Advances in Biological Nitrogen Removal of Landfill Leachate
Abstract
:1. Introduction
2. Methods and Techniques of Biological Nitrogen Removal from Landfill Leachate
2.1. Biological Nitrogen Removal Processes and Reactors of Landfill Leachate
2.2. Biological Nitrogen Removal Methods Combined with Ecology
2.2.1. Algae-Bacteria Combined System
2.2.2. Constructed Wetlands
2.2.3. Aquatic Plant
2.3. Biological Nitrogen Removal in Conjunction with Other Solid Organic Wastes
2.4. Microbiological Processes for Direct Nitrogen Removal of Leachate
2.4.1. To Find, Screen and Isolate Highly Effective Bacteria from the Process
2.4.2. To Cultivate and Inoculate Efficient Bacteria
2.4.3. Microbial and Photocatalytic Processes
2.4.4. Microbial Fuel Cell
3. Mechanism of Nitrogen Removal and Factors of Microbial Activity on Nitrogen Removal Efficiency
3.1. Influences of Content of Nitrite, Free Ammonia (Fa) and Free Nitrous Acid (Fna) in Leachate
3.2. Influences of Carbon Source in Leachate
3.3. Influences of Microbial Activity, Contact Time between Microorganism and Leachate
3.4. Influences of Salinity, Temperature, Dissolved Oxygen (DO), Biodegradable Carbon and Oxygen Content, Electric Potential (EP) and So on
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ouda, O.K.M.; Raza, S.A.; Nizami, A.S.; Rehan, M.; Al-Waked, R.; Korres, N.E. Waste to energy potential: A case study of Saudi Arabia. Renew. Sustain. Energy Rev. 2016, 61, 328–340. [Google Scholar] [CrossRef]
- Show, P.L.; Pal, P.; Leong, H.Y.; Juan, J.C.; Ling, T.C. A review on the advanced leachate treatment technologies and their performance comparison: An opportunity to keep the environment safe. Environ. Monit. Assess. 2019, 191. [Google Scholar] [CrossRef] [PubMed]
- Ye, J.X.; Mu, Y.J.; Cheng, X.; Sun, D.Z. Treatment of fresh leachate with high-strength organics and calcium from municipal solid waste incineration plant using UASB reactor. Bioresour. Technol. 2011, 102, 5498–5503. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Yan, D.Y.; Xiong, Y.; Zhou, L.H. A review of the challenges and application of public-private partnership model in Chinese garbage disposal industry. J. Clean. Prod. 2019, 230, 219–229. [Google Scholar] [CrossRef]
- Bosmans, A.; Vanderreydt, I.; Geysen, D.; Helsen, L. The crucial role of Waste-to-Energy technologies in enhanced landfill mining: A technology review. J. Clean. Prod. 2013, 55, 10–23. [Google Scholar] [CrossRef] [Green Version]
- Chen, D.Z.; Yin, L.J.; Wang, H.; He, P.J. Pyrolysis technologies for municipal solid waste: A review. Waste Manag. 2014, 34, 2466–2486. [Google Scholar] [CrossRef]
- Zhou, L.J.; Zhuang, W.Q.; Ye, B.; De Costa, Y.G.; Wang, X.; Yu, K.; Yi, S.; Yang, S.F.; Xia, S.Q. Inorganic characteristics of cake layer in A/O MBR for anaerobically digested leachate from municipal solid waste incineration plant with MAP pretreatment. Chem. Eng. J. 2017, 327, 71–78. [Google Scholar] [CrossRef]
- Wu, C.W.; Chen, W.M.; Gu, Z.P.; Li, Q.B. A review of the characteristics of Fenton and ozonation systems in landfill leachate treatment. Sci. Total Environ. 2021, 762. [Google Scholar] [CrossRef]
- Chen, W.M.; Li, Q.B. Elimination of UV-quenching substances from MBR- and SAARB-treated mature landfill leachates in an ozonation process: A comparative study. Chemosphere 2020, 242. [Google Scholar] [CrossRef]
- Yi, X.Z.; Tran, N.H.; Yin, T.R.; He, Y.L.; Gin, K.Y.H. Removal of selected PPCPs, EDCs, and antibiotic resistance genes in landfill leachate by a full-scale constructed wetlands system. Water Res. 2017, 121, 46–60. [Google Scholar] [CrossRef]
- Propp, V.R.; De Silva, A.O.; Spencer, C.; Brown, S.J.; Catingan, S.D.; Smith, J.E.; Roy, J.W. Organic contaminants of emerging concern in leachate of historic municipal landfills. Environ. Pollut. 2021, 276. [Google Scholar] [CrossRef]
- Yong, Z.J.; Bashir, M.J.K.; Ng, C.A.; Sethupathi, S.; Lim, J.W. A sequential treatment of intermediate tropical landfill leachate using a sequencing batch reactor (SBR) and coagulation. J. Environ. Manag. 2018, 205, 244–252. [Google Scholar] [CrossRef]
- Wang, Z.; Peng, Y.Z.; Miao, L.; Cao, T.H.; Zhang, F.Z.; Wang, S.Y.; Han, J.H. Continuous-flow combined process of nitritation and ANAMMOX for treatment of landfill leachate. Bioresour. Technol. 2016, 214, 514–519. [Google Scholar] [CrossRef]
