Strategies for Improving the Sustainability of Data Centers via Energy Mix, Energy Conservation, and Circular Energy
Abstract
:1. Introduction
2. Power Supply and Continuity
2.1. Tier Classification
- Rated-1: Basic site infrastructure;
- Rated-2: Redundant capacity component site infrastructure;
- Rated-3: Concurrently maintainable site infrastructure;
- Rated-4: Fault tolerant site infrastructure.
2.2. Power Losses
2.3. UPS
- No-load losses: Caused by no-load losses in transformers, capacitors, and auxiliaries;
- Proportional losses: Due to switching losses in transistors and conduction losses in semiconductors and rectifiers;
- Square-law losses: Joule losses.
3. Energy Conservation of Computer Rooms
3.1. Improvement of the Cooling System
3.1.1. Location of Data Centers
3.1.2. Room Configuration
3.1.3. Room Temperature
3.1.4. Airflow Pattern and Active Cooling
3.1.5. Innovative Cooling Systems
3.1.6. Use of Natural Cold Source
3.1.7. Free Cooling
3.1.8. Liquid Cooling
3.2. Improvement of Lighting System
3.2.1. Lighting Control
3.2.2. Light Sources
3.2.3. Other Strategies for Lighting Improvement
4. Electronics and Other Strategies
4.1. Low-Power Servers
4.2. The Little Box Challenge
4.3. Direct-Current Power Supply
4.4. Semiconductors
4.5. Automation, Monitoring, and Robotization
4.6. Modular Data Centers
5. Regulatory Environment Governing Data Centers
5.1. Metrics
5.1.1. Indicators
5.1.2. Trends
5.2. Regulations
5.3. Certifications and Initiatives
6. Net Zero Energy Data Center
7. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Dhillon, G. Council Post: From the Age of Computing to The Age of Data: Are You Ready? Available online: https://www.forbes.com/sites/forbestechcouncil/2019/03/27/from-the-age-of-computing-to-the-age-of-data-are-you-ready/ (accessed on 1 March 2021).
- Allen, R.; Siukonen, P.; Cattermull, N.; Brown, M.; Eaves, S. Devouring Data: 5G, Edge Computing & the Future of Data Centres; Kingston Technology Europe: Sunbury-on-Thames, UK, 2020. [Google Scholar]
- Donno, M.D.; Tange, K.; Dragoni, N. Foundations and Evolution of Modern Computing Paradigms: Cloud, IoT, Edge, and Fog. IEEE Access 2019, 7, 150936–150948. [Google Scholar] [CrossRef]
- World Bank. Europe and Central Asia Economic Update, May 2018: Cryptocurrencies and Blockchain; World Bank: Washington, DC, USA, 2018. [Google Scholar]
- Eaves, S. The Demand on Data Centers in the Time of Coronavirus. 2021. Available online: https://www.kingston.com/italy/us/solutions/servers-data-centers/coronavirus-demands-on-data-centers (accessed on 1 January 2021).
- Nicholson, J. How is Coronavirus Impacting the News? Our Analysis of Global Traffic and Coverage Data—Chartbeat Blog. 2020. Available online: https://blog.chartbeat.com/2020/03/25/coronavirus-data-news-traffic-impact-analysis/ (accessed on 1 January 2021).
- Cisco. Cisco Annual Internet Report (2018–2023). 2020. Available online: https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.pdf (accessed on 1 February 2021).
- Liu, Y.; Peng, M.; Shou, G.; Chen, Y.; Chen, S. Toward Edge Intelligence: Multiaccess Edge Computing for 5G and Internet of Things. IEEE Internet Things J. 2020, 7, 6722–6747. [Google Scholar] [CrossRef]
- Chih-Lin, I.; Han, S.; Bian, S. Energy-efficient 5G for a greener future. Nat. Electron. 2020, 3, 182–184. [Google Scholar]
- Panwar, N.; Sharma, S.; Singh, A.K. A survey on 5G: The next generation of mobile communication. Phys. Commun. 2016, 18, 64–84. [Google Scholar] [CrossRef] [Green Version]
- Ashford, K. What Is Cryptocurrency? 2020. Available online: https://www.forbes.com/advisor/investing/what-is-cryptocurrency/ (accessed on 1 February 2021).
- Lansky, J. Possible State Approaches to Cryptocurrencies. J. Syst. Integr. 2018, 9, 19–31. [Google Scholar] [CrossRef]
- Li, J.; Li, N.; Peng, J.; Cui, H.; Wu, Z. Energy consumption of cryptocurrency mining: A study of electricity consumption in mining cryptocurrencies. Energy 2019, 168, 160–168. [Google Scholar] [CrossRef]
- Krause, M.J.; Tolaymat, T. Quantification of energy and carbon costs for mining cryptocurrencies. Nat. Sustain. 2018, 1, 711–718. [Google Scholar] [CrossRef]
- Mora, C.; Rollins, R.L.; Taladay, K.; Kantar, M.B.; Chock, M.K.; Shimada, M.; Franklin, E.C. Bitcoin emissions alone could push global warming above 2 °C. Nat. Clim. Chang. 2018, 8, 931–933. [Google Scholar] [CrossRef]
- Dittmar, L.; Praktiknjo, A. Could Bitcoin emissions push global warming above 2 °C? Nat. Clim. Chang. 2019, 9, 656–657. [Google Scholar] [CrossRef]
- Sedlmeir, J.; Buhl, H.U.; Fridgen, G.; Keller, R. The Energy Consumption of Blockchain Technology: Beyond Myth. Bus. Inf. Syst. Eng. 2020, 62, 599–608. [Google Scholar] [CrossRef]
- Fairley, P. The Ridiculous Amount of Energy It Takes to Run Bitcoin—IEEE Spectrum. 2017. Available online: https://spectrum.ieee.org/energy/policy/the-ridiculous-amount-of-energy-it-takes-to-run-bitcoin (accessed on 1 February 2021).
