Expanding Policy for Biodegradable Plastic Products and Market Dynamics of Bio-Based Plastics: Challenges and Opportunities
Abstract
:1. Introduction
2. Methodology
2.1. Identification of the Data
2.2. Screening Initial Data
2.3. Determining Eligibility
2.4. The Inclusion of the Data
3. Overview of the Bio-Based Economy
4. Existing Projections for the Bioplastic Market
5. The Socio-Economic Impact of Bio-Plastics
6. The Life Cycle of a Bioplastic
6.1. Sustainability
6.2. Recycling
6.3. Compostable
7. Impact Factors on Biodegradable Plastics Productions
7.1. Macroeconomic Factors
7.2. Regulatory Factors
7.3. Technological Factors
7.4. Social Factors
8. Specific Options for the Development of Bioplastics
8.1. Mobilizing Resources for Research and Development
8.2. Supporting Scaling Up Activities
8.3. Investing in Demonstrator Facilities
8.4. Alternative Uses for Feedstock
8.5. Agricultural Land Productivity
8.6. Alternative Cropping Systems
8.7. Public Procurement
- They are still not widely available;
- They are accessible at high costs only; or
- They do not deliver the acceptable output standard of the particular application.
8.8. Quotas
8.9. Subsidies and Taxes
8.10. Standards, Labels, and Consumer Awareness
9. Policies and Practices by Country
9.1. Malaysia
Bio-Economy Related Policies
9.2. China
9.2.1. Bio-Economy Related Policies
9.2.2. Overcoming Investment Barriers: Taxes and Subsidies
9.3. Japan
Policies Specific to Bioplastics
9.4. Korea
Policies Specific to Bioplastics
9.5. Thailand
Policies Specific to Bioplastics
- Sufficient availability of biomass feedstock;
- Accelerating technological growth and technological cooperation;
- Construction of industry and advanced productions;
- The establishing of sympathetic infrastructure.
9.6. Linkages with European Policies
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bhagwat, G.; Gray, K.; Wilson, S.P.; Muniyasamy, S.; Vincent, S.G.T.; Bush, R.; Palanisami, T. Benchmarking bioplastics: A natural step towards a sustainable future. J. Polym. Environ. 2020, 28, 3055–3075. [Google Scholar] [CrossRef]
- Niklas, D.; Claudia, W.; Wolf, A. Market Dynamics of Biodegradable Bio-Based Plastics: Projections and Linkages to European Policies; HWWI Research Paper No. 193; Hamburg Institute of International Economics: Hamburg, Germany, 2020. [Google Scholar]
- Feedstock Recovery of Post-Industrial and Post-Consumer Polylactide Bioplastics. European Bioplastics Fact Sheet. European Bioplastics: Berlin, Germany, 2010. Available online: http://en.europeanbioplastics.org/wp-content/uploads/2011/04/fs/FactSheet_%20Feedstock_Recovery.pdf (accessed on 10 May 2021).
