Effect of Vermicompost Application on Mineral Nutrient Composition of Grains of Buckwheat (Fagopyrum esculentum M.)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Location
2.2. Soil
2.3. Meteorological Information
2.4. Planting Material
2.5. Experimental Treatments and Design
2.6. Experimentation
2.7. Data Collection
2.8. Statistical Analysis
3. Results and Discussion
3.1. Macronutrient (N, P and K) Contents
3.2. Microelement (Fe, Cu, Zn and Mn) Content
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kara, N. Yield and Mineral Nutrition Content of Buckwheat (Fagopyrum esculentum Moench): The Effect of Harvest Times. SDU J. Fac. Agric. 2014, 9, 85–94. [Google Scholar]
- Gondola, I.; Papp, P.P. Origin, geographical distribution and phylogenic relationships of common buckwheat (Fagopyrum esculentum Moench.). Eur. J. Plant Sci. Biotechnol. 2010, 4, 17–32. [Google Scholar]
- Sedej, I.; Sakač, M.; Mandić, A.; Mišan, A.; Tumbas, V.; Čanadanović-Brunet, J. Buckwheat (Fagopyrum esculentum Moench) grain and fractions: Antioxidant compounds and activities. J. Food Sci. 2012, 77, C954–C959. [Google Scholar] [CrossRef]
- Woo, S.H.; Roy, S.K.; Kwon, S.J.; Cho, S.W.; Sarker, K.; Lee, M.S.; Kim, H.H. Concepts, prospects, and potentiality in buckwheat (Fagopyrum esculentum Moench): A research perspective. Mol. Breed. Nutr. Asp. Buckwheat 2016, 21–49. [Google Scholar] [CrossRef]
- Li, X.; Park, N.I.; Xu, H.; Woo, S.-H.; Park, C.H.; Park, S.U. Differential Expression of Flavonoid Biosynthesis Genes and Accumulation of Phenolic Compounds in Common Buckwheat (Fagopyrum esculentum). J. Agric. Food Chem. 2010, 58, 12176–12181. [Google Scholar] [CrossRef] [PubMed]
- Al-Snafi, A.E. A review on Fagopyrum esculentum: A potential medicinal plant. IOSR J. Pharm. 2017, 7, 21–32. [Google Scholar] [CrossRef]
- Kalinová, J.P.; Vrchotová, N.; Tříska, J. Phenolics levels in different parts of common buckwheat (Fagopyrum esculentum) achenes. J. Cereal Sci. 2019, 85, 243–248. [Google Scholar] [CrossRef]
- Tomotake, H.; Kayashita, J.; Kato, N. Hypolipidemic activity of common (Fagopyrum esculentum Moench) and tartary (Fagopyrum tataricum Gaertn.) buckwheat. J. Sci. Food Agric. 2014, 95, 1963–1967. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Hu, D.; Liu, X.; She, H.; Ruan, R.; Yang, H.; Yi, Z.; Wu, D. Effects of uniconazole on the lignin metabolism and lodging resistance of culm in common buckwheat (Fagopyrum esculentum M.). Field Crop. Res. 2015, 180, 46–53. [Google Scholar] [CrossRef]
- Leiber, F.; Kunz, C.; Kreuzer, M. Influence of different morphological parts of buckwheat (Fagopyrum esculentum) and its major secondary metabolite rutin on rumen fermentation in vitro. Czech J. Anim. Sci. 2012, 57, 10–18. [Google Scholar] [CrossRef] [Green Version]
- Mackėla, I.; Andriekus, T.; Venskutonis, P.R. Biorefining of buckwheat (Fagopyrum esculentum) hulls by using supercritical fluid, Soxhlet, pressurized liquid and enzyme-assisted extraction methods. J. Food Eng. 2017, 213, 38–46. [Google Scholar] [CrossRef]
