Hillslope Erosion Mitigation: An Experimental Proof of a Nature-Based Solution
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cape Fear Experimental Site
2.2. Vegetation Cover
2.3. Experimental Setup
3. Results and Discussion
3.1. Runoff Hillslope Response
3.2. Soil Erosion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Grimm, M.; Jones, R.; Montanarella, L. Soil Erosion Risk in Europe; European Communities: Napoli, Italy, 2001. [Google Scholar]
- Kibblewhite, M.G.; Miko, L.; Montanarella, L. Legal frameworks for soil protection: Current development and technical information requirements. Curr. Opin. Environ. Sustain. 2012, 4, 573–577. [Google Scholar] [CrossRef]
- European Commission 2006a: Communication from the Commission to the Council, the European Parliament, the European Economic and Social Committee and the Committee of the Regions—Thematic Strategy for Soil Protection [SEC(2006)620] [SEC(2006)1165]/* COM/2006/0231 final. Available online: http://ec.europa.eu/environment/soil/three_en.htm (accessed on 24 March 2021).
- European Commission 2006b: Proposal for a Directive of the European Parliament and of the Council Establishing a Framework for the Protection of Soil and Amending Directive 2004/35/EC/* COM/2006/0232 final—COD 2006/0086 13. Available online: http://ec.europa.eu/environment/soil/index_en.htm (accessed on 15 February 2021).
- European Commission. Guidelines on Best Practice to Limit, Mitigate or Compensate Soil Sealing; Publications Office of the European Union: Luxembourg, 2012; Available online: http://ec.europa.eu/environment/soil/pdf/guidelines/pub/soil_en.pdf (accessed on 18 January 2021).
- United Nations Convention to Combat Desertification. The Economics of Desertification, Land Degradation and Drought: Methodologies and Analysis for Decision-Making. In Proceedings of the UNCCD 2nd Scientific Conference, Bonn, Germany, 9–12 April 2013. [Google Scholar]
- Keesstra, S.; Mol, G.; De Leeuw, J.; Okx, J.; Molenaar, C.; De Cleen, M.; Visser, S. Soil-Related Sustainable Development Goals: Four Concepts to Make Land Degradation Neutrality and Restoration Work. Land 2018, 7, 133. [Google Scholar] [CrossRef] [Green Version]
- Adhikari, K.; Hartemink, A.E. Linking soils to ecosystem services—A global review. Geoderma 2016, 262, 101–111. [Google Scholar] [CrossRef]
- Recanatesi, F.; Petroselli, A.; Ripa, M.N.; Leone, A. Assessment of stormwater runoff management practices and BMPs under soil sealing: A study case in a peri-urban watershed of the metropolitan area of Rome (Italy). J. Environ. Manag. 2017, 201, 6–18. [Google Scholar] [CrossRef]
- Recanatesi, F.; Petroselli, A. Land Cover Change and flood risk in a peri-urban environment of the Metropolitan area of Rome (Italy). Water Resour. Manag. 2020, 34, 4399–4413. [Google Scholar] [CrossRef]
- Pellicani, R.; Argentiero, I.; Manzari, P.; Spilotro, G.; Marzo, C.; Ermini, R.; Apollonio, C. UAV and Airborne LiDAR Data for Interpreting Kinematic Evolution of Landslide Movements: The Case Study of the Montescaglioso Landslide (Southern Italy). Geosciences 2019, 9, 248. [Google Scholar] [CrossRef] [Green Version]
- Apollonio, C.; Balacco, G.; Novelli, A.; Tarantino, E.; Piccinni, A.F. Land Use Change Impact on Flooding Areas: The Case Study of Cervaro Basin (Italy). Sustainability 2016, 8, 996. [Google Scholar] [CrossRef] [Green Version]