- Zhang, F.Z.; Peng, Y.Z.; Wang, S.Y.; Wang, Z.; Jiang, H. Efficient step-feed partial nitrification, simultaneous Anammox and denitrification (SPNAD) equipped with real-time control parameters treating raw mature landfill leachate. J. Hazard. Mater. 2019, 364, 163–172. [Google Scholar] [CrossRef]
- Miao, L.; Yang, G.Q.; Tao, T.; Peng, Y.Z. Recent advances in nitrogen removal from landfill leachate using biological treatments—A review. J. Environ. Manag. 2019, 235, 178–185. [Google Scholar] [CrossRef]
- Renou, S.; Givaudan, J.G.; Poulain, S.; Dirassouyan, F.; Moulin, P. Landfill leachate treatment: Review and opportunity. J. Hazard. Mater. 2008, 150, 468–493. [Google Scholar] [CrossRef]
- Sruthi, T.; Gandhimathi, R.; Ramesh, S.T.; Nidheesh, P.V. Stabilized landfill leachate treatment using heterogeneous Fenton and electro-Fenton processes. Chemosphere 2018, 210, 38–43. [Google Scholar] [CrossRef]
- Jokela, J.P.Y.; Kettunen, R.H.; Sormunen, K.M.; Rintala, J.A. Biological nitrogen removal from municipal landfill leachate: Low-cost nitrification in biofilters and laboratory scale in-situ denitrification. Water Res. 2002, 36, 4079–4087. [Google Scholar] [CrossRef]
- Yang, Z.Q.; Zhou, S.Q. The biological treatment of landfill leachate using a simultaneous aerobic and anaerobic (SAA) bio-reactor system. Chemosphere 2008, 72, 1751–1756. [Google Scholar] [CrossRef]
- Ouyang, L.; Wang, K.J.; Liu, X.Y.; Wong, M.H.; Hu, Z.L.; Chen, H.R.; Yang, X.W.; Li, S.F. A study on the nitrogen removal efficacy of bacterium Acinetobacter tandoii MZ-5 from a contaminated river of Shenzhen, Guangdong Province, China. Bioresour. Technol. 2020, 315. [Google Scholar] [CrossRef]
- Sawaittayothin, V.; Polprasert, C. Nitrogen mass balance and microbial analysis of constructed wetlands treating municipal landfill leachate. Bioresour. Technol. 2007, 98, 565–570. [Google Scholar] [CrossRef]
- Iskander, S.M.; Brazil, B.; Novak, J.T.; He, Z. Resource recovery from landfill leachate using bioelectrochemical systems: Opportunities, challenges, and perspectives. Bioresour. Technol. 2016, 201, 347–354. [Google Scholar] [CrossRef]
- Li, H.J.; Zhao, Y.C.; Shi, L.; Gu, Y.Y. Three-stage aged refuse biofilter for the treatment of landfill leachate. J. Environ. Sci. 2009, 21, 70–75. [Google Scholar] [CrossRef]
- Kumar, M.; Lin, J.G. Co-existence of anammox and denitrification for simultaneous nitrogen and carbon removal-Strategies and issues. J. Hazard. Mater. 2010, 178, 1–9. [Google Scholar] [CrossRef]
- van de Graaf, A.A.; de Bruijn, P.; Robertson, L.A.; Jetten, M.S.M.; Kuenen, J.G. Autotrophic growth of anaerobic ammonium-oxidizing micro-organisms in a fluidized bed reactor. Microbiology 1996, 142, 2187–2196. [Google Scholar]
- Quan, Z.X.; Rhee, S.K.; Zuo, J.E.; Yang, Y.; Bae, J.W.; Park, J.R.; Lee, S.T.; Park, Y.H. Diversity of ammonium-oxidizing bacteria in a granular sludge anaerobic ammonium-oxidizing (anammox) reactor. Environ. Microbiol. 2008, 10, 3130–3139. [Google Scholar] [CrossRef]
- Chamchoi, N.; Nitisoravut, S.; Schmidt, J.E. Inactivation of ANAMMOX communities under concurrent operation of anaerobic ammonium oxidation (ANAMMOX) and denitrification. Bioresour. Technol. 2008, 99, 3331–3336. [Google Scholar] [CrossRef]
- Sliekers, A.O.; Derwort, N.; Campos-Gomez, J.L.; Strous, M.; Kuenen, J.G.; Jetten, M.S.M. Completely autotrophic nitrogen removal over nitrite in one single reactor. Water Res. 2002, 36, 2475–2482. [Google Scholar] [CrossRef]
- Zhang, F.Z.; Peng, Y.Z.; Wang, Z.; Jiang, H. High-efficient nitrogen removal from mature landfill leachate and waste activated sludge (WAS) reduction via partial nitrification and integrated fermentation-denitritation process (PNIFD). Water Res. 2019, 160, 394–404. [Google Scholar] [CrossRef]
- Sun, F.; Sun, B.; Li, Q.; Deng, X.Y.; Hu, J.; Wu, W.X. Pilot-scale nitrogen removal from leachate by ex situ nitrification and in situ denitrification in a landfill bioreactor. Chemosphere 2014, 101, 77–85. [Google Scholar] [CrossRef]
- Miao, L.; Wang, S.Y.; Li, B.K.; Cao, T.H.; Xue, T.L.; Peng, Y.Z. Advanced nitrogen removal via nitrite using stored polymers in a modified sequencing batch reactor treating landfill leachate. Bioresour. Technol. 2015, 192, 354–360. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.W.; Peng, Y.Z.; Shi, X.N. Advanced treatment of landfill leachate using anaerobic-aerobic process: Organic removal by simultaneous denitritation and methanogenesis and nitrogen removal via nitrite. Bioresour. Technol. 2015, 177, 337–345. [Google Scholar] [CrossRef] [PubMed]