- Amelchanka, S.; Kreuzer, M.; Leiber, F. Utility of buckwheat (Fagopyrum esculentum Moench) as feed: Effects of forage and grain on in vitro ruminal fermentation and performance of dairy cows. Anim. Feed. Sci. Technol. 2010, 155, 111–121. [Google Scholar] [CrossRef]
- Vio, M.F.G.C.A.F.A.; Rafael, R.D.; Regildo, G.C.A.D.S.; Nio, P.P.P.O.; Eidi, Y.; Erika, C.T.D.M.P.; Gonçalves, F.M.F.; Debiage, R.R.; Da Silva, R.M.G.; Porto, P.P.; et al. Fagopyrum esculentum Moench: A crop with many purposes in agriculture and human nutrition. Afr. J. Agric. Res. 2016, 11, 983–989. [Google Scholar] [CrossRef]
- Gfeller, A.; Glauser, G.; Etter, C.; Signarbieux, C.; Wirth, J. Fagopyrum esculentum Alters Its Root Exudation after Amaranthus retroflexus Recognition and Suppresses Weed Growth. Front. Plant Sci. 2018, 9, 50. [Google Scholar] [CrossRef] [Green Version]
- Smirnov, O.; Kosyan, A.M.; Kosyk, O.; Taran, N.Y. Response of phenolic metabolism induced by aluminium toxicity in Fagopyrum esculentum Moench. plants. Ukr. Biochem. J. 2016, 87, 129–135. [Google Scholar] [CrossRef]
- Reyna-Llorens, I.; Corrales, I.; Poschenrieder, C.; Barcelo, J.; Cruz-Ortega, R. Both aluminum and ABA induce the expression of an ABC-like transporter gene (FeALS3) in the Al-tolerant species Fagopyrum esculentum. Environ. Exp. Bot. 2015, 111, 74–82. [Google Scholar] [CrossRef]
- Yokosho, K.; Yamaji, N.; Ma, J.F. Global transcriptome analysis of Al-induced genes in an Al-accumulating species, common buckwheat (Fagopyrum esculentum Moench). Plant Cell Physiol. 2014, 55, 2077–2091. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.; Kim, S.; Kim, S.; Lee, I. Assessment of phytotoxicity of ZnO NPs on a medicinal plant, Fagopyrum esculentum. Environ. Sci. Pollut. Res. 2013, 20, 848–854. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sytar, O.; Cai, Z.; Brestic, M.; Kumar, A.; Prasad, M.N.V.; Taran, N.; Smetanska, I. Foliar Applied Nickel on Buckwheat (Fagopyrum esculentum) Induced Phenolic Compounds as Potential Antioxidants. CLEAN Soil Air Water 2013, 41, 1129–1137. [Google Scholar] [CrossRef]
- Gaberscik, A.; Grašič, M.; Vogel-Mikuš, K.; Germ, M.; Golob, A. Water shortage strongly alters formation of cal-cium oxalate druse crystals and leaf traits in Fagopyrum esculentum. Plants 2020, 9, 917. [Google Scholar] [CrossRef] [PubMed]
- Fang, X.; Li, Y.; Nie, J.; Wang, C.; Huang, K.; Zhang, Y.; Zhang, Y.; She, H.; Liu, X.; Ruan, R.; et al. Effects of nitrogen fertilizer and planting density on the leaf photosynthetic characteristics, agronomic traits and grain yield in common buckwheat (Fagopyrum esculentum M.). Field Crop. Res. 2018, 219, 160–168. [Google Scholar] [CrossRef]
- Germ, M.; Gaberščik, A. The Effect of Environmental Factors on Buckwheat. In Molecular Breeding and Nutritional Aspects of Buckwheat; Academic Press: Pittsburgh, PA, USA, 2016; pp. 273–281. [Google Scholar]
- Possinger, A.R.; Byrne, L.B.; Breen, N.E. Effect of buckwheat (Fagopyrum esculentum) on soil-phosphorus availability and organic acids. J. Plant Nutr. Soil Sci. 2013, 176, 16–18. [Google Scholar] [CrossRef] [Green Version]