- Calabrò, P.S.; Grosso, M. Bioplastics and waste management. Waste Manag. 2018, 78, 800–801. [Google Scholar] [CrossRef] [PubMed]
- OECD. Policies for Bioplastics in the Context of a Bioeconomy; OECD Science, Technology and Industry Policy Papers, No. 10; OECD Publishing: Paris, France, 2013. [Google Scholar] [CrossRef]
- Brizga, J.; Hubacek, K.; Feng, K. The Unintended Side Effects of Bioplastics: Carbon, Land, and Water Footprints. One Earth 2020, 3, 45–53. [Google Scholar] [CrossRef]
- Neus, E.; Haddad, S.; Börner, J.; Britz, W. Land use mediated GHG emissions and spillovers from increased bioplastic consumption. Environ. Res. Lett. 2018, 12, 1–19. [Google Scholar]
- Abioye, O.P.; Abioye, A.A.; Afolalu, S.A.; Ongbail, S.O. A review of biodegradable plastics in Nigeria. Int. J. Mech. Eng. Technol. 2018, 9, 1172–1185. [Google Scholar]
- Polman, E.M.N.; Gruter, G.-J.M.; Parsons, J.R.; Tietema, A. Comparison of the aerobic biodegradation of biopolymers and the corresponding bioplastics: A review. Sci. Total Environ. 2020, 753, 141953. [Google Scholar] [CrossRef]
- Filiciotto, L.; Rothenberg, G. Biodegradable Plastics: Standards, Policies, and Impacts. ChemSusChem 2021, 14, 56–72. [Google Scholar] [CrossRef]
- Kamaruddin, H.; Ling, S.T.Y.; Hoe, L.I. Externalities of business entities from plastic pollution at Perhentian island, Malaysia. Opción Rev. Cienc. Hum. Soc. 2020, 91, 1380–1404. [Google Scholar]
- Geyer, R.; Jambeck, J.; Law, K.L. Production, use, and the fate of all plastics ever made. Sci. Adv. 2017, 7, e1700782. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dilkes-Hoffman, L.S. Exploring the role of biodegradable plastics. Ph.D. Thesis, The University of Queensland, Brisbane, Australia, 2020. [Google Scholar]
- Sinan, M. Bioplastics for sustainable development: General scenario in India. Curr. World Environ. 2020, 15, 24–28. [Google Scholar] [CrossRef]
- Horvat, D.; Wydra, S.; Lerch, C.M. Modelling and simulating the dynamics of the European demand for bio-based plastics. Int. J. Simul. Model. 2018, 17, 419–430. [Google Scholar] [CrossRef]
- Saunders, M.; Lewis, P.; Thornhill, A. Research Methods for Business Students, 5th ed.; Pearson Education Limited: London, UK; Available online: https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.475.7307&rep=rep1&type=pdf (accessed on 10 May 2021).
- Tranfield, D.; Denyer, D.; Smart, P. Towards a methodology for developing evidence-informed management knowledge by means of a systematic review. Br. J. Manag. 2003, 14, 207–222. [Google Scholar] [CrossRef]
- Stefan, S.; Müller, M.; Westhaus, M.; Morana, R. Conducting a literature review—the example of sustainability in supply chains. In Research Methodologies in Supply Chain Management; Springer: Heidelberg, Germany, 2005; pp. 91–106. [Google Scholar]
- Tseng, M.-L.; Islam, S.; Karia, N.; Fauzi, F.A.; Afrin, S. A literature review on green supply chain management: Trends and future challenges. Resour. Conserv. Recycl. 2019, 141, 145–162. [Google Scholar] [CrossRef]
- Fahimnia, B.; Sarkis, J.; Davarzani, H. Green supply chain management: A review and bibliometric analysis. Int. J. Prod. Econ. 2015, 162, 101–114. [Google Scholar] [CrossRef]
- Malviya, R.K.; Kant, R. Green supply chain management (GSCM): A structured literature review and research implications. Benchmarking Int. J. 2015, 22, 1360–1394. [Google Scholar] [CrossRef]
- Apriliyanti, I.D.; Alon, I. Bibliometric analysis of absorptive capacity. Int. Bus. Rev. 2017, 26, 896–907. [Google Scholar] [CrossRef]