- IEEE Blockchain Initiative. 2021. Available online: https://blockchain.ieee.org/about (accessed on 1 April 2021).
- Laroiya, C.; Saxena, D.; Komalavalli, C. Applications of Blockchain Technology. In Handbook of Research on Blockchain Technology; Krishnan, S., Balas, V.E., Julie, E.G., Robinson, Y.H., Balaji, S., Kumar, R., Eds.; Academic Press: Cambridge, MA, USA, 2020; pp. 213–243, Chapter 9. [Google Scholar]
- Frauenthaler, P.; Sigwart, M.; Spanring, C.; Sober, M.; Schulte, S. ETH Relay: A Cost-efficient Relay for Ethereum-based Blockchains. In Proceedings of the in 2020 IEEE International Conference on Blockchain (Blockchain), Rhodes, Greece, 2–6 November 2020; pp. 204–213. [Google Scholar]
- Howson, P. Tackling climate change with blockchain. Nat. Clim. Chang. 2019, 9, 644–645. [Google Scholar] [CrossRef]
- Andoni, M.; Robu, V.; Flynn, D.; Abram, S.; Geach, D.; Jenkins, D.; McCallum, P.; Peacock, A. Blockchain technology in the energy sector: A systematic review of challenges and opportunities. Renew. Sustain. Energy Rev. 2019, 100, 143–174. [Google Scholar] [CrossRef]
- Gunasekeran, D.V.; Tseng, R.M.W.W.; Tham, Y.-C.; Wong, T.Y. Applications of digital health for public health responses to COVID-19: A systematic scoping review of artificial intelligence, telehealth and related technologies. NPJ Digit. Med. 2021, 4, 40. [Google Scholar] [CrossRef]
- Gao, L.; Wu, C.; Yoshinaga, T.; Chen, X.; Ji, Y. Multi-channel Blockchain Scheme for Internet of Vehicles. IEEE Open J. Comput.Soc. 2021, 2, 192–203. [Google Scholar] [CrossRef]
- Ghosh, E.; Das, B. A Study on the Issue of Blockchain’s Energy Consumption. In Proceedings of the International Ethical Hacking Conference 2019; Springer: Singapore, 2020; pp. 63–75. [Google Scholar]
- Microsoft. Update #2 on Microsoft Cloud Services Continuity. 2020. Available online: https://azure.microsoft.com/en-us/blog/update-2-on-microsoft-cloud-services-continuity/ (accessed on 1 March 2021).
- Facebook. Keeping Our Services Stable and Reliable During the COVID-19 Outbreak—About Facebook. 2020. Available online: https://about.fb.com/news/2020/03/keeping-our-apps-stable-during-covid-19/ (accessed on 1 March 2021).
- Yuan, E.S. A Message to our Users. 2020. Available online: https://blog.zoom.us/a-message-to-our-users/ (accessed on 1 March 2021).
- Morgan, J.P. Media Consumption in the Age of COVID-19. 2020. Available online: https://www.jpmorgan.com/insights/research/media-consumption (accessed on 1 March 2021).
- Klebnikov, S. 5 Big Numbers That Show Amazon’s Explosive Growth during the Coronavirus Pandemic. 2021. Available online: https://www.forbes.com/sites/sergeiklebnikov/2020/07/23/5-big-numbers-that-show-amazons-explosive-growth-during-the-coronavirus-pandemic/ (accessed on 1 March 2021).
- Ong, D.; Moors, T.; Sivaraman, V. Complete life-cycle assessment of the energy/CO2 costs of videoconferencing vs face-to-face meetings. In Proceedings of the 2012 IEEE Online Conference on Green Communications (GreenCom), Piscataway, NJ, USA, 25–28 September 2012; pp. 50–55. [Google Scholar]
- Ong, D.; Moors, T.; Sivaraman, V. Comparison of the energy, carbon and time costs of videoconferencing and in-person meetings. Comput. Commun. 2014, 50, 86–94. [Google Scholar] [CrossRef]
- Jones, N. How to stop data centres from gobbling up the world’s electricity. Nat. Cell Biol. 2018, 561, 163–166. [Google Scholar] [CrossRef]
- YCharts. 2021. Available online: https://ycharts.com/ (accessed on 1 February 2021).
- Andrae, A.S.G.; Edler, T. On Global Electricity Usage of Communication Technology: Trends to 2030. Challenges 2015, 6, 117–157. [Google Scholar] [CrossRef] [Green Version]
- World’s Top. Data Centers. 2014. Available online: http://worldstopdatacenters.com (accessed on 1 February 2021).
- Cambridge Centre for Alternative Finance. Cambridge Bitcoin Electricity Consumption Index (CBECI). 2021. Available online: https://cbeci.org/ (accessed on 1 February 2021).
- Shehabi, A.; Smith, S.; Sartor, D.; Brown, R.; Herrlin, M.; Koomey, J.; Masanet, E.; Horner, N.; Azevedo, I.; Lintner, W. United States Data Center Energy Usage Report. 2016. Available online: https://www.osti.gov/servlets/purl/1372902 (accessed on 1 January 2021).
- Nadjahi, C.; Louahlia, H.; Lemasson, S. A review of thermal management and innovative cooling strategies for data center. Sustain. Comput. Inform. Syst. 2018, 19, 14–28. [Google Scholar] [CrossRef]
- Levy, M.; Raviv, D. An Overview of Data Center Metrics and a Novel Approach for a New Family of Metrics. Adv. Sci. Technol. Eng. Syst. J. 2018, 3, 238–251. [Google Scholar] [CrossRef] [Green Version]
- Rasmussen, N. Electrical Efficiency Measurement for Data Centers—White Paper 154—Revision 2; Schneider Electric’s Data Center Science Center: Rueil-Malmaison, France, 2011. [Google Scholar]
- Directorate General for Communications Networks Content and Technology. Shaping Europe’s Digital Future. 2020. Available online: http://op.europa.eu/it/publication-detail/-/publication/33b6e417-53c8-11ea-aece-01aa75ed71a1 (accessed on 1 February 2021).