- Hara, T.; Arakawa, Y.; Nagahama, R.; Yamaguchi, N.; Sumi, H.; Tanaka, A.; Ikoma, H. Growing buckwheat (Fagopyrum esculentum Moench) with composted manure and reduced chemical fertilizer on acid soil in sub-tropical Japan. Jpn. J. Crop Sci. 2014, 83, 118–125. [Google Scholar] [CrossRef] [Green Version]
- Iqbal, M.A.; Rahim, J.; Naeem, W.; Hassan, S.; Khattab, Y.; Ayman El-Sabagh, A. Rainfed winter wheat (Triticum aestivum L.) cultivars respond differently to integrated fertilization in Pakistan. Fresenius Environ. Bull. 2021, 30, 3115–3121. [Google Scholar]
- Khaliq, A.; Iqbal, M.A.; Zafar, M.; Gulzar, A. Appraising economic dimension of maize production under coher-ent fertilization in Azad Kashmir, Pakistan. Custos Agronegocio 2019, 15, 243–253. [Google Scholar]
- Kizilgeci, F.; Yildirim, M.; Islam, M.; Ratnasekera, D.; Iqbal, M.; Sabagh, A. Normalized Difference Vegetation Index and Chlorophyll Content for Precision Nitrogen Management in Durum Wheat Cultivars under Semi-Arid Conditions. Sustainability 2021, 13, 3725. [Google Scholar] [CrossRef]
- Haque, M.; Datta, J.; Ahmed, T.; Ehsanullah, M.; Karim, N.; Akter, M.; Iqbal, M.; Baazeem, A.; Hadifa, A.; Ahmed, S.; et al. Organic Amendments Boost Soil Fertility and Rice Productivity and Reduce Methane Emissions from Paddy Fields under Sub-Tropical Conditions. Sustainability 2021, 13, 3103. [Google Scholar] [CrossRef]
- Iqbal, M.A.; Hussain, I.; Hamid, A.; Ahmad, B.; Ishaq, S.; EL Sabagh, A.; Barutçular, C.; Khan, R.D.; Imran, M. Soybean herbage yield, nutritional value and profitability under integrated manures management. Anais Acad. Bras. Ciências 2021, 93, e20181384. [Google Scholar] [CrossRef]
- Siddiqui, M.H.; Iqbal, M.A.; Wajid, N.; Imtiaz, H.; Abdul, K. Bio-economic viability of rainfed wheat (Triticum aestivum L.) cultivars under integrated fertilization regimes in Pakistan. Custos Agronegocio 2019, 15, 81–96. [Google Scholar]
- Lim, S.L.; Wu, T.Y.; Lim, P.N.; Shak, K.P.Y. The use of vermicompost in organic farming: Overview, effects on soil and economics. J. Sci. Food Agric. 2015, 95, 1143–1156. [Google Scholar] [CrossRef]
- Pathma, J.; Sakthivel, N. Microbial diversity of vermicompost bacteria that exhibit useful agricultural traits and waste management potential. SpringerPlus 2012, 1, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Lazcano, C.; Domínguez, J. The use of vermicompost in sustainable agriculture: Impact on plant growth and soil fertility. Soil Nutr. 2011, 10, 187. [Google Scholar]
- Theunissen, J.; Ndakidemi, P.A.; Laubscher, C.P. Potential of vermicompost produced from plant waste on the growth and nutrient status in vegetable production. Int. J. Phys. Sci. 2010, 5, 1964–1973. [Google Scholar]
- Ievinsh, G. Vermicompost treatment differentially affects seed germination, seedling growth and physiological status of vegetable crop species. Plant Growth Regul. 2011, 65, 169–181. [Google Scholar] [CrossRef]
- Kacar, B. Plant, Soil and Fertilizer Analysis 2, Easy-to-Apply Plant Analysis; Publication, No: 910; Nobel Academic Publishing: Ankara, Turkey, 2014. [Google Scholar]
