaidi, P.; Vinayan, M.; Blümmel, M. Genetic variability of tropical maize stover quality and the potential for genetic improvement of food-feed value in India. Field Crop. Res. 2013, 153, 94–101. [Google Scholar] [CrossRef]
- Sunding, D.; Zilberman, D. The agricultural innovation process: Research and technology adoption in a changing agricultural sector. In Handbook of Agricultural Economics; Bruce, L.G., Gordon, C.R., Eds.; Elsevier: Amsterdam, The Netherlands, 2001; pp. 207–261. [Google Scholar] [CrossRef]
Variety | Local Name | Release Year | Main Preferred Trait(s) | Non-Preferred Trait(s) |
---|---|---|---|---|
Maize | ||||
SC 513 | Mbizi | 1999 | Yield, earliness, drought tolerance | Susceptible to ear rots, maize streak virus |
SC 403 | Tsoko | 1998 | Earliness, drought tolerance | Susceptible to ear rots |
PAN 53 | PAN 53 | 2007 | Appeal, nitrogen use efficiency, drought tolerance | Susceptible to maize streak virus |
SC 727 | SC 727 | 2010 | Yield, wide-area adaptability, drought tolerance | Open tips, susceptible HT |
PHB 30G19 | PHB 30G19 | 2008 | Drought tolerance, high bulk density | Susceptible to maize streak virus |
SC 719 | SC 719 | 2004 | Yield, wide-area adaptability, biomass yield, drought tolerance | High ear placement |
Sorghum | ||||
SC SILA | SC SILA | 2004 | Yield, grain color | Bird damage (highly preferred by birds) |
SC Smile | SC Smile | 2011 | Drought tolerance, earliness, plant architecture | Susceptible to leaf blight |
Macia | Macia | 1998 | Yield, grain color, wide adaptation | Bird damage (highly preferred by birds) |
NS 5511 | NS 5511 | Yield, market demand | Cost of seed is expensive | |
Groundnut | ||||
Natal Common | Kasawaira | 1988 | Earliness and drought tolerance | Susceptible to cercospora, web blotch |
Nyanda | Nyanda | 2000 | Yield, drought tolerance | Susceptible to ground rosette and cercospora |
Jesa | Jesa | 1999 | Yield | Less preferred grain color |
Ilanda | Ilanda | 2006 | Grain color | Susceptible to ground rosette and cercospora |
Flamingo | Flamingo | 1982 | Yield, confectionery use | Susceptible to drought |
Makulu Red | Makulu Red | Yield, confectionery use | Susceptible to drought |
Variable | Pooled Data Mean (std.dev) (n = 645) | District | |
---|---|---|---|
Gwanda Mean (std.dev) (n = 292) | Mangwe Mean (std.dev) (n = 353) | ||
Male (1 = gender of HH head is male; 0 = otherwise) | 0.60 (0.49) | 0.64 ** (0.48) | 0.57 (0.50) |
Age of household head (years) | 57.47 (14.59) | 55.77 (14.57) | 58.87 *** (14.48) |
Household size (count) | 5.74 (5.74) | 5.77 (2.88) | 5.71 (2.64) |
Education level (years of formal schooling) | 7.43 (7.43) | 8.36 *** (3.39) | 6.66 (3.27) |