- Annis, A.; Nardi, F.; Petroselli, A.; Apollonio, C.; Arcangeletti, E.; Tauro, F.; Belli, C.; Bianconi, R.; Grimaldi, S. UAV-DEMs for Small-Scale Flood Hazard Mapping. Water 2020, 12, 1717. [Google Scholar] [CrossRef]
- Luo, H.; Zhao, T.; Dong, M.; Gao, J.; Peng, X.; Guo, Y.; Wang, Z.; Liang, C. Field studies on the effects of three geotextiles on runoff and erosion of road slope in Beijing, China. Catena 2013, 109, 150–156. [Google Scholar] [CrossRef]
- Hajigholizadeh, M.; Melesse, A.M.; Fuentes, H.R. Erosion and Sediment Transport Modelling in Shallow Waters: A Review on Approaches, Models and Applications. Int. J. Environ. Res. Public Health 2018, 15, 518. [Google Scholar] [CrossRef] [Green Version]
- Pimentel, D.; Harvey, C.; Resosudormo, P.; Sinclair, K.; Kurz, D.; McNair, M.; Crist, S.; Shpritz, L.; Fitton, L.; Saffouri, R.; et al. Environmental and economic costs of soil erosion and conservation benefits. Science 1995, 267, 1117–1123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gallart, F.; Llorens, P.; Latron, J. Studying the role of old agricultural terraces on runoff generation in a Mediterranean small mountainous basin. J. Hydrol. 1994, 159, 291–303. [Google Scholar] [CrossRef]
- Morgan, R.P.C. Soil Erosion and Conservation; John Wiley & Sons: Hoboken, NJ, USA, 2009. [Google Scholar]
- Hamdan, J.; Burnham, C.; Ruhana, B. Degradation effect of slope terracing on soil quality for Elaeis guineensis Jacq.(oil palm) cultivation. Land Degrad. Dev. 2000, 11, 181–193. [Google Scholar] [CrossRef]
- Bertolini, D.; Galetti, P.A.; Drugowich, M.I. Tipos e formas de terraços. In Simpósio Sobre Terraceamento Agrícola, Campinas, SP. Anais; Fundação Cargill: Campinas, Brazil, 1989; pp. 79–98. [Google Scholar]
- Dorren, L.; Rey, F. A review of the effect of terracing on erosion. In Briefing Papers of the 2nd SCAPE Workshop; Scape: Cinque Terre, Italy, 2004; pp. 97–108. [Google Scholar]
- Bunch, R.; López, G. Soil Recuperation in Central America: Sustaining Innovation after Intervention; Gatekeeper Series; International Institute for Environment and Development (RU): London, UK, 1995; Volume 55, 18p. [Google Scholar]
- Florineth, F. Stabilization of gullies with soil—Bioengineering methods in the Alps and in Nepal. In Gully Erosion under Global Change; Li, Y., Poisen, J., Valentin, C., Eds.; Sichuan Science and Technology Press: Chengdu, China, 2004; pp. 315–339. [Google Scholar]
- Lammeraner, W.; Rauch, H.P.; Laaha, G. Implementation and monitoring of soil bioengineering measures at a landslide in the Middle Mountains of Nepal. Plant Soil 2005, 278, 159–170. [Google Scholar] [CrossRef]
- Petrone, A.; Preti, F. Suitability of soil bio-engineering techniques in Central America: A case study in Nicaragua. Hydrol. Earth Syst. Sci. 2008, 12, 1241–1248. [Google Scholar] [CrossRef] [Green Version]
- Preti, F.; Giadrossich, F. Root reinforcement and slope bioengineering stabilization by Spanish Broom (Spartium junceum L.). Hydrol. Earth Syst. Sci. 2009, 13, 1713–1726. [Google Scholar] [CrossRef] [Green Version]
- Petrone, A.; Preti, F. Soil bio-engineering for risk mitigation and environmental restoration in a humid tropical area. Hydrol. Earth Syst. Sci. 2010, 14, 239–250. [Google Scholar] [CrossRef] [Green Version]