- Zhu, R.L.; Wang, S.Y.; Li, J.; Wang, K.; Miao, L.; Ma, B.; Peng, Y.Z. Biological nitrogen removal from landfill leachate using anaerobic-aerobic process: Denitritation via organics in raw leachate and intracellular storage polymers of microorganisms. Bioresour. Technol. 2013, 128, 401–408. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Zhang, L.; Zhang, F.Z.; Jiang, H.; Ren, S.; Wang, W.; Peng, Y.Z. A continuous-flow combined process based on partial nitrification-Anammox and partial denitrification-Anammox (PN/A plus PD/A) for enhanced nitrogen removal from mature landfill leachate. Bioresour. Technol. 2020, 297. [Google Scholar] [CrossRef]
- Zhang, F.Z.; Peng, Y.Z.; Miao, L.; Wang, Z.; Wang, S.Y.; Li, B.K. A novel simultaneous partial nitrification Anammox and denitrification (SNAD) with intermittent aeration for cost-effective nitrogen removal from mature landfill leachate. Chem. Eng. J. 2017, 313, 619–628. [Google Scholar] [CrossRef]
- Li, H.S.; Zhou, S.Q.; Ma, W.H.; Huang, P.F.; Huang, G.T.; Qin, Y.J.; Xu, B.; Ouyang, H. Long-term performance and microbial ecology of a two-stage PN-ANAMMOX process treating mature landfill leachate. Bioresour. Technol. 2014, 159, 404–411. [Google Scholar] [CrossRef]
- Chen, X.Z.; Wang, X.J.; Zhong, Z.; Deng, C.L.; Chen, Z.G.; Chen, X.K. Biological nitrogen removal via combined processes of denitrification, highly efficient partial nitritation and Anammox from mature landfill leachate. Environ. Sci. Pollut. Res. 2020, 27, 29408–29421. [Google Scholar] [CrossRef]
- Wang, Y.M.; Lin, Z.Y.; He, L.; Huang, W.; Zhou, J.; He, Q. Simultaneous partial nitrification, anammox and denitrification (SNAD) process for nitrogen and refractory organic compounds removal from mature landfill leachate: Performance and metagenome-based microbial ecology. Bioresour. Technol. 2019, 294. [Google Scholar] [CrossRef]
- Song, J.Y.; Zhang, W.; Gao, J.F.; Hu, X.L.; Zhang, C.L.; He, Q.L.; Yang, F.; Wang, H.Y.; Wang, X.Y.; Zhan, X. A pilot-scale study on the treatment of landfill leachate by a composite biological system under low dissolved oxygen conditions: Performance and microbial community. Bioresour. Technol. 2020, 296. [Google Scholar] [CrossRef]
- Miao, L.; Wang, S.Y.; Cao, T.H.; Peng, Y.Z.; Zhang, M.; Liu, Z.Y. Advanced nitrogen removal from landfill leachate via Anammox system based on Sequencing Biofilm Batch Reactor (SBBR): Effective protection of biofilm. Bioresour. Technol. 2016, 220, 8–16. [Google Scholar] [CrossRef]
- Jiang, H.; Peng, Y.Z.; Li, X.Y.; Zhang, F.Z.; Wang, Z.; Ren, S. Advanced nitrogen removal from mature landfill leachate via partial nitrification-Anammox biofilm reactor (PNABR) driven by high dissolved oxygen (DO): Protection mechanism of aerobic biofilm. Bioresour. Technol. 2020, 306. [Google Scholar] [CrossRef]
- Remmas, N.; Melidis, P.; Zerva, I.; Kristoffersen, J.B.; Nikolaki, S.; Tsiamis, G.; Ntougias, S. Dominance of candidate Saccharibacteria in a membrane bioreactor treating medium age landfill leachate: Effects of organic load on microbial communities, hydrolytic potential and extracellular polymeric substances. Bioresour. Technol. 2017, 238, 48–56. [Google Scholar] [CrossRef]
- Saleem, M.; Lavagnolo, M.C.; Campanaro, S.; Squartini, A. Dynamic membrane bioreactor (DMBR) for the treatment of landfill leachate; bioreactor’s performance and metagenomic insights into microbial community evolution. Environ. Pollut. 2018, 243, 326–335. [Google Scholar] [CrossRef]
- Wang, G.Z.; Chen, R.; Huang, L.K.; Ma, H.M.; Mu, D.Y.; Zhao, Q.L. Microbial characteristics of landfill leachate disposed by aerobic moving bed biofilm reactor. Water Sci. Technol. 2018, 77, 1089–1097. [Google Scholar] [CrossRef]
- Xie, B.; Lv, Z.; Hu, C.; Yang, X.Z.; Li, X.Z. Nitrogen removal through different pathways in an aged refuse bioreactor treating mature landfill leachate. Appl. Microbiol. Biotechnol. 2013, 97, 9225–9234. [Google Scholar] [CrossRef]
- Wang, C.; Xie, B.; Han, L.; Xu, X.F. Study of anaerobic ammonium oxidation bacterial community in the aged refuse bioreactor with 16S rRNA gene library technique. Bioresour. Technol. 2013, 145, 65–70. [Google Scholar] [CrossRef]
- Hassan, M.; Xie, B. Use of aged refuse-based bioreactor/biofilter for landfill leachate treatment. Appl. Microbiol. Biotechnol. 2014, 98, 6543–6553. [Google Scholar] [CrossRef]