- Analytics Vidhya. Available online: https://www.analyticsvidhya.com/blog/ (accessed on 1 May 2021).
- Chawla, V. Yotta Infrastructure Inaugurates India’s Largest Data Center Facility. 2020. Available online: https://analyticsindiamag.com/yotta-infrastructure-inaugurates-indias-largest-data-center-facility/ (accessed on 1 May 2021).
- DataCenters.com. 2021. Available online: https://www.datacenters.com/ (accessed on 1 May 2021).
- Rong, H.; Zhang, H.; Xiao, S.; Li, C.; Hu, C. Optimizing energy consumption for data centers. Renew. Sustain. Energy Rev. 2016, 58, 674–691. [Google Scholar] [CrossRef]
- Belkhir, L.; Elmeligi, A. Assessing ICT global emissions footprint: Trends to 2040 & recommendations. J. Clean. Prod. 2018, 177, 448–463. [Google Scholar]
- ISO 8528-1:2018. Reciprocating Internal Combustion Engine Driven Alternating Current Generating Sets Application, Ratings and Performance; ISO: Geneva, Switzerland, 2018. [Google Scholar]
- Yoon, S.; Scroggins, R. Generator Set Ratings for Data Centers and Other Applications; Cummins: Columbus, IN, USA, 2019. [Google Scholar]
- Matuseski, D. Data Center Continuous (DCC) Ratings: A Comparison of DCC Ratings, ISO Definitions and Uptime Requirements; Cummins: Columbus, IN, USA, 2018. [Google Scholar]
- Bunger, R.; Torell, W. Efficiency Analysis of Consolidated vs. Conventional Server Power Architectures—White Paper 232; Schneider Electric’s Data Center Science Center: Rueil-Malmaison, France, 2019. [Google Scholar]
- Turner, W.P.; Seader, J.H.; Brill, K.G. Industry Standard Tier Classifications Define Site Infrastructure Performance; Uptime Institute: Santa Fe, NM, USA, 2005. [Google Scholar]
- ANSI/TIA-942-B-2017; Telecommunications Infrastructure Standard for Data Centers: Arlington, VA, USA, 2017.
- Uptime Institute. Tier Standard: Topology; Uptime Institute: New York, NY, USA, 2018. [Google Scholar]
- Minas, L.; Ellison, B. Energy Efficiency for Information Technology: How to Reduce Power Consumption in Servers and Data Centers; Intel Press: Santa Clara, CA, USA, 2009. [Google Scholar]
- ANSI/BICSI-002 Data Center Design and Implementation Best Practices; BICSI: Tampa, FL, USA, 2019.
- Wiboonrat, M. Energy sustainability and management of data center. In Proceedings of the in 2016 World Congress on Sustainable Technologies (WCST), London, UK, 12–14 December 2016; pp. 23–28. [Google Scholar]
- Global Power Supply LLC. Personal communication, 2021.
- Ahmed, K.M.U.; Sutaria, J.; Bollen, M.H.J.; Rönnberg, S.K. Electrical Energy Consumption Model of Internal Components in Data Centers. In Proceedings of the in 2019 IEEE PES Innovative Smart Grid Technologies Europe (ISGT-Europe), Bucharest, Romania, 29 September–2 October 2019; pp. 1–5. [Google Scholar]
- Sawyer, R.L. Making Large UPS Systems More Efficient—White Paper 108; Schneider Electric’s Data Center Science Center: Rueil-Malmaison, France, 2006. [Google Scholar]
- Milad, M.; Darwish, M. UPS system: How can future technology and topology improve the energy efficiency in data centers? In Proceedings of the 2014 49th International Universities Power Engineering Conference (UPEC), Cluj-Napoca, Romania, 2–5 September 2014; pp. 1–4. [Google Scholar]
- Mitsubishi. Uninterruptible Power Supplies—UPS Systems—Backup Power | Mitsubishi Electric. 2021. Available online: https://www.mitsubishicritical.com/ (accessed on 1 January 2021).
- IEC 62040-3:2011 Uninterruptible Power Systems (UPS)—Part 3: Method of Specifying the Performance and Test Requirements; IEC: Geneva, Switzerland, 2011.
- Ebrahimi, K.; Jones, G.F.; Fleischer, A.S. A review of data center cooling technology, operating conditions and the corresponding low-grade waste heat recovery opportunities. Renew. Sustain. Energy Rev. 2014, 31, 622–638. [Google Scholar] [CrossRef]
- Commscope. Lighting and the Efficient Data Center. 2014. Available online: https://capital-electric.com/wp-content/files/Data.Center.Lighting-CommScope.pdf (accessed on 1 January 2021).