- Baumhardt, R.L.; Stewart, B.A.; Sainju, U.M. North American Soil Degradation: Processes, Practices, and Mitigating Strategies. Sustainability 2015, 7, 2936–2960. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.P.; Zhang, L.; McVicar, T.R.; Van Niel, T.G.; Li, L.T.; Li, R.; Yang, Q.; Wei, L. Modelling the impact of afforestation on average annual streamflow in the Loess Plateau, China. Hydrol. Process. 2008, 22, 1996–2004. [Google Scholar] [CrossRef]
- Tron, S.; Dani, A.; Laio, F.; Preti, F.; Ridolfi, L. Mean root depth estimation at landslide slopes. Ecol. Eng. 2014, 69, 118–125. [Google Scholar] [CrossRef]
- Evette, A.; Labonne, S.; Rey, F.; Liebault, F.; Jancke, O.; Girel, J. History of bioengineering techniques for erosion control in rivers in Western Europe. Environ. Manag. 2009, 43, 972. [Google Scholar] [CrossRef]
- Maxwald, M.; Crocetti, C.; Ferrari, R.; Petrone, A.; Rauch, H.P.; Preti, F. Soil and Water Bioengineering Applications in Central and South America: A Transferability Analysis. Sustainability 2020, 12, 10505. [Google Scholar] [CrossRef]
- Broda, J.; Przybyło, S.; Kobiela-Mendrek, K.; Biniaś, D.; Rom, M.; Grzybowska-Pietras, J.; Laszczak, R. Biodegradation of sheep wool geotextiles. Int. Biodeterior. Biodegrad. 2016, 115, 31–38. [Google Scholar] [CrossRef]
- Bresci, E.; Preti, F. An historical survey on the evolution of some forest watershed management techniques (Part II: Stream channel works). J. Agric. Eng. 2010, 41, 13–22. [Google Scholar]
- Bhattacharyya, R.; Smets, T.; Fullen, M.A.; Poesen, J.; Booth, C.A. Effectiveness of geotextiles in reducing runoff and soil loss: A synthesis. Catena 2010, 81, 184–195. [Google Scholar] [CrossRef]
- Maneecharoen, J.; Htwe, W.; Bergado, D.T.; Baral, P. Ecological erosion control by limited life geotextiles (LLGs) as well as with Vetiver and Ruzi grasses. Indian Geotech. J. 2013, 43, 388–406. [Google Scholar] [CrossRef]
- Alvarez-Mozos, J.; Abad, E.; Goni, M.; Gimenez, R.; Campo, M.A.; Diez, J.; Casali, J.; Arive, M.; Diego, I. Evaluation of erosion control geotextiles on steep slopes. Part 2: Influence on the establishment and growth of vegetation. Catena 2014, 121, 195–203. [Google Scholar] [CrossRef]
- Giménez-Morera, A.; Ruiz-Sinoga, J.D.; Cerdà, A. The impact of cotton geotextiles on soil and water losses from Mediterranean rainfed agricultural land. Land Degrad. Dev. 2010, 21, 210–217. [Google Scholar] [CrossRef]
- Guerra, A.; Bezerra, J.; Fullen, M.A.; Mendonça, J.; Jorge, M. The effects of biological geotextiles on gully stabilization in São Luís, Brazil. Nat. Hazards 2015, 75, 2625–2636. [Google Scholar] [CrossRef]
- Guerra, A.J.T.; Fullen, M.A.; Jorge, M.d.C.O.; Bezerra, J.F.R.; Shokr, M.S. Slope processes, mass movement and soil erosion: A review. Pedosphere 2017, 27, 27–41. [Google Scholar] [CrossRef]
- Smets, T.; Poesen, J.; Bhattacharyya, R.; Fullen, M.A.; Subedi, M.; Booth, C.A.; Kertesz, A.; Toth, A.; Szalai, Z.; Jakab, G.; et al. Evaluation of biological geotextiles for reducing runoff and soil loss under various environmental conditions using laboratory and field plot data. Land Degrad. Dev. Spec. Issue 2011, 22, 480–494. [Google Scholar] [CrossRef]
- Smets, T.; Poesen, J.; Fullen, M.A.; Booth, C.A. Effectiveness of palm and simulated geotextiles in reducing run-off and inter-rill erosion on medium and steep slopes. Soil Use Manag. 2007, 23, 306–316. [Google Scholar] [CrossRef]