- Jetten, M.S.M.; Wagner, M.; Fuerst, J.; van Loosdrecht, M.; Kuenen, G.; Strous, M. Microbiology and application of the anaerobic ammonium oxidation (‘anammox’) process. Curr. Opin. Biotechnol. 2001, 12, 283–288. [Google Scholar] [CrossRef]
- Li, X.; Yang, W.L.; He, H.J.; Wu, S.H.; Zhou, Q.; Yang, C.P.; Zeng, G.M.; Luo, L.; Lou, W. Responses of microalgae Coelastrella sp to stress of cupric ions in treatment of anaerobically digested swine wastewater. Bioresour. Technol. 2018, 251, 274–279. [Google Scholar] [CrossRef]
- Hernandez-Garcia, A.; Velasquez-Orta, S.B.; Novelo, E.; Yanez-Noguez, I.; Monje-Ramirez, I.; Ledesma, M.T.O. Wastewater-leachate treatment by microalgae: Biomass, carbohydrate and lipid production. Ecotoxicol. Environ. Saf. 2019, 174, 435–444. [Google Scholar] [CrossRef]
- Chang, H.X.; Quan, X.J.; Zhong, N.B.; Zhang, Z.; Lu, C.F.; Li, G.; Cheng, Z.L.; Yang, L. High-efficiency nutrients reclamation from landfill leachate by microalgae Chlorella vulgaris in membrane photobioreactor for bio-lipid production. Bioresour. Technol. 2018, 266, 374–381. [Google Scholar] [CrossRef]
- Mata, T.M.; Martins, A.A.; Caetano, N.S. Microalgae for biodiesel production and other applications: A review. Renew. Sustain. Energy Rev. 2010, 14, 217–232. [Google Scholar] [CrossRef] [Green Version]
- Sostaric, M.; Klinar, D.; Bricelj, M.; Golob, J.; Berovic, M.; Likozar, B. Growth, lipid extraction and thermal degradation of the microalga Chlorella vulgaris. New Biotechnol. 2012, 29, 325–331. [Google Scholar] [CrossRef]
- Zhou, Y.; Schideman, L.; Yu, G.; Zhang, Y.H. A synergistic combination of algal wastewater treatment and hydrothermal biofuel production maximized by nutrient and carbon recycling. Energy Environ. Sci. 2013, 6, 3765–3779. [Google Scholar] [CrossRef]
- Sniffen, K.D.; Sales, C.M.; Olson, M.S. Nitrogen removal from raw landfill leachate by an algae-bacteria consortium. Water Sci. Technol. 2016, 73, 479–485. [Google Scholar] [CrossRef]
- Zhao, X.; Zhou, Y.; Huang, S.; Qiu, D.Y.; Schideman, L.; Chai, X.L.; Zhao, Y.C. Characterization of microalgae-bacteria consortium cultured in landfill leachate for carbon fixation and lipid production. Bioresour. Technol. 2014, 156, 322–328. [Google Scholar] [CrossRef]
- Pereira, S.E.L.; Goncalves, A.L.; Moreira, F.C.; Silva, T.; Vilar, V.J.P.; Pires, J.C.M. Nitrogen Removal from Landfill Leachate by Microalgae. Int. J. Mol. Sci. 2016, 17, 1926. [Google Scholar] [CrossRef] [Green Version]
- Wu, K.C.; Yau, Y.H.; Sze, E.T.P. Application of anaerobic bacterial ammonification pretreatment to microalgal food waste leachate cultivation and biofuel production. Mar. Pollut. Bull. 2020, 153. [Google Scholar] [CrossRef]
- Nguyen, H.T.H.; Kalzarla, R.; Min, B. Algae cathode microbial fuel cells for electricity generation and nutrient removal from landfill leachate wastewater. Int. J. Hydrog. Energy 2017, 42, 29433–29442. [Google Scholar] [CrossRef]
- Martins, C.L.; Fernandes, H.; Costa, R.H.R. Landfill leachate treatment as measured by nitrogen transformations in stabilization ponds. Bioresour. Technol. 2013, 147, 562–568. [Google Scholar] [CrossRef] [Green Version]
- Tighiri, H.O.; Erkurt, E.A. Biotreatment of landfill leachate by microalgae-bacteria consortium in sequencing batch mode and product utilization. Bioresour. Technol. 2019, 286. [Google Scholar] [CrossRef]
- Xu, K.; Zou, X.; Xue, Y.; Qu, Y.; Li, Y. The impact of seasonal variations about temperature and photoperiod on the treatment of municipal wastewater by algae-bacteria system in lab-scale. Algal Res. -Biomass Biofuels Bioprod. 2021, 54. [Google Scholar] [CrossRef]
- Sniffen, K.D.; Price, J.R.; Sales, C.M.; Olson, M.S. Influence of Scale on Biomass Growth and Nutrient Removal in an Algal Bacterial Leachate Treatment System. Environ. Sci. Technol. 2017, 51, 13344–13352. [Google Scholar] [CrossRef] [PubMed]
- Cheah, W.Y.; Ling, T.C.; Show, P.L.; Juan, J.C.; Chang, J.S.; Lee, D.J. Cultivation in wastewaters for energy: A microalgae platform. Appl. Energy 2016, 179, 609–625. [Google Scholar] [CrossRef]
- Mustafa, E.M.; Phang, S.M.; Chu, W.L. Use of an algal consortium of five algae in the treatment of landfill leachate using the high-rate algal pond system. J. Appl. Phycol. 2012, 24, 953–963. [Google Scholar] [CrossRef]