Land size (hectares) | 2.35 (1.57) | 2.56 *** (1.85) | 2.18 (1.28) |
Livestock owned (TLU) | 11.10 (13.82) | 13.98 *** (17.22) | 8.71 (9.58) |
Main occupation (1 = agriculture; 0 otherwise) | 0.778 (0.415) | 0.778 (0.417) | 0.779 (0.415) |
Per capita income (ZWD) | 14,380 (32,043) | 16,811 * (42,984) | 12,369 (18,497) |
Group membership (1 = member of a group; 0 = otherwise) | 0.46 (0.50) | 0.50 ** (0.50) | 0.42 (0.49) |
Extension services (1 = received extension services; 0 = otherwise) | 0.76 (0.43) | 0.84 *** (0.37) | 0.70 (0.46) |
Credit access (1 = access credit; 0 = otherwise) | 0.29 (0.45) | 0.23 (0.42) | 0.34 *** (0.47) |
Distance to nearest village market (kilometers) | 4.80 (6.91) | 4.69 (6.02) | 4.88 (7.57) |
Pooled Data (n = 645) | Gender | District | |||
---|---|---|---|---|---|
Male (n = 388) | Female (n = 257) | Gwanda (n = 292) | Mangwe (n = 353) | ||
Major crops | |||||
Maize | 82 | 84 | 79 | 90 *** | 76 |
Sorghum | 72 | 71 | 73 | 69 | 74 |
Groundnuts | 54 | 55 | 53 | 60 *** | 50 |
Pearl millet | 43 | 43 | 44 | 14 | 67 *** |
Cowpeas | 38 | 39 | 38 | 42 * | 35 |
Bambara nuts | 21 | 21 | 20 | 21 | 21 |
Livestock | |||||
Cattle | 63 | 67 *** | 56 | 58 | 67 ** |
Goat | 93 | 94 | 91 | 99 *** | 88 |
Sheep | 14 | 15 | 11 | 12 | 15 |
Horse/Donkey | 61 | 65 *** | 54 | 74 *** | 50 |
Chicken | 92 | 93 | 91 | 95 ** | 90 |
Variable | Pooled Data (n = 645) | Gender | District | ||
---|---|---|---|---|---|
Male (n = 388) | Female (n = 257) | Gwanda (n = 292) | Mangwe (n = 353) | ||
Panel A: Crop–livestock integration | |||||
Animal plow (% of farmers) | 88 | 90 ** | 84 | 96 *** | 81 |
Manure use (% of farmers) | 63 | 65 | 60 | 66 * | 60 |
Share of livestock income from the total income | 16.32 | 16.98 | 15.30 | 23.86 *** | 10.07 |
Grazing and/or feeding crop residue (% of farmers) | 82 | 84 ** | 78 | 83 | 81 |
Panel B: Livestock feeding (% of farmers) | |||||
Grazing rangelands | 91 | 92 | 89 | 88 | 93 ** |
Grazing crop residues | 57 | 60 * | 53 | 56 | 58 |
Feeding crop residues | 57 | 60 * | 52 | 63 *** | 52 |
Feeding dry fodder | 20 | 21 | 17 | 23 ** | 16 |
Feeding green fodder | 7 | 9 ** | 5 | 11 *** | 4 |
Commercial concentrate | 24 | 26 * | 20 | 30 *** | 18 |
Home-made concentrate | 8 | 8 | 8 | 8 | 8 |
Mucuna and/or sunhemp | 5 | 5 | 4 | 8 *** | 2 |
Panel C: Livestock marketing (% of farmers who sell) | |||||
Cattle | 19 | 21 | 16 | 23 ** | 16 |
Goats | 34 | 38 *** | 28 | 58 *** | 15 |
Milk | 1.00 | 1.00 | 0.00 | 1.00 | 0.00 |
Processed feed | 1.00 | 1.00 * | 0.00 | 1.00 | 1.00 |
Variable | Pooled Data | Gender | District | ||
---|---|---|---|---|---|
Male | Female | Gwanda | Mangwe | ||
Maize | n = 531 | n = 327 | n = 204 | n = 264 | n = 267 |