- Levy, M.; Raviv, D. A framework for data center site risk metric. In Proceedings of the 2017 IEEE 8th Annual Ubiquitous Computing, Electronics and Mobile Communication Conference (UEMCON), New York, NY, USA, 19–21 October 2017; pp. 9–15. [Google Scholar]
- Li, C.; Zhou, J.; Cao, Y.; Zhong, J.; Liu, Y.; Kang, C.; Tan, Y. Interaction between urban microclimate and electric air-conditioning energy consumption during high temperature season. Appl. Energy 2014, 117, 149–156. [Google Scholar] [CrossRef]
- Díaz, A.J.; Neves, G.; Silva-Llanca, L.; Valle, M.D.; Cardemil, J.M. Meteorological assessment and implementation of an air-side free-cooling system for data centers in Chile. In Proceedings of the in 2017 16th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), Orlando, FL, USA, 30 May–2 June 2017; pp. 943–947. [Google Scholar]
- Malkamäki, T.; Ovaska, S.J. Data centers and energy balance in Finland. In Proceedings of the 2012 International Green Computing Conference (IGCC), San Jose, CA, USA, 4–8 June 2012; pp. 1–6. [Google Scholar]
- Rath, J. BMW to Deploy HPC Clusters at Verne Global in Iceland. 2012. Available online: https://www.datacenterknowledge.com/archives/2012/09/20/bmw-to-build-hpc-clusters-at-verne-global-in-iceland (accessed on 1 January 2021).
- Adalbjornsson, T. Iceland’s Data Centers Are Booming—Here’s Why That’s a Problem. 2019. Available online: https://www.technologyreview.com/2019/06/18/134902/icelands-data-centers-are-booming-heres-why-thats-a-problem/ (accessed on 1 January 2021).
- Baxtel. Facebook Data Center Locations, News, Photos, and Maps. Available online: https://baxtel.com/data-centers/facebook (accessed on 1 January 2021).
- Bradbury, D. Super Cool: Arctic Data Centres Aren’t Just for Facebook. 2016. Available online: https://www.theregister.com/2016/05/12/power_in_a_cold_climate/ (accessed on 1 January 2021).
- Harding, L. The node pole: Inside Facebook’s Swedish hub near the Arctic Circle. The Guardian, 25 September 2015. [Google Scholar]
- Google. Hamina, Finlandia—Data Center—Google. 2021. Available online: https://www.google.com/intl/it/about/datacenters/locations/hamina/ (accessed on 1 January 2021).
- Microsoft. Microsoft Finds Underwater Datacenters Are Reliable, Practical and Use Energy Sustainably|Innovation Stories. 2020. Available online: https://news.microsoft.com/innovation-stories/project-natick-underwater-datacenter/ (accessed on 1 January 2021).
- Lei, N.; Masanet, E. Statistical analysis for predicting location-specific data center PUE and its improvement potential. Energy 2020, 201, 117556. [Google Scholar] [CrossRef]
- Depoorter, V.; Oró, E.; Salom, J. The location as an energy efficiency and renewable energy supply measure for data centres in Europe. Appl. Energy 2015, 140, 338–349. [Google Scholar] [CrossRef]
- Shehabi, A.; Masanet, E.; Price, H.; Horvath, A.; Nazaroff, W.W. Data center design and location: Consequences for electricity use and greenhouse-gas emissions. Build. Environ. 2011, 46, 990–998. [Google Scholar] [CrossRef]
- Atkins, E. Tracing the ‘cloud’: Emergent political geographies of global data centres. Political Geogr. 2020, 102306. [Google Scholar] [CrossRef]
- Grand View Research. Data Center Power Market Size, Share & Trends Analysis Report by Product (PDU, UPS, Busway), By End Use (IT & Telecom, BFSI, Energy, Healthcare, Retail), By Region, and Segment Forecasts, 2019–2025. 2019. Available online: https://www.researchandmarkets.com/reports/4753469/data-center-power-market-size-share-and-trends (accessed on 1 February 2021).
- Sorell, V.; Abougabal, Y.; Khankari, K.; Gandhi, V.; Watave, A. An Analysis of the Effects of Ceiling Height on Air Distribution in Data Centers. Ashrae Trans. 2006, 112, 623–631. [Google Scholar]
- Karki, K.C.; Patankar, S.V. Airflow distribution through perforated tiles in raised-floor data centers. Build. Environ. 2006, 41, 734–744. [Google Scholar] [CrossRef]
- Patankar, S.V. Airflow and Cooling in a Data Center. J. Heat Transf. 2010, 132, 073001. [Google Scholar] [CrossRef]
- Fitch, J. Dell’s Next Generation Servers: Pushing the Limits of Data Center Cooling Cost Savings; DELL: Round Rock, TX, USA, 2012. [Google Scholar]
- Google. Data Center Efficiency. 2021. Available online: https://www.google.com/intl/it/about/datacenters/efficiency/ (accessed on 1 January 2021).
- Sullivan, R. Alternating Cold and Hot Aisles Provides More Reliable Cooling for Server Farms; Uptime Institute: Santa Fe, NM, USA, 2002. [Google Scholar]
- Bedekar, V.; Karajgikar, S.; Agonafer, D.; Iyyengar, M.; Schmidt, R. Effect of CRAC location on fixed rack layout. In Proceedings of the Thermal and Thermomechanical 10th Intersociety Conference on Phenomena in Electronics Systems, ITHERM 2006, San Diego, CA, USA, 30 May–2 June 2006; pp. 5–425. [Google Scholar]
- Niemann, J.; Brown, K.; Avelar, V. Impact of Hot and Cold Aisle Containment on Data Center Temperature and Efficiency—White Paper 135; Schneider Electric’s Data Center Science Center: Rueil-Malmaison, France, 2013. [Google Scholar]
- Rasmussen, N. The Different Types of Air Distribution for IT Environments—White Paper 55—Revision 5; Schneider Electric’s Data Center Science Center: Rueil-Malmaison, France, 2020. [Google Scholar]
- Netrality. Making Data Centers Cool. 2019. Available online: https://netrality.com/innovation/making-data-centers-cool/ (accessed on 1 January 2021).
- Matthews, K. The Future of Data Center Cooling: Five Trends to Follow. 2021. Available online: https://www.vxchnge.com/blog/the-future-of-data-center-cooling (accessed on 1 January 2021).