- Bakhshoodeh, R.; Alavi, N.; Oldham, C.; Santos, R.M.; Babaei, A.A.; Vymazal, J.; Paydary, P. Constructed wetlands for landfill leachate treatment: A review. Ecol. Eng. 2020, 146. [Google Scholar] [CrossRef]
- Koottatep, T.; Polprasert, C. Role of plant uptake on nitrogen removal in constructed wetlands located in the tropics. Water Sci. Technol. 1997, 36, 1–8. [Google Scholar] [CrossRef]
- Saeed, T.; Miah, M.J.; Majed, N.; Hasan, M.; Khan, T. Pollutant removal from landfill leachate employing two-stage constructed wetland mesocosms: Co-treatment with municipal sewage. Environ. Sci. Pollut. Res. 2020, 27, 28316–28332. [Google Scholar] [CrossRef]
- Saeed, T.; Miah, M.J.; Majed, N.; Alam, M.K.; Khan, T. Effect of effluent recirculation on nutrients and organics removal performance of hybrid constructed wetlands: Landfill leachate treatment. J. Clean. Prod. 2021, 282. [Google Scholar] [CrossRef]
- Bialowiec, A.; Davies, L.; Albuquerque, A.; Randerson, P.F. Nitrogen removal from landfill leachate in constructed wetlands with reed and willow: Redox potential in the root zone. J. Environ. Manag. 2012, 97, 22–27. [Google Scholar] [CrossRef]
- Ye, J.J.; Liu, J.Y.; Ye, M.; Ma, X.; Li, Y.Y. Towards advanced nitrogen removal and optimal energy recovery from leachate: A critical review of anammox-based processes. Crit. Rev. Environ. Sci. Technol. 2020, 50, 612–653. [Google Scholar] [CrossRef]
- Peipoch, M.; Gacia, E.; Blesa, A.; Ribot, M.; Riera, J.L.; Marti, E. Contrasts among macrophyte riparian species in their use of stream water nitrate and ammonium: Insights from N-15 natural abundance. Aquat. Sci. 2014, 76, 203–215. [Google Scholar] [CrossRef]
- Pastor, A.; Peipoch, M.; Canas, L.; Chappuis, E.; Ribot, M.; Gacia, E.; Riera, J.L.; Marti, E.; Sabater, F. Nitrogen Stable Isotopes in Primary Uptake Compartments Across Streams Differing in Nutrient Availability. Environ. Sci. Technol. 2013, 47, 10155–10162. [Google Scholar] [CrossRef]
- Gucker, B.; Brauns, M.; Pusch, M.T. Effects of wastewater treatment plant discharge on ecosystem structure and function of lowland streams. J. N. Am. Benthol. Soc. 2006, 25, 313–329. [Google Scholar] [CrossRef]
- Meng, F.G.; Huang, G.C.; Yang, X.; Li, Z.Q.; Li, J.; Cao, J.; Wang, Z.G.; Sun, L. Identifying the sources and fate of anthropogenically impacted dissolved organic matter (DOM) in urbanized rivers. Water Res. 2013, 47, 5027–5039. [Google Scholar] [CrossRef]
- McArthur, M.D.; Richardson, J.S. Microbial utilization of dissolved organic carbon leached from riparian litterfall. Can. J. Fish. Aquat. Sci. 2002, 59, 1668–1676. [Google Scholar] [CrossRef]
- Ribot, M.; Cochero, J.; Vaessen, T.N.; Bernal, S.; Bastias, E.; Gacia, E.; Sorolla, A.; Sabater, F.; Marti, E. Leachates from Helophyte Leaf-Litter Enhance Nitrogen Removal from Wastewater Treatment Plant Effluents. Environ. Sci. Technol. 2019, 53, 7613–7620. [Google Scholar] [CrossRef]
- Wu, L.N.; Zhang, L.Y.; Shi, X.; Liu, T.; Peng, Y.Z.; Zhang, J. Analysis of the impact of reflux ratio on coupled partial nitrification-anammox for co-treatment of mature landfill leachate and domestic wastewater. Bioresour. Technol. 2015, 198, 207–214. [Google Scholar] [CrossRef]
- Remmas, N.; Melidis, P.; Katsioupi, E.; Ntougias, S. Effects of high organic load on amoA and nirS gene diversity of an intermittently aerated and fed membrane bioreactor treating landfill leachate. Bioresour. Technol. 2016, 220, 557–565. [Google Scholar] [CrossRef]
- Sun, H.W.; Yang, Q.; Peng, Y.Z.; Shi, X.N.; Wang, S.Y.; Zhang, S.J. Nitrite Accumulation during the Denitrification Process in SBR for the Treatment of Pre-treated Landfill Leachate. Chin. J. Chem. Eng. 2009, 17, 1027–1031. [Google Scholar] [CrossRef]
- Kulikowska, D.; Bernat, K. Nitritation-denitritation in landfill leachate with glycerine as a carbon source. Bioresour. Technol. 2013, 142, 297–303. [Google Scholar] [CrossRef] [PubMed]
- Santos, C.E.D.; Moura, R.B.; Damianovic, M.; Foresti, E. Influence of COD/N ratio and carbon source on nitrogen removal in a structured-bed reactor subjected to recirculation and intermittent aeration (SBRRIA). J. Environ. Manag. 2016, 166, 519–524. [Google Scholar] [CrossRef] [PubMed]
- Miao, L.; Wang, S.Y.; Li, B.K.; Cao, T.H.; Zhang, F.Z.; Wang, Z.; Peng, Y.Z. Effect of carbon source type on intracellular stored polymers during endogenous denitritation (ED) treating landfill leachate. Water Res. 2016, 100, 405–412. [Google Scholar] [CrossRef] [PubMed]