- Moshood, T.D.; Adeleke, A.Q.; Nawanir, G.; Ajibike, W.A.; Shittu, R.A. Emerging Challenges and Sustainability of Industry 4.0 Era in the Malaysian Construction Industry. Int. J. Recent Technol. Eng. 2020, 9, 1627–1634. [Google Scholar] [CrossRef]
- Moshood, T.; Nawanir, G.; Sorooshian, S.; Mahmud, F.; Adeleke, A. Barriers and Benefits of ICT Adoption in the Nigerian Construction Industry. A Comprehensive Literature Review. Appl. Syst. Innov. 2020, 3, 46. [Google Scholar] [CrossRef]
- Rajeev, A.; Pati, R.K.; Padhi, S.S.; Govindan, K. Evolution of sustainability in supply chain management: A literature review. J. Clean. Prod. 2017, 162, 299–314. [Google Scholar] [CrossRef]
- Moshood, T.; Adeleke, A.; Nawanir, G.; Mahmud, F. Ranking of human factors affecting contractors’ risk attitudes in the Malaysian construction industry. Soc. Sci. Humanit. Open 2020, 2, 100064. [Google Scholar] [CrossRef]
- Moher, D.; Shamseer, L.; Clarke, M.; Ghersi, D.; Liberati, A.; Petticrew, M.; Shekelle, P.; Stewart, L.A.; PRISMA-P Group. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst. Rev. 2015, 4, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- OECD. Future Prospects for Industrial Biotechnology; OECD Publishing: Paris, France, 2011; p. 137. ISBN 978-92-64-11956-7. [Google Scholar]
- OECD. The Bioeconomy to 2030: Designing a Policy Agenda; OECD Publishing: Paris, France, 2019; ISBN 978-92-64-03853-0. [Google Scholar]
- Zalasiewicz, J.; Waters, C.N.; Sul, J.A.I.D.; Corcoran, P.L.; Barnosky, A.D.; Cearreta, A.; Edgeworth, M.; Gałuszka, A.; Jeandel, C.; Leinfelder, R.; et al. The geological cycle of plastics and their use as a stratigraphic indicator of the Anthropocene. Anthropocene 2016, 13, 4–17. [Google Scholar] [CrossRef] [Green Version]
- Aziz, N.A.A.; Lukhman, A.A.; Chubo, J.K.; Daud, D.S.R.A. Public Perception to Littering in Greenspaces: A Case Study in Bintulu, Sarawak, Malaysia. J. Phys. Conf. Ser. 2019, 1358, 012031. [Google Scholar] [CrossRef]
- Haddad, S.; Escobar, N.; Britz, W. Economic and environmental implications of a target for bioplastics consumption: A CGE analysis. In Proceedings of the International Association of Agricultural Economists Conference, Vancouver, BC, Canada, 28 July–2 August 2018; 2018; pp. 1–16. [Google Scholar] [CrossRef]
- Escobar, N.; Britz, W. Metrics on the sustainability of region-specific bioplastics production, considering global land-use change effects. Resour. Conserv. Recycl. 2021, 167, 105345. [Google Scholar] [CrossRef]
- Brodin, M.; Vallejos, M.; Opedal, M.T.; Area, M.C.; Chinga-Carrasco, G. Lignocellulosics as sustainable resources for the production of bioplastics—A review. J. Clean. Prod. 2017, 162, 646–664. [Google Scholar] [CrossRef]
- Morone, P.; Tartiu, V.E.; Falcone, P.M. Assessing the potential of biowaste for bioplastics production through social network analysis. J. Clean. Prod. 2015, 90, 43–54. [Google Scholar] [CrossRef]
- Siqueira, L.D.V.; Arias, C.I.L.F.; Maniglia, B.C.; Tadini, C.C. Starch-based biodegradable plastics: Methods of production, challenges and future perspectives. Curr. Opin. Food Sci. 2021, 38, 122–130. [Google Scholar] [CrossRef]
- Kazuo, M.; Kamini, N.R.; Ikeda, H.; Iefuji, H. Cutinase-like enzyme from the yeast Cryptococcus sp. strain S-2 hydrolyses polylactic acid and other biodegradable plastics. Appl. Environ. Microbiol. 2005, 71, 7548–7550. [Google Scholar]
- Andrew, C.; Cowan, J.; Hayes, D.; Dorgan, J.; Inglis, D.; Miles, C.A. Using biodegradable plastics as agricultural mulches. Washington State University Extension Fact Sheet. 2013, FS103E, pp. 1–6. Available online: https://research.libraries.wsu.edu/xmlui/bitstream/handle/2376/4418/FS103E.pdf?sequence=2 (accessed on 10 May 2021).