Growing the crop every year (%) | 97.36 | 98.47 ** | 95.59 | 95.83 | 98.88 ** |
Area of land allocated (ha) | 0.71 | 0.73 | 0.68 | 0.82 *** | 0.61 |
Proportion of household land allocated (%) | 29 | 29 | 29 | 31 | 27 |
Main purpose of grain (% of total production) | |||||
Household consumption (%) | 67 | 81 *** | 45 | 77 *** | 60 |
Animal feed (%) | 4 | 0 | 11 *** | 0 | 8 *** |
Saved for seed (%) | 2 | 3 | 1 | 3* | 1 |
Sale (%) | 24 | 14 | 40 *** | 16 | 30 *** |
Gifts, barter, and other (%) | 2 | 2 | 2 | 3 * | 1 |
Sorghum | n = 463 | n = 275 | n = 188 | n = 201 | n = 262 |
Growing the crop every year (%) | 98.70 | 99.64 ** | 97.34 | 98.01 | 99.24 |
Area of land allocated (ha) | 0.80 | 0.81 | 0.79 | 0.95 *** | 0.69 |
Proportion of household land allocated (%) | 32 | 31 | 33 | 35 | 30 |
Main purpose of grain (% of total production) | |||||
Household consumption (%) | 87 | 86 | 89 | 86 | 88 |
Animal feed (%) | 1 | 1 | 1 | 1 | 1 |
Saved for seed (%) | 7 | 7 | 6 | 6 | 8 |
Sale (%) | 1 | 1 | 0 | 1 | 0 |
Gifts, barter, and other (%) | 0 | 0 | 0 | 0 | 0 |
Groundnut | n = 350 | n = 215 | n = 135 | n = 175 | n = 175 |
Growing the crop every year (%) | 96.57 | 95.81 | 97.78 | 94.86 | 98.29 * |
Area of land allocated (ha) | 0.36 | 0.40 ** | 0.36 | 0.42 ** | 0.30 |
Proportion of household land allocated (%) | 14 | 16 | 12 | 15 | 13 |
Main purpose of grain (% of total production) | |||||
Household consumption (%) | 65 | 65 | 69 | 67 | 62 |
Animal feed (%) | 0 | 0 | 0 | 0 | 0 |
Saved for seed (%) | 10 | 9 | 17 ** | 10 | 9 |
Sale (%) | 18 | 19 | 13 | 14 | 29 *** |
Gifts, barter, and other (%) | 7 | 8* | 3 | 9 *** | 0 |
Attributes | Maize | Sorghum | Groundnuts | |||
---|---|---|---|---|---|---|
Comp. 1 | Comp. 2 | Comp. 1 | Comp. 2 | Comp. 1 | Comp. 2 | |
Grain yield | 0.090 | 0.867 | 0.117 | 0.810 | 0.103 | 0.817 |
Disease resistance | 0.401 | 0.492 | 0.401 | 0.522 | 0.248 | 0.730 |
Drought tolerance | 0.066 | 0.854 | 0.076 | 0.817 | 0.196 | 0.754 |
Stover yield | 0.836 | 0.099 | 0.835 | 0.154 | 0.837 | 0.199 |
Dry matter | 0.792 | 0.089 | 0.817 | 0.170 | 0.826 | 0.139 |
Stay green | 0.802 | 0.055 | 0.817 | 0.111 | 0.755 | 0.243 |
Low lignin | 0.825 | 0.136 | 0.804 | 0.238 | 0.822 | 0.218 |
Digestibility | 0.778 | 0.214 | 0.734 | 0.362 | 0.779 | 0.304 |
Biomass yield | 0.671 | 0.031 | 0.731 | 0.053 | 0.698 | 0.079 |
Traits | Pooled Data (n = 645) | Gender | District | ||
---|---|---|---|---|---|
Male (n = 388) | Female (n = 257) | Gwanda (n = 292) | Mangwe (n = 353) | ||
Maize | |||||
Grain and field attributes | |||||
Grain yield | 3.91 | 3.93 ** | 3.88 | 3.88 | 3.94 ** |
Drought tolerance | 3.76 | 3.80 *** | 3.70 | 3.73 | 3.78 |