- Elefsiniotis, P.; Li, D. The effect of temperature and carbon source on denitrification using volatile fatty acids. Biochem. Eng. J. 2006, 28, 148–155. [Google Scholar] [CrossRef]
- Lee, N.M.; Welander, T. The effect of different carbon sources on respiratory denitrification in biological wastewater treatment. J. Ferment. Bioeng. 1996, 82, 277–285. [Google Scholar] [CrossRef]
- Modin, O.; Fukushi, K.; Yamamoto, K. Denitrification with methane as external carbon source. Water Res. 2007, 41, 2726–2738. [Google Scholar] [CrossRef]
- Chen, H.B.; Wang, D.B.; Li, X.M.; Yang, Q.; Zeng, G.M. Enhancement of post-anoxic denitrification for biological nutrient removal: Effect of different carbon sources. Environ. Sci. Pollut. Res. 2015, 22, 5887–5894. [Google Scholar] [CrossRef]
- Hiraishi, A.; Khan, S.T. Application of polyhydroxyalkanoates for denitrification in water and wastewater treatment. Appl. Microbiol. Biotechnol. 2003, 61, 103–109. [Google Scholar] [CrossRef]
- Wang, X.W.; Zhang, Y.; Zhang, T.T.; Zhou, J.T.; Chen, M.X. Waste activated sludge fermentation liquid as carbon source for biological treatment of sulfide and nitrate in microaerobic conditions. Chem. Eng. J. 2016, 283, 167–174. [Google Scholar] [CrossRef]
- Zhang, Y.M.; Wang, X.C.C.; Cheng, Z.; Li, Y.Y.; Tang, J.L. Effect of fermentation liquid from food waste as a carbon source for enhancing denitrification in wastewater treatment. Chemosphere 2016, 144, 689–696. [Google Scholar] [CrossRef]
- Kim, H.; Kim, J.; Shin, S.G.; Hwang, S.; Lee, C. Continuous fermentation of food waste leachate for the production of volatile fatty acids and potential as a denitrification carbon source. Bioresour. Technol. 2016, 207, 440–445. [Google Scholar] [CrossRef]
- Zhang, H.W.; Jiang, J.G.; Li, M.L.; Yan, F.; Gong, C.X.; Wang, Q. Biological nitrate removal using a food waste-derived carbon source in synthetic wastewater and real sewage. J. Environ. Manag. 2016, 166, 407–413. [Google Scholar] [CrossRef]
- Lim, S.J.; Choi, D.W.; Lee, W.G.; Kwon, S.; Chang, H.N. Volatile fatty acids production from food wastes and its application to biological nutrient removal. Bioprocess Eng. 2000, 22, 543–545. [Google Scholar] [CrossRef]
- Yan, F.; Jiang, J.G.; Zhang, H.W.; Liu, N.; Zou, Q. Biological denitrification from mature landfill leachate using a food-waste-derived carbon source. J. Environ. Manag. 2018, 214, 184–191. [Google Scholar] [CrossRef]
- Kaczorek, K.; Ledakowicz, S. Kinetics of nitrogen removal from sanitary landfill leachate. Bioprocess Biosyst. Eng. 2006, 29, 291–304. [Google Scholar] [CrossRef]
- Xie, B.; Lv, B.Y.; Hu, C.; Liang, S.B.; Tang, Y.; Lu, J. Landfill leachate pollutant removal performance of a novel biofilter packed with mixture medium. Bioresour. Technol. 2010, 101, 7754–7760. [Google Scholar] [CrossRef]
- Sage, M.; Daufin, G.; Gesan-Guiziou, G. Denitrification potential and rates of complex carbon source from dairy effluents in activated sludge system. Water Res. 2006, 40, 2747–2755. [Google Scholar] [CrossRef]
- Ramos, C.; Buitron, G.; Moreno-Andrade, I.; Chamy, R. Effect of the initial total solids concentration and initial pH on the bio-hydrogen production from cafeteria food waste. Int. J. Hydrog. Energy 2012, 37, 13288–13295. [Google Scholar] [CrossRef]
- Tang, J.L.; Wang, X.C.C.; Hu, Y.S.; Ngo, H.H.; Li, Y.Y.; Zhang, Y.M. Applying fermentation liquid of food waste as carbon source to a pilot-scale anoxic/oxic-membrane bioreactor for enhancing nitrogen removal: Microbial communities and membrane fouling behaviour. Bioresour. Technol. 2017, 236, 164–173. [Google Scholar] [CrossRef]
- Chen, Q.; Ni, J.R. Heterotrophic nitrification-aerobic denitrification by novel isolated bacteria. J. Ind. Microbiol. Biotechnol. 2011, 38, 1305–1310. [Google Scholar] [CrossRef]
- Chen, Q.; Ni, J.R. Ammonium removal by Agrobacterium sp LAD9 capable of heterotrophic nitrification-aerobic denitrification. J. Biosci. Bioeng. 2012, 113, 619–623. [Google Scholar] [CrossRef]
- Yang, X.; Liu, L.; Wu, B.; Liu, S.; Chen, F. Screening and ammoxidation characteristics of an ammonium oxidizing bacteria group. Weishengwu Xuebao 2015, 55, 1608–1618. [Google Scholar]
- Feng, Y.L.; Yi, A.F.; Li, H.R.; Wang, W.D.; Du, Y.L. Ocean bacteria: Performance on CODCr and NH4+-N removal in landfill leachate treatment. Water Sci. Technol. 2015, 71, 817–822. [Google Scholar] [CrossRef]