- Chek, M.F.; Kim, S.-Y.; Mori, T.; Tan, H.T.; Sudesh, K.; Hakoshima, T. Asymmetric Open-Closed Dimer Mechanism of Polyhydroxyalkanoate Synthase PhaC. iScience 2020, 23, 101084. [Google Scholar] [CrossRef] [PubMed]
- Din, M.I.; Ghaffar, T.; Najeeb, J.; Hussain, Z.; Khalid, R.; Zahid, H. Potential perspectives of biodegradable plastics for food packaging application-review of properties and recent developments. Food Addit. Contam. Part A 2020, 37, 665–680. [Google Scholar] [CrossRef]
- Sarieh, M.; Ghomi, E.R.; Shakiba, M.; Shafiei-Navid, S.; Abdouss, M.; Bigham, A.; Khosravi, F.; Ahmadi, Z.; Faraji, M.; Abdouss, H.; et al. The Effect of Poly (Ethylene glycol) Emulation on the Degradation of PLA/Starch Composites. Polymers 2021, 13, 1019. [Google Scholar] [CrossRef]
- Shen, M.; Song, B.; Zeng, G.; Zhang, Y.; Huang, W.; Wen, X.; Tang, W. Are biodegradable plastics a promising solution to solve the global plastic pollution? Environ. Pollut. 2020, 263, 114469. [Google Scholar] [CrossRef]
- Caroline, O.; Barret, N.; Lemaire, A. How consumers of plastic water bottles are responding to environmental policies? Waste Manag. 2017, 61, 13–27. [Google Scholar]
- Biopolymers Facts and Statistics; Institute for Bioplastics and Biocomposites: Hannover, Germany, 2020; Available online: https://www.ifbb-hannover.de/files/IfBB/downloads/faltblaetter_broschueren/f+s/Biopolymers-Facts-Statistics-2020.pdf (accessed on 9 May 2021).
- Elena-Diana, C.; Ghinea, C.; Hlihor, R.M.; Simion, I.M.; Smaranda, C.; Favier, L.; Roşca, M.; Gostin, I.; Gavrilescu, M. Challenges and opportunities in green plastics: An assessment using the ELECTRE decision-aid method. Environ. Eng. Manag. J. 2015, 14, 689–702. [Google Scholar]
- Briassoulis, D.; Dejean, C. Critical review of norms and standards for biodegradable agricultural plastics Part Ι. Biodegradation in soil. J. Polym. Environ. 2010, 18, 384–400. [Google Scholar] [CrossRef]
- Rujnić-Sokele, M.; Pilipović, A. Challenges and opportunities of biodegradable plastics: A mini-review. Waste Manag. Res. 2017, 35, 132–140. [Google Scholar] [CrossRef] [PubMed]
- European Bioplastics. European Bioplastics e.V. Market. 2019. Available online: https://www.european-bioplastics.org/market/ (accessed on 9 May 2021).
- European Parliament. A European Strategy for Plastics in a Circular Economy. 2018. Available online: https://www.europarl.europa.eu/doceo/document/TA-8-2018-0352_EN.html (accessed on 9 May 2021).
- Bernd, B.; Pilz, H. The Impact of Plastic Packaging on Life Cycle Energy Consumption and Greenhouse Gas Emissions in Europe; Denkstatt GmbH: Wien, Austria, 2011. [Google Scholar]
- Guo, J.-J.; Huang, X.-P.; Xiang, L.; Wang, Y.-Z.; Li, Y.-W.; Li, H.; Cai, Q.-Y.; Mo, C.-H.; Wong, M.-H. Source, migration and toxicology of microplastics in soil. Environ. Int. 2020, 137, 105263. [Google Scholar] [CrossRef]
- Hann, S.; Scholes, R.; Briedis, R.; Kirkevaag, K. Bio-Based and Biodegradable Plastics: An Assessment of the Value Chain for Bio-Based and Biodegradable Plastics in Norway. 2018. Available online: https://www.miljodirektoratet.no/globalassets/publikasjoner/m1206/m1206.pdf (accessed on 9 May 2021).
- Henning, W.; Schinkel, J.; Feder, L. Prevention of Plastic Waste in Production and Consumption by Multi-Actor Partnerships; PREVENT Waste Alliance: Bonn, Germany, 2020; Available online: https://prevent-waste.net/wp-content/uploads/2020/07/Prevention_of_plastic_waste_in_production_and_consumption_final.pdf (accessed on 9 May 2021).