Disease resistance | 3.67 | 3.71 * | 3.62 | 3.67 | 3.68 |
Feed attributes | |||||
Biomass yield | 2.98 | 2.99 | 2.95 | 2.87 | 3.07 *** |
Digestibility | 3.02 | 3.05 | 2.97 | 2.86 | 3.15 *** |
Low lignin | 2.92 | 2.99 ** | 2.82 | 2.80 | 3.02 *** |
Stay green | 2.90 | 2.95 * | 2.82 | 2.84 | 2.94 |
Stover yield | 3.16 | 3.19 | 3.11 | 3.12 | 3.19 |
Dry matter | 2.97 | 2.98 | 2.96 | 2.75 | 3.16 *** |
Sorghum | |||||
Grain and field attributes | |||||
Grain yield | 3.78 | 3.79 *** | 3.77 | 3.72 | 3.84 *** |
Drought tolerance | 3.70 | 3.67 | 3.74 | 3.67 | 3.71 |
Disease resistance | 3.64 | 3.64 | 3.62 | 3.61 | 3.66 |
Feed attributes | |||||
Biomass yield | 2.93 | 2.96 | 2.89 | 2.80 | 3.05 *** |
Digestibility | 3.02 | 3.08 ** | 2.94 | 2.85 | 3.16 *** |
Low lignin | 2.89 | 2.93 | 2.82 | 2.77 | 2.99 *** |
Stay green | 2.84 | 2.88 | 2.79 | 2.79 | 2.89 |
Stover yield | 3.16 | 3.19 | 3.11 | 3.10 | 3.20 |
Dry matter | 2.97 | 2.99 | 2.93 | 2.73 | 3.16 *** |
Groundnut | |||||
Grain and field attributes | |||||
Grain yield | 3.80 | 3.82 | 3.77 | 3.79 | 3.81 |
Drought tolerance | 3.70 | 3.69 | 3.72 | 3.67 | 3.73 |
Disease resistance | 3.62 | 3.60 | 3.64 | 3.58 | 3.65 |
Feed attributes | |||||
Biomass yield | 3.00 | 3.00 | 3.01 | 2.82 | 3.15 *** |
Digestibility | 3.59 | 3.68 ** | 3.44 | 3.46 | 3.69 ** |
Low lignin | 2.98 | 2.99 | 2.96 | 2.85 | 3.09 *** |
Stay green | 2.93 | 2.95 | 2.90 | 2.90 | 2.95 |
Stover yield | 3.08 | 3.07 | 3.08 | 3.02 | 3.12 |
Dry matter | 2.97 | 2.96 | 2.98 | 2.76 | 3.14 *** |
Varieties | Pooled Data | Gender | District | ||
---|---|---|---|---|---|
Male | Female | Gwanda | Mangwe | ||
Maize | n = 531 | n = 327 | n = 204 | n = 264 | n = 267 |
Local | 11.68 | 12.84 | 9.80 | 15.15 ** | 8.24 |
Improved | 86.82 | 85.32 | 89.22 | 83.33 | 90.26 ** |
Both | 1.51 | 1.83 | 0.98 | 1.52 | 1.50 |
Sorghum | n = 463 | n = 275 | n = 188 | n = 201 | n = 262 |
Local | 67.39 | 65.82 | 69.68 | 67.16 | 67.56 |
Improved | 31.53 | 33.82 | 28.19 | 31.84 | 31.30 |
Both | 1.08 | 0.36 | 2.13 * | 1.00 | 1.15 |
Groundnut | n = 350 | n = 215 | n = 135 | n = 175 | n = 175 |
Local | 72.57 | 73.95 | 70.37 | 68.57 | 76.57 * |
Improved | 27.14 | 25.58 | 29.63 | 30.86 | 23.43 |
Both | 0.29 | 0.47 | 0.00 | 0.57 | 0.00 |
Maize | Sorghum | Groundnut | |
---|---|---|---|
Male household head | 0.153 (0.140) | 0.159 (0.143) | 0.205 (0.141) |
Age | 0.002 (0.005) | −0.001 (0.005) | 0.001 (0.005) |
Years of education | 0.028 (0.021) | 0.021 (0.022) | 0.026 (0.022) |
Household size | 0.052 ** (0.026) | 0.049 * (0.026) | 0.047 * (0.026) |
Farming main occupation | 0.014 (0.169) | 0.039 (0.170) | 0.052 (0.169) |
TLU | 0.012 * (0.007) | 0.015 ** (0.007) | 0.012 * (0.007) |