- Vishnudas, S.; Savenije, H.H.G.; Van der Zaag, P.; Anild, K.R. Coir geotextile for slope stabilization and cultivation—A case study in a highland region of Kerala, South India. Phys. Chem. Earth Parts A/B/C 2012, 47–48, 135–138. [Google Scholar] [CrossRef]
- Tauro, F.; Cornelini, P.; Grimaldi, S.; Petroselli, A. Field studies on the soil loss reduction effectiveness of three biodegradable geotextiles. J. Agric. Eng. 2018, 49, 117–123. [Google Scholar] [CrossRef]
- Smets, T.; Poesen, J.; Langhans, C.; Knapen, A.; Fullen, M.A. Concentrated flow erosion rates reduced through biological geotextiles. Earth Surf. Process. Landf. 2009, 34, 493–502. [Google Scholar] [CrossRef]
- Kalibová, J.; Jačka, L.; Petrů, J. The effectiveness of jute and coir blankets for erosion control in different field and laboratory conditions. Solid Earth 2016, 7, 469–479. [Google Scholar] [CrossRef] [Green Version]
- Kalibová, J.; Petrů, J.; Jačka, L. Impact of rainfall intensity on the hydrological performance of erosion control geotextiles. Environ. Earth Sci. 2017, 76, 429. [Google Scholar] [CrossRef]
- Mitchell, D.J.; Barton, A.P.; Fullen, M.A.; Hocking, T.J.; Zhi, W.B.; Yi, Z. Field studies of the effects of jute geotextiles on runoff and erosion in Shropshire, UK. Soil Use Manag. 2003, 19, 182–184. [Google Scholar] [CrossRef]
- Jankauskas, B.; Jankauskiene, G.; Fullen, M. Soil conservation on road embankments using palm-mat geotextiles: Field studies in Lithuania. Soil Use Manag. 2012, 28, 266–275. [Google Scholar] [CrossRef]
- Smets, T.; Borselli, L.; Poesen, J.; Torri, D. Evaluation of the EUROSEM model for predicting the effects of erosion-control blankets on runoff and interrill soil erosion by water. Geotext. Geomembr. 2011, 29, 285–297. [Google Scholar] [CrossRef]
- EUROSEM-2010: European Soil Erosion Model. 2010. Release 2010. Available online: https://www.lorenzo-borselli.eu/eurosem/ (accessed on 25 April 2021).
- Cecconi, M.; Pane, V.; Napoli, P.; Zarotti, C. Mechanical and hydraulic effects of deep roots planting on slope stability. In Proceedings of the TC 215 ISSMGE International Symposium on “Coupled Phenomena in Environmental Geotechnics (CPEG) - From Theoretical and Experimental Research to Practical Applications”, Torino, Italy, 1–3 July 2013; CRC Press Taylor & Francis Group: Boca Raton, FL, USA, 2013; Volume 1, pp. 533–540, ISBN 9781138000605. [Google Scholar]
- Cecconi, M.; Napoli, P.; Pane, V. Effects of soil vegetation on shallow slope instability. Environ. Geotech. 2015, 2, 130–136. [Google Scholar] [CrossRef]
- Rocco, M.V.; Cassetti, G.; Gardumi, F.; Colombo, E. Exergy Life Cycle Assessment of soil erosion remediation technologies: An Italian case study. J. Clean. Prod. 2016, 112, 3007–3017. [Google Scholar] [CrossRef]
- Tauro, F.; Petroselli, A.; Fiori, A.; Romano, N.; Rulli, M.C.; Porfiri, M.; Palladino, M.; Grimaldi, S. “Cape Fear”—A Hybrid Hillslope Plot for Monitoring Hydrological Processes. Hydrology 2017, 4, 35. [Google Scholar] [CrossRef] [Green Version]
- Esteves, M.; Faucher, X.; Galle, S.; Vauclin, M. Overland flow and infiltration modelling for small plots during unsteady rain: Numerical results versus observed values. J. Hydrol. 2000, 228, 265–282. [Google Scholar] [CrossRef]