- Wei, H.; Wang, J.; Hassan, M.; Han, L.; Xie, B. Anaerobic ammonium oxidation-denitrification synergistic interaction of mature landfill leachate in aged refuse bioreactor: Variations and effects of microbial community structures. Bioresour. Technol. 2017, 243, 1149–1158. [Google Scholar] [CrossRef]
- Isaka, K.; Yoshie, S.; Sumino, T.; Inamori, Y.; Tsuneda, S. Nitrification of landfill leachate using immobilized nitrifying bacteria at low temperatures. Biochem. Eng. J. 2007, 37, 49–55. [Google Scholar] [CrossRef]
- Dadrasnia, A.; Azirun, M.S.; Ismail, S.B. Optimal reduction of chemical oxygen demand and NH3-N from landfill leachate using a strongly resistant novel Bacillus salmalaya strain. Bmc Biotechnol. 2017, 17. [Google Scholar] [CrossRef] [Green Version]
- He, X.; Yang, N.; Tao, Y.; Li, D.; Li, W.; Ding, Y. Shortcut Nitrification of High Ammonia Concentration Wastewater and Ammonia-oxidizing Bacterial Community. Chin. J. Appl. Environ. Biol. 2013, 19, 313–317. [Google Scholar] [CrossRef]
- Hu, L.; Zeng, G.M.; Chen, G.Q.; Dong, H.R.; Liu, Y.T.; Wan, J.; Chen, A.W.; Guo, Z.; Yan, M.; Wu, H.P.; et al. Treatment of landfill leachate using immobilized Phanerochaete chrysosporium loaded with nitrogen-doped TiO2 nanoparticles. J. Hazard. Mater. 2016, 301, 106–118. [Google Scholar] [CrossRef] [PubMed]
- Hassan, M.; Wang, X.; Wang, F.; Wu, D.; Hussain, A.; Xie, B. Coupling ARB-based biological and photochemical (UV/TiO2 and UV/S2O82-) techniques to deal with sanitary landfill leachate. Waste Manag. 2017, 63, 292–298. [Google Scholar] [CrossRef] [PubMed]
- Yasmin, C.; Lobna, E.; Mouna, M.; Kais, D.; Mariam, K.; Rached, S.; Abdelwaheb, C.; Ismail, T. New trend of Jebel Chakir landfill leachate pre-treatment by photocatalytic TiO2/Ag nanocomposite prior to fermentation using Candida tropicalis strain. Int. Biodeterior. Biodegrad. 2020, 146. [Google Scholar] [CrossRef]
- Wu, D.; Wang, T.; Huang, X.H.; Dolfing, J.; Xie, B. Perspective of harnessing energy from landfill leachate via microbial fuel cells: Novel biofuels and electrogenic physiologies. Appl. Microbiol. Biotechnol. 2015, 99, 7827–7836. [Google Scholar] [CrossRef]
- Cai, T.; Jiang, N.; Zhen, G.Y.; Meng, L.J.; Song, J.L.; Chen, G.; Liu, Y.B.; Huang, M.H. Simultaneous energy harvest and nitrogen removal using a supercapacitor microbial fuel cell. Environ. Pollut. 2020, 266. [Google Scholar] [CrossRef] [PubMed]
- Hassan, M.; Wei, H.; Qiu, H.; Su, Y.; Jaafry, S.W.H.; Zhan, L.; Xie, B. Power generation and pollutants removal from landfill leachate in microbial fuel cell: Variation and influence of anodic microbiomes. Bioresour. Technol. 2018, 247, 434–442. [Google Scholar] [CrossRef]
- Akgul, D.; Yuzer, B.; Yapsakli, K.; Mertoglu, B. Nitrogen Converters in Various Landfill Leachates. Pol. J. Environ. Stud. 2018, 27, 1941–1948. [Google Scholar] [CrossRef]
- Ruscalleda, M.; Puig, S.; Mora, X.; Lopez, H.; Ganigue, R.; Balaguer, M.D.; Colprim, J. The effect of urban landfill leachate characteristics on the coexistence of anammox bacteria and heterotrophic denitrifiers. Water Sci. Technol. 2010, 61, 1065–1071. [Google Scholar] [CrossRef]
- Spagni, A.; Psaila, G.; Rizzo, A. Partial nitrification for nitrogen removal from sanitary landfill leachate. J. Environ. Sci. Health Part A-Toxic/Hazard. Subst. Environ. Eng. 2014, 49, 1331–1340. [Google Scholar] [CrossRef]
- Tian, W.D.; An, K.J.; Ma, C.; Han, X.K. Partial nitritation for subsequent Anammox to treat high-ammonium leachate. Environ. Technol. 2013, 34, 1063–1068. [Google Scholar] [CrossRef]
- Wang, K.; Wang, S.Y.; Zhu, R.L.; Miao, L.; Peng, Y.Z. Advanced nitrogen removal from landfill leachate without addition of external carbon using a novel system coupling ASBR and modified SBR. Bioresour. Technol. 2013, 134, 212–218. [Google Scholar] [CrossRef]
- Du, R.; Cao, S.B.; Li, B.K.; Niu, M.; Wang, S.Y.; Peng, Y.Z. Performance and microbial community analysis of a novel DEAMOX based on partial-denitrification and anammox treating ammonia and nitrate wastewaters. Water Res. 2017, 108, 46–56. [Google Scholar] [CrossRef]
- Yapsakli, K.; Aliyazicioglu, C.; Mertoglu, B. Identification and quantitative evaluation of nitrogen-converting organisms in a full-scale leachate treatment plant. J. Environ. Manag. 2011, 92, 714–723. [Google Scholar] [CrossRef]
- Panter, Z.; Rosu, G.; Matei, F. The Effect of the Time of Contact on the Microbiological Treatment of Leachate. Sci. Pap. Ser. E-Land Reclam. Earth Obs. Surv. Environ. Eng. 2018, 7, 94–99. [Google Scholar]