Group membership | 0.065 (0.141) | 0.079 (0.143) | 0.074 (0.141) |
Extension services | 0.217 (0.158) | 0.153 (0.156) | 0.179 (0.155) |
Credit access | 0.268 * (0.152) | 0.261 * (0.154) | 0.231 * (0.155) |
Distance to market | −0.003 * (0.002) | −0.003 * (0.002) | −0.003 * (0.002) |
Fertilizer application | 0.991 *** (0.360) | 0.893 ** (0.367) | 1.005 *** (0.367) |
Residue use | 0.522 *** (0.162) | 0.481 *** (0.163) | 0.576 *** (0.166) |
Off-farm income | −0.357 ** (0.161) | −0.305* (0.163) | −0.318 ** (0.157) |
Grain yield | −0.546 ** (0.256) | −0.090 (0.169) | 0.082 (0.152) |
Drought tolerance | 0.365 ** (0.162) | 0.054 (0.150) | 0.227 * (0.136) |
Disease resistance | −0.173 (0.124) | 0.355 *** (0.108) | −0.093 (0.120) |
Stover yield | 0.272 ** (0.129) | 0.343 ** (0.136) | 0.145 ** (0.137) |
Digestibility | 0.117 (0.111) | −0.126 (0.111) | 0.053 (0.123) |
Biomass | 0.012 * (0.091) | 0.144 ** (0.091) | 0.023 ** (0.092) |
Low lignin | 0.071 (0.105) | −0.008 (0.107) | −0.121 (0.082) |
Stay green | 0.164 * (0.096) | 0.144 ** (0.100) | 0.317 *** (0.099) |
Dry matter | −0.029 (0.114) | −0.072 (0.130) | 0.171 (0.119) |
Constant | −0.479 (0.919) | −2.314 *** (0.761) | −2.403 *** (0.681) |
Observations | 645 | 645 | 645 |
Prob > chi2 | 0.000 | 0.000 | 0.000 |
Pseudo R2 | 0.176 | 0.202 | 0.186 |
Maize Varieties | Sorghum Varieties | Groundnut Varieties | ||||
---|---|---|---|---|---|---|
Improved | Improved and Local | Improved | Improved and Local | Improved | Improved and Local | |
Male household head | −0.553 * (0.332) | 1.746 (1.493) | −0.090 * (0.242) | −369.296 (524.848) | −0.505 * (0.290) | 5.078 (5111.184) |
Age | 0.019 * (0.011) | −0.017 (0.038) | −0.004 (0.009) | −18.056 (24.840) | −0.012 (0.010) | −0.143 (232.394) |
Years of education | 0.102 ** (0.048) | −0.306 (0.231) | 0.038 (0.038) | −27.682 (37.897) | 0.021 (0.045) | 0.846 (1113.148) |
Household size | 0.062 * (0.057) | 0.026 (0.304) | 0.077 ** (0.039) | −57.351 (77.160) | 0.035 (0.047) | 1.131 (637.152) |
Farming main occupation | −1.405 *** (0.513) | −2.536 * (1.510) | −0.101 (0.293) | 560.636 (799.885) | −0.529 * (0.346) | −3.997 (5651.091) |
TLU | −0.002 (0.010) | −0.015 (0.037) | −0.011 (0.011) | 13.847 (18.992) | 0.010 (0.012) | −0.232 (304.743) |
Group membership | 0.071 (0.307) | 0.199 (1.118) | 0.321 (0.232) | −172.286 (242.571) | 0.341 (0.280) | −7.262 (6171.405) |
Extension services | 0.095 ** (0.380) | −0.511 (1.256) | 1.295 *** (0.347) | −252.194 (354.133) | 0.573 ** (0.371) | 6.896 (5677.220) |
Credit access | 0.643 ** (0.310) | 2.399 ** (1.115) | 0.045 (0.246) | −124.295 (189.470) | −0.025 (0.302) | −9.168 (5677.132) |