- Pérez-Latorre, F.J.; de Castro, L.; Delgado, A. A comparison of two variable intensity rainfall simulators for runoff studies. Soil Tillage Res. 2010, 107, 11–16. [Google Scholar] [CrossRef]
- Riley, S.J.; Hancock, F. A rainfall simulator for hydrologic and erosion experiments on mines, with an example of its applications at Ranger Uranium Mine, Northern Territory, Australia. Aust. Inst. Min. Metall. Proc. 1997, 1, 3–8. [Google Scholar]
- Grimaldi, S.; Petroselli, A.; Baldini, L.; Gorgucci, E. Description and preliminary results of a 100 square meter rain gauge. J. Hydrol. 2018, 556, 827–834. [Google Scholar] [CrossRef]
- Petroselli, A.; Tauro, F.; Grimaldi, S. Investigating runoff formation dynamics: Field observations at Cape Fear experimental plot. Environ. Monit Assess. 2019, 191, 642. [Google Scholar] [CrossRef]
- Gray, D.H.; Ohashi, H. Mechanics of fiber reinforcement of sand. J. Geotech. Eng. 1983, 109, 335–353. [Google Scholar] [CrossRef]
- Hemmati, S.; Modaressi, A. Study of the stability of unsaturated slopes under the effects of infiltration taking into account the vegetation. In Proceedings of the 18th International Conference on Soil Mechanics and Geotechnical Engineering, Paris, France, 2–6 September 2013; pp. 1117–1120. [Google Scholar]
- Wang, K.; Lee, C. Brief mechanical analysis of bioengineering techniques for slope protection. Chin. J. Rock Mech. Eng. 1998, 17, 687–691. [Google Scholar]
- Wu, T.H. Root reinforcement of soil: Review of analytical models, test results, and applications to design. Can. Geotech. J. 2013, 50, 259–274. [Google Scholar] [CrossRef]
- Abe, K.; Ziemer, R. Effect of tree roots on shear zone: Modeling reinforced shear stress. Can. J. For. Res. 1991, 21, 1012–1019. [Google Scholar] [CrossRef]
- Feddes, R.A.; Hoff, H.; Bruen, M.; Dawson, T.; De Rosnay, P.; Dirmeyer, P.; Jackson, R.B.; Kabat, P.; Kleidon, A.; Lilly, A.; et al. Modelling root-water uptake in hydrological and climate models. Bull. Am. Meteorol. Soc. 2001, 82, 2797–2809. [Google Scholar] [CrossRef] [Green Version]
- Gulizia, J.P.; Downs, K.M. A Review of Kudzu’s Use and Characteristics as Potential Feedstock. Agriculture 2019, 9, 220. [Google Scholar] [CrossRef] [Green Version]
- Chau, N.L.; Chu, L.M. Fern cover and the importance of plant traits in reducing erosion on steep soil slopes. Catena 2017, 151, 98–106. [Google Scholar] [CrossRef]
- Stanchi, S.; Zecca, O.; Hudek, C.; Pintaldi, E.; Viglietti, D.; D’Amico, M.E.; Colombo, N.; Goslino, D.; Letey, M.; Freppaz, M. Effect of Soil Management on Erosion in Mountain Vineyards (N-W Italy). Sustainability 2021, 13, 1991. [Google Scholar] [CrossRef]
- Biddoccu, M.; Opsi, F.; Cavallo, E. Relationship between runoff and soil losses with rainfall characteristics and long-term soil management practices in a hill vineyard (Piedmont, NW Italy). Soil Sci. Plant Nutr. 2014, 60, 92–99. [Google Scholar] [CrossRef] [Green Version]
- Mohamadi, M.A.; Kavian, A. Effects of rainfall patterns on runoff and soil erosion in field plots. Int. Soil Water Conserv. Res. 2015, 3, 273–281. [Google Scholar] [CrossRef] [Green Version]
- Wischmeier, W.H.; Smith, D.D. Predicting Rainfall Erosion Losses: A Guide to Conservation Planning; U.S. Department of Agriculture: Washington, DC, USA, 1978.