- Legrand. Passive Cooling Solutions for Data Center and Server Rooms. Available online: https://datacenter.legrand.com/en/our-solutions/racks-%26-cooling/passive-cooling (accessed on 1 January 2021).
- Zhang, H.; Shao, S.; Xu, H.; Zou, H.; Tian, C. Free cooling of data centers: A review. Renew. Sustain. Energy Rev. 2014, 35, 171–182. [Google Scholar] [CrossRef]
- Daraghmeh, H.M.; Wang, C.-C. A review of current status of free cooling in datacenters. Appl. Therm. Eng. 2017, 114, 1224–1239. [Google Scholar] [CrossRef]
- Chi, Y.Q.; Summers, J.; Hopton, P.; Deakin, K.; Real, A.; Kapur, N.; Thompson, H. Case study of a data centre using enclosed, immersed, direct liquid-cooled servers. In Proceedings of the 2014 Semiconductor Thermal Measurement and Management Symposium (SEMI-THERM), San Jose, CA, USA, 9–13 March 2014; pp. 164–173. [Google Scholar]
- Capozzoli, A.; Primiceri, G. Cooling Systems in Data Centers: State of Art and Emerging Technologies. Energy Procedia 2015, 83, 484–493. [Google Scholar] [CrossRef] [Green Version]
- Zimmermann, S.; Meijer, I.; Tiwari, M.K.; Paredes, S.; Michel, B.; Poulikakos, D. Aquasar: A hot water cooled data center with direct energy reuse. Energy 2012, 43, 237–245. [Google Scholar] [CrossRef]
- Zimmermann, S.; Tiwari, M.K.; Meijer, I.; Paredes, S.; Michel, B.; Poulikakos, D. Hot water cooled electronics: Exergy analysis and waste heat reuse feasibility. Int. J. Heat Mass Transf. 2012, 55, 6391–6399. [Google Scholar] [CrossRef]
- Coles, H.; Greenberg, S. Direct Liquid Cooling for Electronic Equipment; LNBL: Berkeley, CA, USA, 2014. [Google Scholar]
- Iyengar, M.; David, M.; Parida, P.; Kamath, V.; Kochuparambil, B.; Graybill, D.; Simons, R.; Schmidt, R.; Chainer, T. Server liquid cooling with chiller-less data center design to enable significant energy savings. In Proceedings of the 2012 28th Annual IEEE Semiconductor Thermal Measurement and Management Symposium (SEMI-THERM), San Jose, CA, USA, 18–22 March 2012; pp. 212–223. [Google Scholar]
- Iyengar, M.; David, M.; Parida, P.; Kamath, V.; Kochuparambil, B.; Graybill, D.; Simons, R.; Schmidt, R.; Chainer, T. Extreme energy efficiency using water cooled servers inside a chiller-less data center. In Proceedings of the 13th InterSociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, San Diego, CA, USA, 30 May–1 June 2012; pp. 137–149. [Google Scholar]
- Asetek. Asetek Liquid Cooling. Available online: https://asetek.com/ (accessed on 1 January 2021).
- Iceotope. Iceotope. Available online: https://www.iceotope.com/ (accessed on 1 January 2021).
- Kim, M.-H.; Ham, S.-W.; Park, J.-S.; Jeong, J.-W. Impact of integrated hot water cooling and desiccant-assisted evaporative cooling systems on energy savings in a data center. Energy 2014, 78, 384–396. [Google Scholar] [CrossRef]
- Manganelli, M.; Consalvi, R. Design and energy performance assessment of high-efficiency lighting systems. In Proceedings of the 2015 IEEE 15th International Conference on Environment and Electrical Engineering (EEEIC), Rome, Italy, 10–13 June 2015; pp. 1035–1040. [Google Scholar]
- Shaw, G. Intelligent Lighting in a Data Hall—Efficiency Meets Sustainability. 2020. Available online: https://www.datacenterdynamics.com/en/opinions/intelligent-lighting-in-a-data-hall-efficiency-meets-sustainability/ (accessed on 1 January 2021).
- Jin, C.; Bai, X.; Yang, C.; Mao, W.; Xu, X. A review of power consumption models of servers in data centers. Appl. Energy 2020, 265, 114806. [Google Scholar] [CrossRef]
- Meisner, D.; Wenisch, T.F. Does low-power design imply energy efficiency for data centers? In Proceedings of the IEEE/ACM International Symposium on Low Power Electronics and Design, Fukuoka, Japan, 1–3 August 2011; pp. 109–114. [Google Scholar]
- Halsted, C.W.; Manjrekar, M.D. A Critique of Little Box Challenge Inverter Designs: Breaking from Traditional Design Tradeoffs. IEEEPower Electron. Mag. 2018, 5, 52–60. [Google Scholar] [CrossRef]
- Tweed, K. Winning Google’s Little Box Challenge Will Take a ‘Holistic Approach’—IEEE Spectrum. IEEE Access 2021. [Google Scholar]
- Stockton, N. What It Will Take to Win Google’s Million-Dollar Electric Power Prize. 2014. Available online: https://www.wired.com/2014/08/google-power-inverter-challenge/ (accessed on 1 January 2021).
- Little Box Challenge. Detailed Inverter Specifications, Testing Procedure, and Technical Approach and Testing Application Requirements for the Little Box Challenge. 2014. Available online: https://web.archive.org/web/20160310120416/https://www.littleboxchallenge.com/pdf/LBC-InverterRequirements.pdf (accessed on 1 January 2021).