Distance to market | −0.003 (0.004) | −0.036 (0.026) | −0.004 (0.003) | 2.209 (3.109) | 0.003 (0.003) | −0.051 (56.680) |
Fertilizer application | 1.433 * (0.753) | −14.699 (4198.42) | 1.262 *** (0.357) | −537.280 (782.867) | 0.997 ** (0.422) | 25.124 (5561.985) |
Residue use | −0.038 (0.403) | 18.066 (3071.12) | 0.336 (0.340) | −171.193 (257.801) | −0.155 (0.377) | 2.814 (6921.347) |
Off-farm income | −0.106 (0.333) | −1.037 (1.079) | −0.547 ** (0.261) | −183.823 (258.314) | −0.516 (0.325) | −0.069 (5092.449) |
Grain yield | 0.966 *** (0.611) | 17.516 (4909.65) | 0.255 ** (0.319) | −22.363 (85.800) | 0.296 * (0.419) | 17.306 (8777.624) |
Drought tolerance | 0.345 ** (0.453) | 0.707 (1.638) | 0.350 * (0.293) | −944.199 (1267.680) | 1.148 *** (0.361) | −4.167 (6503.621) |
Disease resistance | −0.156 (0.359) | −1.805 (1.302) | 0.365 (0.288) | 127.620 (193.662) | 1.256 *** (0.373) | −8.081 (4967.972) |
Stover yield | 0.433 *** (0.494) | −16.187 (1657.89) | 0.377 * (0.377) | 397.384 (537.763) | 0.117 ** (0.500) | 1.392 (9387.032) |
Digestibility | 0.338 (0.406) | −1.546 (1.772) | 0.394 (0.339) | −56.736 (137.583) | −0.395 (0.412) | 2.158 (14,126.041) |
Biomass | 0.250 ** (0.366) | 2.803 * (1.493) | 0.112 ** (0.313) | 131.559 (196.841) | 0.172 * (0.325) | 0.741 (4988.637) |
Low lignin | −0.197 (0.433) | −0.085 (1.835) | −0.698 ** (0.355) | 83.851 (147.372) | 0.106 (0.302) | −7.976 (4177.169) |
Stay green | −0.571 (0.412) | −15.577 (1675.27) | 0.093 (0.336) | 48.381 (193.477) | 0.198 (0.398) | 0.951 (9948.284) |
Dry matter | 0.130 (0.412) | −14.165 (1795.09) | −0.312 (0.400) | 141.261 (221.171) | 0.220 (0.461) | −11.898 (11,022.278) |
Constant | 1.205 (1.179) | −32.633 (5791.07) | −2.378 *** (0.883) | 1080.757 (1460.700) | −0.194 (1.058) | −44.476 (19,649.000) |
Observations | 531 | 463 | 350 | |||
Prob > chi2 | 0.002 | 0.000 | 0.061 | |||
Pseudo R2 | 0.161 | 0.192 | 0.140 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Melesse, M.B.; Tirra, A.N.; Ojiewo, C.O.; Hauser, M. Understanding Farmers’ Trait Preferences for Dual-Purpose Crops to Improve Mixed Crop–Livestock Systems in Zimbabwe. Sustainability 2021, 13, 5678. https://doi.org/10.3390/su13105678
Melesse MB, Tirra AN, Ojiewo CO, Hauser M. Understanding Farmers’ Trait Preferences for Dual-Purpose Crops to Improve Mixed Crop–Livestock Systems in Zimbabwe. Sustainability. 2021; 13(10):5678. https://doi.org/10.3390/su13105678
Chicago/Turabian StyleMelesse, Mequanint B., Amos Nyangira Tirra, Chris O. Ojiewo, and Michael Hauser. 2021. "Understanding Farmers’ Trait Preferences for Dual-Purpose Crops to Improve Mixed Crop–Livestock Systems in Zimbabwe" Sustainability 13, no. 10: 5678. https://doi.org/10.3390/su13105678