- Açıkgöz, N.; Açıkgöz, N. Some mistakes made in the statistical evaluation of agricultural research, 1. Single factor experiments, Anadolu Dergisi. 2001, 11, 135–147. [Google Scholar]
- Unal, H.; Izli, G.; Izli, N.; Asik, B.B. Comparison of some physical and chemical characteristics of buckwheat (Fagopyrum esculentum Moench) grains. CyTA J. Food 2016, 15, 257–265. [Google Scholar] [CrossRef] [Green Version]
- Kreft, I.; Skrabanja, V.; Ikeda, S.; Ikeda, K.; Bonafaccia, G. Dietary value of buckwheat. Kmetijstvo 1996, 67, 73–78. [Google Scholar]
- Campbell, C.G. Buckwheat: Fagopyrum esculentum Moench; Bioversity International: Rome, Italy, 1997; Volume 19. [Google Scholar]
Soil Properties | Values |
---|---|
Sand (%) | 7.90 |
Clay (%) | 55.84 |
Silt (%) | 36.26 |
pH | 7.98 |
Electrical conductivity (EC) (mS cm−1) | 0.363 |
CaCO3 (%) | 13.0 |
Organic matter (%) | 1.31 |
Available P (kg P2O5 ha−1) | 74.7 |
Available K (kg P2O5 ha−1) | 3800 |
Meteorological Elements | Years | July | August | September | October | Average/ Total |
---|---|---|---|---|---|---|
Relative humidity (%) | 2017 | 19.0 | 19.0 | 19.1 | 34.6 | 22.9 |
1950–2017 | 26.8 | 26.1 | 31.0 | 47.2 | 32.8 | |
Average temperature (°C) | 2017 | 32.3 | 32.0 | 28.4 | 18.4 | 27.8 |
1950–2017 | 30.6 | 30.1 | 25.2 | 18.1 | 26.0 | |
Total precipitation (mm) | 2017 | 0.0 | 0.4 | 0.0 | 5.2 | 5.6 |
1950–2017 | 3.1 | 2.3 | 4.7 | 47.9 | 58.0 |
EC (dS m−1) | pH | Organic Matter Content (%) | Total Humic and Fulvic Acid (%) | Total Nitrogen (N) Content (%) | Organic Nitrogen (N) Content (%) | C/N Ratio | Total P (P2O5) Content (%) | Water Soluble K2O Content (%) | |
---|---|---|---|---|---|---|---|---|---|
Value | 3.2 | 6.8 | 57.0 | 40.0 | 3.1 | 2.0 | 9.2 | 1.2 | 0.89 |
Varieties | Vermicompost Doses (t ha−1) | Macroelements (%) | ||||
---|---|---|---|---|---|---|
N | P | K | Ca | Mg | ||
Aktaş | 0 | 1.651 ± 0.110 | 0.230 ± 0.010 | 0.750 ± 0.017 | 0.033 ± 0.006 | 0.160 ± 0.017 |
0.75 | 1.749 ± 0.089 | 0.243 ± 0.012 | 0.763 ± 0.015 | 0.040 ± 0.000 | 0.160 ± 0.017 | |
1.5 | 1.831 ± 0.167 | 0.250 ± 0.010 | 0.770 ± 0.053 | 0.053 ± 0.015 | 0.167 ± 0.025 | |
2.25 | 1.901 ± 0.071 | 0.260 ± 0.010 | 0.767 ± 0.035 | 0.063 ± 0.023 | 0.203 ± 0.015 | |
3 | 1.850 ± 0.074 | 0.256 ± 0.006 | 0.793 ± 0.023 | 0.057 ± 0.015 | 0.173 ± 0.006 | |
Average | 1.796 ± 0.073 | 0.248 ± 0.002 B | 0.769 ± 0.008 | 0.049 ± 0.004 | 0.173 ± 0.009 | |
Güneş | 0 | 1.658 ± 0.110 | 0.240 ± 0.012 | 0.787 ± 0.006 | 0.043 ± 0.006 | 0.163 ± 0.015 |
0.75 | 1.774 ± 0.109 | 0.260 ± 0.006 | 0.753 ± 0.025 | 0.037 ± 0.006 | 0.190 ± 0.020 | |
1.5 | 1.812 ± 0.063 | 0.260 ± 0.006 | 0.790 ± 0.026 | 0.043 ± 0.015 | 0.177 ± 0.012 | |
2.25 | 1.915 ± 0.117 | 0.270 ± 0.012 | 0.766 ± 0.058 | 0.053 ± 0.012 | 0.193 ± 0.032 | |
3 | 1.925 ± 0.115 | 0.265 ± 0.010 | 0.840 ± 0.026 | 0.050 ± 0.000 | 0.197 ± 0.006 | |
Average | 1.817 ± 0.091 | 0.262 ± 0.006 A | 0.79 ± 0.015 | 0.045 ± 0.003 | 0.184 ± 0.009 | |
Vermicompost Doses (t ha−1) | ||||||
0 | 1.655 ± 0.106 c | 0.242 ± 0.008 b | 0.768 ± 0.008 | 0.038 ± 0.003 | 0.162 ± 0.010 | |