- Neumayr, D.; Bortis, D.; Kolar, J.W. The essence of the little box challenge-part A: Key design challenges & solutions. Cpss Trans. Power Electron. Appl. 2020, 5, 158–179. [Google Scholar]
- Kim, K.A.; Liu, Y.; Chen, M.; Chiu, H. Opening the box: Survey of high power density inverter techniques from the little box challenge. Cpss Trans. Power Electron. Appl. 2017, 2, 131–139. [Google Scholar] [CrossRef]
- Bomboir, O. Red Electrical Devils by CE+T Team: Technical Approach; CE+ T Power Co.: Liege, Belgium, 2015. [Google Scholar]
- Wong, C.C.; Liu, C.C.; Hou, K.C. DC power supply system for intelligent server. In Proceedings of the Processing and Communications Systems, Tamsui, Taiwan, 4–7 November 2012; pp. 245–249. [Google Scholar]
- Pueschel, T. DC-Powered Office Buildings and Data Centres: The First 380 VDC Micro Grid in a Commercial Building in Germany. In Proceedings of the 2018 International Power Electronics Conference (IPEC-Niigata 2018 -ECCE Asia), Niigata, Japan, 20–24 May 2018; pp. 190–195. [Google Scholar]
- Editorial Staff. SiC Semiconductor for Data Center. 2020. Available online: https://www.powerelectronicsnews.com/sic-semiconductor-for-data-center/ (accessed on 1 January 2021).
- Kleyman, B. The Role of Robotics in Data Center Automation. 2013. Available online: https://www.datacenterknowledge.com/archives/2013/12/18/role-robotics-data-center-automation (accessed on 1 January 2021).
- Miller, R. AOL Launches New ‘Lights Out’ Data Center. 2011. Available online: https://www.datacenterknowledge.com/archives/2011/10/11/aol-launches-new-lights-out-data-center/ (accessed on 1 January 2021).
- Mansley, C.; Connell, J.; Isci, C.; Lenchner, J.; Kephart, J.O.; McIntosh, S.; Schappert, M. Robotic mapping and monitoring of data centers. In Proceedings of the IEEE International Conference on Robotics and Automation, Shanghai, China, 9–13 May 2011; pp. 5905–5910. [Google Scholar]
- Lenchner, J.; Isci, C.; Kephart, J.O.; Mansley, C.; Connell, J.; McIntosh, S. Towards data center self-diagnosis using a mobile robot. In Proceedings of the 8th ACM International Conference on Autonomic Computing, Karlsruhe, Germany, 14–18 June 2011; Association for Computing Machinery: New York, NY, USA, 2011; pp. 81–90. [Google Scholar]
- Chan, H.; Connell, J.; Isci, C.; Kephart, J.O.; Lenchner, J.; Mansley, C.; McIntosh, S. A robot as mobile sensor and agent in data center energy management. In Proceedings of the 8th ACM International Conference on Autonomic Computing, New York, NY, USA, 14–18 June 2011; pp. 165–166. [Google Scholar]
- Levy, M.; Subburaj, A. Emerging Trends in Data Center Management Automation. In Proceedings of the 2021 IEEE 11th Annual Computing and Communication Workshop and Conference (CCWC), Las Vegas, NV, USA, 27–30 January 2021; pp. 480–485. [Google Scholar]
- Levy, M.; Raviv, D. A Novel Framework for Data Center Metrics using a Multidimensional Approach. In Proceedings of the 15th LACCEI International Multiconference for Engineering, Education, and Technology, Boca Raton, FL, USA, 19–21 July 2017. [Google Scholar]
- Sisó, L.; Salom, J.; Jarus, M.; Oleksiak, A.; Zilio, T. Energy and Heat-Aware Metrics for Data Centers: Metrics Analysis in the Framework of CoolEmAll Project. In Proceedings of the 2013 International Conference on Cloud and Green Computing, Karlsruhe, Germany, 30 September–2 October 2013; pp. 428–434. [Google Scholar]
- Kushwaha, M.; Singh, A.; Raina, B.L. Categorization of Metrics for Improving Efficiency of Green Data Centers. In Proceedings of the 2019 International Conference on Computational Intelligence and Knowledge Economy (ICCIKE), Dubai, UAE, 11–12 December 2019; p. 56. [Google Scholar]
- Ferreira, J.; Callou, G.; Josua, A.; Maciel, P. Estimating the Environmental Impact of Data Centers. In Proceedings of the 2018 IEEE 17th International Symposium on Network Computing and Applications (NCA), Cambridge, MA, USA, 1–3 November 2018; pp. 1–4. [Google Scholar]
- Moud, H.I.; Hariharan, J.; Hakim, H.; Kibert, C. Sustainability Assessment of Data Centers Beyond LEED. In Proceedings of the 2020 IEEE Green Technologies Conference (GreenTech), Oklahoma City, OK, USA, 1–3 April 2020; pp. 62–64. [Google Scholar]
- Ramli, S.; Jambari, D.I.; Mokhtar, U.A. A framework design for sustainability of green data center. In Proceedings of the 2017 6th International Conference on Electrical Engineering and Informatics (ICEEI), Langkawi, Malaysia, 25–27 November 2017; pp. 1–6. [Google Scholar]
- Van de Voort, T.; Zavrel, V.; Galdiz, J.T.; Hensen, J.L.M. Analysis of performance metrics for data center efficiency—should the Power Utilization Effectiveness PUE still be used as the main indicator? (Part 1). Rehva J. 2017, 2017, 37–43. [Google Scholar]
- Sharma, M.; Arunachalam, K.; Sharma, D. Analyzing the Data Center Efficiency by Using PUE to Make Data Centers More Energy Efficient by Reducing the Electrical Consumption and Exploring New Strategies. Procedia Comput. Sci. 2015, 48, 142–148. [Google Scholar] [CrossRef] [Green Version]
- Tan, B.; Pan, S.L.; Zuo, M. Harnessing collective IT resources for sustainability: Insights from the green leadership strategy of China mobile. J. Assoc. Inf. Sci. Technol. 2014, 66, 818–838. [Google Scholar] [CrossRef]
- Harmon, R.; Demirkan, H.; Auseklis, N.; Reinoso, M. From Green Computing to Sustainable IT: Developing a Sustainable Service Orientation. In Proceedings of the 2010 43rd Hawaii International Conference on System Sciences, Honolulu, HI, USA, 5–8 January 2010; pp. 1–10. [Google Scholar]
- Dayarathna, M.; Wen, Y.; Fan, R. Data Center Energy Consumption Modeling: A Survey. IEEE Commun. Surv. Tutor. 2015, 18, 732–794. [Google Scholar] [CrossRef]
- Lykou, G.; Mentzelioti, D.; Gritzalis, D. A new methodology toward effectively assessing data center sustainability. Comput. Secur. 2017, 76, 327–340. [Google Scholar] [CrossRef]
- Reddy, V.D.; Setz, B.; Rao, G.S.V.; Gangadharan, G.R.; Aiello, M. Metrics for Sustainable Data Centers. IEEE Trans. Sustain. Comput. 2017, 2, 290–303. [Google Scholar] [CrossRef] [Green Version]
- Uptime Institute. Global Data Center Survey; Uptime Institute: New York, NY, USA, 2019. [Google Scholar]
- Bradford, C. Top 5 Data Center Environmental Standards and Concerns. 2021. Available online: https://blog.storagecraft.com/top-5-data-center-environmental-standards-and-concerns/ (accessed on 1 January 2021).