- Munmaya, M. (Ed.) Encyclopedia of Polymer Applications; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Capellán-Pérez, I.; Mediavilla, M.; de Castro, C.; Carpintero, Ó.; Miguel, L.J. Fossil fuel depletion and socio-economic scenarios: An integrated approach. Energy 2014, 77, 641–666. [Google Scholar] [CrossRef]
- Extreme Temperatures and Health. 2016. Available online: https://www.eea.europa.eu/data-and-maps/indicators/heat-and-health-2/assessment (accessed on 9 May 2021).
- Christopher, B.F.; Barros, V.R. (Eds.) Climate Change 2014–Impacts, Adaptation and Vulnerability: Regional Aspects; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Heidbreder, L.M.; Bablok, I.; Drews, S.; Menzel, C. Tackling the plastic problem: A review on perceptions, behaviours, and interventions. Sci. Total Environ. 2019, 668, 1077–1093. [Google Scholar] [CrossRef]
- Sanchez-Vazquez, S.A.; Hailes, H.C.; Evans, J.R.G. Hydrophobic polymers from food waste: Resources and synthesis. Polymer 2013, 53, 627–694. [Google Scholar] [CrossRef]
- Ederington, L.H.; Fernando, C.S.; Hoelscher, S.A.; Lee, T.K.; Linn, S.C. A review of the evidence on the relationship between crude oil prices and petroleum product prices. J. Commod. Mark. 2019, 13, 1–15. [Google Scholar] [CrossRef]
- Easwaran, N.; Gallagher, K.S.; Koester, S.; Alejo, J.R. Carbon pricing in practice: A review of existing emissions trading systems. Clim. Policy 2018, 18, 967–991. [Google Scholar]
- Bollmann, M.; Bosch, T.; Colijn, F.; Ebinghaus, R.; Froese, R.; Güssow, K.; Khalilian, S.; Krastel, S.; Körtzinger, A.; Langenbuch, M.; et al. World Ocean review: Living with the Oceans; Maribus: Hamburg, Germany, 2010; Available online: http://aquaticcommons.org/15582/1/WOR1_english.pdf (accessed on 9 May 2021).
- Hannah, R.; Roser, M. Plastic Pollution. Our World in Data. 2018. Available online: https://ourworldindata.org/plastic-pollution?utm_source=newsletter (accessed on 9 May 2021).
- Jambeck, J.R.; Geyer, R.; Wilcox, C.; Siegler, T.R.; Perryman, M.; Andrady, A.; Narayan, R.; Law, K.L. Plastic waste inputs from land into the ocean. Science 2015, 347, 768–771. [Google Scholar] [CrossRef] [PubMed]
- Möller, J.N.; Löder, M.G.J.; Laforsch, C. Finding microplastics in soils: A review of analytical methods. Environ. Sci. Technol. 2020, 54, 2078–2090. [Google Scholar] [CrossRef]
- Kakadellis, S.; Harris, Z.M. Don’t scrap the waste: The need for broader system boundaries in bioplastic food packaging life-cycle assessment–a critical review. J. Clean. Prod. 2020, 274, 122831. [Google Scholar] [CrossRef]
- Beckstrom, B.D.; Wilson, M.H.; Crocker, M.; Quinn, J.C. Bioplastic feedstock production from microalgae with fuel co-products: A techno-economic and life cycle impact assessment. Algal Res. 2020, 46, 101769. [Google Scholar] [CrossRef]
- Ramani, N.; Balakrishnan, S. Drivers for biodegradable/compostable plastics & role of composting in waste management & sustainable agriculture. In Proceedings of the Symposium Proceedings. Biological Methods of Waste Treatment and Management in South India, Chennai, India, 15 February 2007; Tharakan, J., Ed.; United States Educational Foundation in India: New Delhi, India, 2007; pp. 24–29. [Google Scholar]
- Kim, H.; Lee, S.; Ahn, Y.; Lee, J.; Won, W. Sustainable production of bioplastics from lignocellulosic biomass: Techno-economic analysis and life-cycle assessment. ACS Sustain. Chem. Eng. 2020, 8, 12419–12429. [Google Scholar] [CrossRef]
- Sompit, P.; Malakul, P.; Nithitanakul, M.; Papong, S.; Wenunun, P.; Likitsupin, T.W.; Chom-In, R. Trungkavashirakun, and E. Sarobol. Life cycle management of bioplastics for a sustainable future in Thailand: Sa-med Island model. Chem. Eng. Trans. 2012, 29, 265–270. [Google Scholar]