0.75 | 1.762 ± 0.089 bc | 0.253 ± 0.008 ab | 0.758 ± 0.010 | 0.038 ± 0.003 | 0.175 ± 0.018 | |
1.5 | 1.822 ± 0.109 ab | 0.253 ± 0.008 ab | 0.780 ± 0.040 | 0.048 ± 0.015 | 0.172 ± 0.018 | |
2.25 | 1.908 ± 0.091 a | 0.263 ± 0.003 a | 0.767 ± 0.033 | 0.058 ± 0.006 | 0.198 ± 0.013 | |
3 | 1.888 ± 0.051 ab | 0.263 ± 0.003 a | 0.817 ± 0.014 | 0.053 ± 0.008 | 0.185 ± 0.005 | |
p value | Variety (V) | 0.4664 | 0.0008 | 0.1497 | 0.4087 | 0.0987 |
Dose (D) | 0.0001 | 0.0055 | 0.0634 | 0.0568 | 0.0251 | |
V × D | 0.8530 | 0.4408 | 0.5727 | 0.6547 | 0.3439 |
Varieties | Vermicompost Doses (t ha−1) | Microelements (ppm) | |||
---|---|---|---|---|---|
Fe | Cu | Zn | Mn | ||
Aktaş | 0 | 56.68 ± 4.45 | 7.08 ± 0.09 | 27.70 ± 0.96 b | 11.33 ± 0.77 |
0.75 | 69.23 ± 3.88 | 7.59 ± 0.91 | 29.43 ± 1.05 ab | 12.20 ± 0.95 | |
1.5 | 75.81 ± 5.07 | 7.92 ± 0.30 | 34.91 ± 1.67 ab | 13.79 ± 1.03 | |
2.25 | 93.35 ± 2.56 | 8.66 ± 0.48 | 34.55 ± 0.74 ab | 16.43 ± 1.11 | |
3 | 97.71 ± 4.29 | 8.39 ± 0.26 | 33.19 ± 0.55 ab | 13.62 ± 1.06 | |
Average | 78.56 ± 0.92 | 7.92 ± 0.24 | 31.96 ± 0.32 B | 13.47 ± 0.23 | |
Güneş | 0 | 69.56 ± 3.69 | 7.40 ± 0.52 | 30.56 ± 0.50 ab | 12.42 ± 1.34 |
0.75 | 72.88 ± 4.32 | 8.35 ± 1.00 | 34.81 ± 1.22 ab | 13.83 ± 0.79 | |
1.5 | 77.88 ± 3.06 | 8.18 ± 0.58 | 32.46 ± 1.00 ab | 14.68 ± 1.01 | |
2.25 | 82.12 ± 4.52 | 8.49 ± 0.54 | 36.09 ± 0.60 a | 17.99 ± 1.68 | |
3 | 85.00 ± 5.05 | 9.30 ± 1.19 | 36.39 ± 0.88 a | 13.94 ± 0.76 | |
Average | 77.49 ± 2.12 | 8.34 ± 0.58 | 34.06 ± 0.81 A | 14.57 ± 0.09 | |
Vermicompost Doses (t ha−1) | |||||
0 | 63.12 ± 4.02 c | 7.24 ± 0.29 b | 29.13 ± 0.69 b | 11.87 ± 0.99 b | |
0.75 | 71.06 ± 3.94 bc | 7.97 ± 0.77 ab | 32.12 ± 1.01 ab | 13.01 ± 1.14 ab | |
1.5 | 76.84 ± 2.44 abc | 8.05 ± 0.37 ab | 33.69 ± 1.30 a | 14.23 ± 0.92 ab | |
2.25 | 87.74 ± 2.56 ab | 8.58 ± 0.44 a | 35.32 ± 0.08 a | 17.21 ± 1.23 a | |
3 | 91.35 ± 3.59 a | 8.84 ± 0.72 a | 34.79 ± 0.19 a | 13.78 ± 0.91 ab | |
p value | Variety (V) | 0.7710 | 0.0613 | 0.0328 | 0.2740 |
Dose (D) | 0.0008 | 0.0016 | 0.0035 | 0.0344 | |
V × D | 0.1801 | 0.5053 | 0.1330 | 0.9925 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ozyazici, G.; Turan, N. Effect of Vermicompost Application on Mineral Nutrient Composition of Grains of Buckwheat (Fagopyrum esculentum M.). Sustainability 2021, 13, 6004. https://doi.org/10.3390/su13116004
Ozyazici G, Turan N. Effect of Vermicompost Application on Mineral Nutrient Composition of Grains of Buckwheat (Fagopyrum esculentum M.). Sustainability. 2021; 13(11):6004. https://doi.org/10.3390/su13116004
Chicago/Turabian StyleOzyazici, Gulen, and Nizamettin Turan. 2021. "Effect of Vermicompost Application on Mineral Nutrient Composition of Grains of Buckwheat (Fagopyrum esculentum M.)" Sustainability 13, no. 11: 6004. https://doi.org/10.3390/su13116004
APA StyleOzyazici, G., & Turan, N. (2021). Effect of Vermicompost Application on Mineral Nutrient Composition of Grains of Buckwheat (Fagopyrum esculentum M.). Sustainability, 13(11), 6004. https://doi.org/10.3390/su13116004