- ASHRAE. TC 9.9. Thermal Guidelines for Data Processing Environments–Expanded Data Center Classes and Usage Guidance; ASHRAE: Peachtree Corners, GA, USA, 2011. [Google Scholar]
- U.S. Green Building Council. LEED Rating System. 2021. Available online: https://www.usgbc.org/leed (accessed on 1 January 2021).
- ENERGY STAR. 2021. Available online: https://www.energystar.gov/?s=mega (accessed on 1 January 2021).
- LifelineDataCtr. What is LEED Certification for Data Centers? 2021. Available online: https://lifelinedatacenters.com/colocation/leed-certification-data-centers/ (accessed on 1 January 2021).
- The Green Grid. 2021. Available online: https://www.thegreengrid.org/ (accessed on 1 January 2021).
- Meuer, H.; Strohmaier, E.; Dongarra, J.; Simon, H.; Meuer, M. TOP500. 2021. Available online: https://www.top500.org/ (accessed on 1 January 2021).
- Shrestha, N.L. RenewIT—Deliverable D4.5—Catalogue of Advanced Technical Conceptsfor Net Zero Energy Data Centres. 2015. Available online: http://www.renewit-project.eu/d4-3-catalogue-advanced-technical-concepts-net-zero-energy-data-centres-draft-version/ (accessed on 1 March 2021).
2018 | 2023 | Variation | |
---|---|---|---|
Internet users (billions) | 3.9 | 5.3 | +36% |
Internet users (percent of world population) | 51% | 66% | +29% |
Average mobile networked devices and connections per person | 1.2 | 1.6 | +33% |
Average total networked devices and connections per person | 2.4 | 3.6 | +50% |
Average broadband speed (Mbps) | 46 | 110 | +139% |
Average Wi-Fi speed (Mbps) | 30 | 92 | +207% |
Average mobile speed (Mbps) | 13 | 44 | +238% |
Owner | Location | Power * (MW) |
---|---|---|
IA, USA | 138 | |
Digital Realty | IL, USA | 100 |
Yotta | India | 250 |
OK, USA | 100 |
Load | Max Run Time | Application | ||
---|---|---|---|---|
Emergency standby power | (ESP) | Variable * | 200 h/a | Safety, critical loads |
Prime rated power | (PRP) | Variable * | Unlimited | Local generation, peak shaving |
Limited time prime power | (LTP) | Constant | 500 h/a | Base loading, rate curtailment |
Continuous operating power | (COP) | Constant | Unlimited | Parallel to utility |
Data center power | (DCP) | Constant, variable | Unlimited |
Tier II | Tier II | Tier III | Tier IV | |
---|---|---|---|---|
Site availability (%) | 99.671 | 99.749 | 99.982 | 99.995 |
Site ICT downtime (h/a) | 28.8 | 22.7 | 1.6 | 0.4 |
Distribution paths | 1 | 1 | 1 active, 1 alternate | 2 active |
Critical power distribution | 1 | 1 | 2 active | 2 active |
Component redundancy | N | N + 1 | N + 1 | N after any failure |
Concurrently maintainable | No | No | No | Yes |
Fault tolerant | No | No | No | Yes |
Compartmentalization | No | No | No | Yes |
Continuous cooling | No | No | No | Yes |
Configuration | Modules | Capacity | Percent Load | Losses |
---|---|---|---|---|
Internally modular | 4 × 250 kW | 1000 kW | 80% | Small |
Internally modular redundant | 5 × 250 kW | 1250 kW | 64% | High |
Parallel redundant | 3 × 500 kW | 1500 kW | 53% | High |
Airside | Waterside | Heat Pipe |
---|---|---|
Direct airside | Direct water-cooled | Independent |
Indirect airside | Air-cooled systems | Integrated |
Multistage evaporative | Cooling tower systems | Cold storage |
Integrated dry cooler-chiller (water-to-air dry cooler) | Pulsating heat pipe |
Team | Efficiency (%) | Power Density (W/cm3) | Dimensions (cm) | Topology | FOM i |
---|---|---|---|---|---|
CE+T RED | n/a | 8.8 | 6.4 × 4.1 × 8.7 | Parallel full-bridge | n/a |
ETH !verter | 95.1 a | 8.2 | n/a | Parallel full-bridge | 128 |
Schneider Electric | n/a | 6.1 | n/a | Full-bridge | n/a |
Texas A&M | 98 | 3.4 | 13.5 × 13.2 × 3.3 | Full bridge | 90 |
Taiwan Tech | 96.5 a | 5.6 | 15.2 × 9.4 × 2.5 | Full-bridge | 117 |
UIUC | 97a | 13.2 | 10.2 × 6.2 × 2.4 | FCMLI c | 316 |
Univ. Tennessee | 96.9 b | 6.2 | 11.1 × 8.8 × 3.3 | Full-bridge | 143 |
Virgina Tech FEEC | 98.6 b | 3.7 | n/a | HERIC d | 123 |
Team | Ratings (V × A) | Switching Frequency (kHz) | Switches | Power Decoupling | |
CE+T RED | n/a | 35–240 | GaN | Active synchronous buck to buffer | |
ETH !verter | 600 × n/a | 200–1000 | GaN | Active synchronous buck to buffer | |
Schneider Electric | n/a | 45 | SiC | Active ripple filter full bridge to buffer | |
Texas A&M | 650 × 30 | 100 | GaN | Active half-bridge like three-phase | |