- Bishop, G.; Styles, D.; Lens, P.N. Environmental performance comparison of bioplastics and petrochemical plastics: A review of life cycle assessment (LCA) methodological decisions. Resour. Conserv. Recycl. 2021, 168, 105451. [Google Scholar] [CrossRef]
- GBEP. The Global Bioenergy Partnership Sustainability Indicators for Bioenergy; GBEP Secretariat, Food and Agricultural Organisation of the United Nations (FAO): Rome, Italy, 2011; p. 211. [Google Scholar]
- Iles, A.; Martin, A.N. Expanding bioplastics production: Sustainable business innovation in the chemical industry. J. Clean. Prod. 2013, 45, 38–49. [Google Scholar] [CrossRef]
- Hopewell, J.; Dvorak, R.; Kosior, E. Plastics recycling: Challenges and opportunities. Philos. Trans. R. Soc. B Biol. Sci. 2009, 364, 2115–2126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dilkes-Hoffman, L.; Pratt, S.; Lant, P.; Laycock, B. The role of biodegradable plastic in solving plastic solid waste accumulation. In Plastics to Energy; William Andrew Publishing: Amsterdam, The Netherlands, 2019; pp. 469–505. [Google Scholar]
- Papong, S.; Malakul, P.; Trungkavashirakun, R.; Wenunun, P.; Chom-In, T.; Nithitanakul, M.; Sarobol, E. Comparative assessment of the environmental profile of PLA and PET drinking water bottles from a life cycle perspective. J. Clean. Prod. 2014, 65, 539–550. [Google Scholar] [CrossRef]
- Haider, T.P.; Völker, C.; Kramm, J.; Landfester, K.; Wurm, F.R. Plastics of the future? The impact of biodegradable polymers on the environment and on society. Angew. Chem. Int. Ed. 2019, 58, 50–62. [Google Scholar] [CrossRef] [Green Version]
- Changwichan, K.; Silalertruksa, T.; Gheewala, S.H. Eco-efficiency assessment of bioplastics production systems and end-of-life options. Sustainability 2018, 10, 952. [Google Scholar] [CrossRef] [Green Version]
- Van Dongen, P.; Tak, H.; Claassen, E. Policies and patenting to stimulate the biotechnology sector: Evidence from The Netherlands. Sci. Public Policy 2019, 46, 136–147. [Google Scholar] [CrossRef]
- Ni, Y.; Richter, G.M.; Mwabonje, O.N.; Qi, A.; Patel, M.K.; Woods, J. Novel integrated agricultural land management approach provides sustainable biomass feedstocks for bioplastics and supports the UK’s ‘net-zero target. Environ. Res. Lett. 2020, 16, 014023. [Google Scholar] [CrossRef]
- Gelfand, I.; Sahajpal, R.; Zhang, X.; Izaurralde, R.C.; Gross, K.L.; Robertson, G.P. Sustainable bioenergy production from marginal lands in the US Midwest. Nature 2013, 493, 514–517. [Google Scholar] [CrossRef]
- Gulie, M.M. Green Public Procurement in Romania. Quality-Access to Success 2019, 20, 295–301. [Google Scholar]
- Pazienza, P.; De Lucia, C. For a new plastics economy in agriculture: Policy reflections on the EU strategy from a local perspective. J. Clean. Prod. 2020, 253, 119844. [Google Scholar] [CrossRef]
- Philp, J.C.; Ritchie, R.J.; Guy, K. Biobased plastics in a bioeconomy. Trends Biotechnol. 2013, 31, 65–67. [Google Scholar] [CrossRef] [PubMed]
- Oguntuase, O.J. Bioeconomy for sustainable development in Nigeria: Lessons from international experiences. J. Res. Rev. Sci. 2018, 4, 97–104. [Google Scholar] [CrossRef]
- Kifordu, A.A.; Adetunji, C.O.; Odiwo, W.O.; Mishra, R.S. Food Innovation and Sustainable Development: A Bioeconomics Perception. In Innovations in Food Technology; Springer: Singapore, 2020; pp. 3–16. [Google Scholar]
- MOSTI. Bioeconomy Initiative Malaysia, Ministry of Science, Technology and Innovation. 2011. Available online: www.biotek.gov.my/bioeconomy/index.php (accessed on 28 November 2020).