Test | hMC1 (cm) | Rainfall Type | Cumulative Rainfall Value (mm) | Max Rainfall Intensity (mm/h) | Rainfall Duration (Wet Period) (h) |
---|---|---|---|---|---|
No. 1 | 0 | - | - | - | - |
Artificial | 680 | 170 | 4 | ||
No. 2 | 30 | Natural | 121 | 42.6 | 42.1 |
Artificial | 3360 | 140 | 24 | ||
No. 3 | 70 | Natural | 70 | 92.2 | 12.9 |
Artificial | 4080 | 170 | 24 | ||
No. 4 | 140 | Natural | 110 | 141.8 | 17.5 |
Artificial | 3840 | 160 | 24 |
hMC1 (cm) | Event Number | Average Rainfall Intensity (mm/h) | Duration (h) | Cumulative Rainfall (mm) | Max Rainfall Intensity (mm/h) | Runoff Coefficient (-) | Lag Time (min) |
---|---|---|---|---|---|---|---|
30 | 1 | 2.01 | 0.75 | 1.51 | 3.55 | 0.45 | 40 |
2 | 2.69 | 1.42 | 3.81 | 4.73 | 0.64 | 70 | |
3 | 6.17 | 1.83 | 11.31 | 42.55 | 0.93 | 40 | |
70 | 1 | 6.57 | 0.67 | 4.38 | 29.55 | 0.08 | 30 |
2 | 16.63 | 1.08 | 18.02 | 50.83 | 0.28 | 25 | |
3 | 22.59 | 0.67 | 15.06 | 92.16 | 0.30 | 15 | |
140 | 1 | 8.04 | 0.33 | 2.68 | 26.00 | 0.37 | 15 |
2 | 2.83 | 5.25 | 14.84 | 10.64 | 0.38 | 125 | |
3 | 21.24 | 2.67 | 56.64 | 141.84 | 1.00 | 20 |
hMC1 (cm) | Test Rainfall Intensity (mm/h) | Test Duration (h) | Runoff Coefficient (-) |
---|---|---|---|
0 | 170 | 4 | 0.50 |
30 | 140 | 24 | 0.49 |
70 | 170 | 24 | 0.36 |
140 | 160 | 24 | 0.34 |
Test | Rainfall Type | Eroded Material (kg) | Kinetic Energy (JM2) |
---|---|---|---|
No. 1 | - | - | - |
Artificial | 52.51 | 320 | |
No. 2 | Natural | 0.615 | 162 |
Artificial | 7.48 | 312 | |
No. 3 | Natural | 0.195 | 191 |
Artificial | 1.12 | 320 | |
No. 4 | Natural | 0.185 | 192 |
Artificial | 1.00 | 317 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Apollonio, C.; Petroselli, A.; Tauro, F.; Cecconi, M.; Biscarini, C.; Zarotti, C.; Grimaldi, S. Hillslope Erosion Mitigation: An Experimental Proof of a Nature-Based Solution. Sustainability 2021, 13, 6058. https://doi.org/10.3390/su13116058
Apollonio C, Petroselli A, Tauro F, Cecconi M, Biscarini C, Zarotti C, Grimaldi S. Hillslope Erosion Mitigation: An Experimental Proof of a Nature-Based Solution. Sustainability. 2021; 13(11):6058. https://doi.org/10.3390/su13116058
Chicago/Turabian StyleApollonio, Ciro, Andrea Petroselli, Flavia Tauro, Manuela Cecconi, Chiara Biscarini, Claudio Zarotti, and Salvatore Grimaldi. 2021. "Hillslope Erosion Mitigation: An Experimental Proof of a Nature-Based Solution" Sustainability 13, no. 11: 6058. https://doi.org/10.3390/su13116058
APA StyleApollonio, C., Petroselli, A., Tauro, F., Cecconi, M., Biscarini, C., Zarotti, C., & Grimaldi, S. (2021). Hillslope Erosion Mitigation: An Experimental Proof of a Nature-Based Solution. Sustainability, 13(11), 6058. https://doi.org/10.3390/su13116058