Taiwan Tech | 650 × 60 | 25–800 e, 200–680 f | GaN | Active synchronous buck to buffer | |
UIUC | 150 × 48 | 120 g, 720 h | GaN | Active series-stacked buffer | |
Univ. Tennessee | 650 × 30 | 100 | GaN | Passive notch filter | |
Virginia Tech FEEC | n/a | 60 e, 400 f | GaN | Active interleaved buck 1st power stage |
Team | Thermal Management |
---|---|
CE+T RED | Copper enclosure, with gap-pad |
ETH !verter | Forced air cooling by utilizing high fin-number heat sinks and six ultra-flat blowers |
Schneider Electric | Heat sink over power switches with small fan, two air inlets on case |
Texas A&M | Unspecified cooling system with heat sink |
Taiwan Tech | Six fans, heat sink connected to aluminum case |
UIUC | Copper enclosure, 2 mm tall heat sink fins, 6 radial fans |
Univ. Tennessee | Heat sink over power switches, two small fans, air inlets on top and side |
Virginia Tech FEEC | Copper enclosure, 10 micro-fans on side wall |
Body | Document | Scope | Level |
---|---|---|---|
AICPA | SAS 70 | Assurance controls | U.S.A. |
AICPA | SSAE 16 | Assurance controls | U.S.A. |
AMS-IX | AMS-IX | Data center business continuity standard | International |
ANSI/BICSI | ANSI/BICSI 002 | Data center design and implementation | U.S.A. |
ANSI/ASHRAE | ANSI/ASHRAE 90.4 | Data center energy standard | U.S.A. |
ASHRAE | TC 9.9 guidelines | Data center equipment—thermohygrometric limits | U.S.A. |
BICSI | BICSI-009 | Data center operations and maintenance best practices | U.S.A. |
CENELEC | EN 50541-1 | Power supply—distribution transformers | Europe |
CENELEC | EN 50160 | Power supply—voltage of distribution system | Europe |
CENELEC | EN 50173 | Information technology—cabling | Europe |
CENELEC | EN 50174 | Information technology—cabling | Europe |
CENELEC | EN 50600 | Information technology—data center certification | Europe |
IAASB | ISAE 3402 | Assurance controls | International |
IEC | IEC 62040 | Power supply—UPS | International |
IEC | IEC 60076 | Power supply—power transformers | International |
IEC | IEC 60831-1 and 2 | Power supply—capacitors | International |
IEC | IEC 61439 | Power supply—low voltage switchgear | International |
ISO | ISO 14000 | Environmental management system | International |
ISO | ISO 27000 | Information security | International |
ISO | ISO 30134 | Data centers—key performance indicators | International |
ISO | ISO 45001 | Occupational health and safety management systems | International |
ISO | ISO 9001 | Quality management system | International |
ISO/IEC | ISO/IEC 11801 | Information technology—cabling | International |
ISO/IEC | ISO/IEC 27001 | Information technology—information security | International |
ISO/IEC | ISO/IEC 22237 | Data centers—facilities and infrastructures | International |
PCI SSC | PCI DSS | Payment card industry data security standard | International |
Singapore Standard | SS 564 | Green data centers | Singapore |
TIA | ANSI/TIA-568 | Information technology—cabling | U.S.A. |
TIA | ANSI/TIA-942-B | Information technology—data center certification | U.S.A. |
Uptime Institute | Tier classification | Information technology—data center certification | International |
I—Load Reduction | II—Renewable Energy Integration |
---|---|
|
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manganelli, M.; Soldati, A.; Martirano, L.; Ramakrishna, S. Strategies for Improving the Sustainability of Data Centers via Energy Mix, Energy Conservation, and Circular Energy. Sustainability 2021, 13, 6114. https://doi.org/10.3390/su13116114
Manganelli M, Soldati A, Martirano L, Ramakrishna S. Strategies for Improving the Sustainability of Data Centers via Energy Mix, Energy Conservation, and Circular Energy. Sustainability. 2021; 13(11):6114. https://doi.org/10.3390/su13116114
Chicago/Turabian StyleManganelli, Matteo, Alessandro Soldati, Luigi Martirano, and Seeram Ramakrishna. 2021. "Strategies for Improving the Sustainability of Data Centers via Energy Mix, Energy Conservation, and Circular Energy" Sustainability 13, no. 11: 6114. https://doi.org/10.3390/su13116114
APA StyleManganelli, M., Soldati, A., Martirano, L., & Ramakrishna, S. (2021). Strategies for Improving the Sustainability of Data Centers via Energy Mix, Energy Conservation, and Circular Energy. Sustainability, 13(11), 6114. https://doi.org/10.3390/su13116114