- Vargas-Hernández, J.G. Bio-economy at the crossroads of sustainable development. In Advanced Integrated Approaches to Environmental Economics and Policy: Emerging Research and Opportunities; IGI Global: Hershey, PA, USA, 2020; pp. 23–48. [Google Scholar]
- MEP. The 12th Five-Year Plan for Energy Saving and Emission Reduction, Ministry of Environmental Protection of the People’s Republic of China. 2012. Available online: http://english.mep.gov.cn/News_service/infocus/201207/t20120717_233562.htm (accessed on 15 January 2021).
- Consult, Clever. The Knowledge-Based Bio-Economy in Europe: Achievements and Challenges. Clever Consult: Brussels, Belgium, 2010. Available online: http://cleverconsult.eu/cleversafe/wp-content/uploads/2010/09/KBBE_A4_1_Full-report_final.pdf (accessed on 21 January 2021).
- Viaggi, D. Towards an economics of the bioeconomy: Four years later. Bio-Based Appl. Econ. 2016, 5, 101–112. [Google Scholar]
- European Commission. A New Circular Economy Action Plan for a Cleaner and More Competitive Europe, Brussels, 11.3.2020. COM (2020) 98 final.2020. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52020DC0098&from=EN (accessed on 17 February 2021).
- European Parliament and Council. EU Directive 2019/904 of the European Parliament and of the Council of 5 June 2019 on the Reduction of the Impact of Certain Plastic Products on the Environment. 2019. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32019L0904&from=DE (accessed on 18 January 2021).
- European Parliament and Council. EU Directive 2018/851 of the European Parliament and of the Council of 30 May 2018 amending Directive 2008/98/EC on Waste. 2018. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32018L0851&from=DE (accessed on 15 January 2021).
- Steenblik, R. Biofuels at What Cost? Government Support for Ethanol and Biodiesel in Selected OECD Countries A Synthesis of Reports Addressing Subsidies for Biofuels in Australia, Canada, the European Union, Switzerland and the United States; No. D-1589; The Global Subsidies Initiative, GSI: Geneva, Switzerland, 2007. [Google Scholar]
- Saarela, S.-R. From pure science to participatory knowledge production? Researchers’ perceptions on the science-policy interface in bioenergy policy. Sci. Public Policy 2019, 46, 81–90. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moshood, T.D.; Nawanir, G.; Mahmud, F.; Mohamad, F.; Ahmad, M.H.; Abdul Ghani, A. Expanding Policy for Biodegradable Plastic Products and Market Dynamics of Bio-Based Plastics: Challenges and Opportunities. Sustainability 2021, 13, 6170. https://doi.org/10.3390/su13116170
Moshood TD, Nawanir G, Mahmud F, Mohamad F, Ahmad MH, Abdul Ghani A. Expanding Policy for Biodegradable Plastic Products and Market Dynamics of Bio-Based Plastics: Challenges and Opportunities. Sustainability. 2021; 13(11):6170. https://doi.org/10.3390/su13116170
Chicago/Turabian StyleMoshood, Taofeeq D., Gusman Nawanir, Fatimah Mahmud, Fazeeda Mohamad, Mohd Hanafiah Ahmad, and Airin Abdul Ghani. 2021. "Expanding Policy for Biodegradable Plastic Products and Market Dynamics of Bio-Based Plastics: Challenges and Opportunities" Sustainability 13, no. 11: 6170. https://doi.org/10.3390/su13116170
APA StyleMoshood, T. D., Nawanir, G., Mahmud, F., Mohamad, F., Ahmad, M. H., & Abdul Ghani, A. (2021). Expanding Policy for Biodegradable Plastic Products and Market Dynamics of Bio-Based Plastics: Challenges and Opportunities. Sustainability, 13(11), 6170. https://doi.org/10.3390/su13116170