- Liu, M.; Liu, T.T.; Peng, Y.Z.; Wang, S.Y.; Xiao, H. Effect of salinity on N2O production during shortcut biological nitrogen removal from landfill leachate. J. Biosci. Bioeng. 2014, 117, 582–590. [Google Scholar] [CrossRef] [PubMed]
- Gabarro, J.; Ganigue, R.; Gich, F.; Ruscalleda, M.; Balaguer, M.D.; Colprim, J. Effect of temperature on AOB activity of a partial nitritation SBR treating landfill leachate with extremely high nitrogen concentration. Bioresour. Technol. 2012, 126, 283–289. [Google Scholar] [CrossRef] [PubMed]
- Wen, X.; Zhou, J.; Wang, J.L.; Qing, X.X.; He, Q. Effects of dissolved oxygen on microbial community of single-stage autotrophic nitrogen removal system treating simulating mature landfill leachate. Bioresour. Technol. 2016, 218, 962–968. [Google Scholar] [CrossRef]
- Xu, W.Q.; Wu, D.; Wang, J.; Huang, X.H.; Xie, B. Effects of oxygen and carbon content on nitrogen removal capacities in landfill bioreactors and response of microbial dynamics. Appl. Microbiol. Biotechnol. 2016, 100, 6427–6434. [Google Scholar] [CrossRef]
- Liu, Z.; Sun, D.Z.; Tian, H.Z.; Yan, L.M.; Dang, Y.; Smith, J.A. Enhancing biotreatment of incineration leachate by applying an electric potential in a partial nitritation-Anammox system. Bioresour. Technol. 2019, 285. [Google Scholar] [CrossRef]
Types of Reactors | Sources and Basic Characteristics of Leachate | Efficiency of Nitrogen Removal | Dominant Microbial Strains | References |
---|---|---|---|---|
Partial nitrification and integrated fermentation–denitrification process (PNIFD) | Liulitun municipal solid waste sanitation landfill site (Beijing, China) TN = 2023 ± 75 mg/L, COD = 2109 ± 200 mg/L, pH = 8.0 ± 0.2 | Total nitrogen (TN) removal efficiency of 95.0%, average nitrogen removal rate (NRR) of 0.63 kg/m3•d | Anaerolineaceae, Acidimicrobiaceae, Thauera | [29] |
A combined process consisting of ex situ nitrification and in situ denitrification | Tianziling Landfill, Hangzhou, China, TN = 889–2100 mg/L, COD = 2980–11,800 mg/L, pH = 7.04–8.23 | Maximum total oxidizing nitrogen removal rate of 67.2 g N t −1 TSwasted−1 | Azoarcus tolulyticu | [30] |
A modified sequencing batch reactor (SBR) operated at the anaerobic–aerobic–anoxic mode | Liulitun Municipal Solid Waste (MSW) sanitation landfill site (Beijing, China), NH4+ − N = 1200–2000 mg N/L, COD = 1000–6000 mg/L, pH = 7.8–8.2 | Total nitrogen (TN) removal above 98% | Ammonia-oxidizing bacteria (AOB), nitrite-oxidizing bacteria (NOB), GAOs | [31] |
A novel biological system coupling a UASB and an SBR using anaerobic–aerobic process | Liulitun municipal landfill site in Beijing, China, TN = 838–2564 mg/L, COD = 1237–13,500 mg/L, pH = 7.1–8.5 | Total nitrogen (TN) removal efficiency of 99.5% Ammonia (NH4+-N) removal efficiency of 99.1% | Ammonia-oxidizing bacteria (AOB) dominant, nitrite-oxidizing bacteria (NOB) | [32] |
A system combined ASBR with pulsed SBR (PSBR) using anaerobic–aerobic process | Liulitun Landfill Leachate Treatment Plant (Beijing, China), TN = 1278–1578 mg/L, COD = 7341–10,488 mg/L, pH = 7.7–8.2 | Total nitrogen (TN) removal rate of 97.03–98.87% | phosphate accumulating organisms (PAOs), glycogen accumulating organisms (GAOs) | [33] |
A continuous-flow combined process based on partial nitrification-Anammox and partial denitrification-Anammox (PN/A + PD/A) | A sanitation landfill site which had been operated for 20 years, TN = 1021–1049 mg/L, COD = 2231–2448 mg/L, pH = 8.0–8.6 | Total nitrogen (TN) removal rate of 98.8% | Candidatus Brocadia, Candidatus Kuenenia, Candidatus Jettenia | [34] |
Simultaneous partial nitrification, Anammox and denitrification (SNAD) with intermittent aeration | Liulitun municipal solid waste sanitation landfill site (Beijing, China), TN = 2300 ± 75 mg/L, COD = 1900 ± 200 mg/L, pH = 8.0 ± 0.2 | Ammonia conversion efficiency of 99.3 ± 0.3%, total nitrogen (TN) removal efficiency of 99 ± 0.1% | Aerobic ammonia-oxidizing bacteria (AOB), anaerobic ammonia-oxidizing bacteria (AnAOB) | [35] |
A combined continuous-flow process of nitritation and Anammox | Liulitun Municipal Solid Waste (MSW) sanitation landfill site (Beijing, China), TN = 1387–1684 mg N/L, COD = 2193–2540 mg/L, pH = 8.1–8.5 | Total nitrogen (TN) removal efficiency of 94% | Aerobic ammonia-oxidizing bacteria (AOB), nitrite-oxidizing bacteria (NOB) | [13] |
Long-term performance of a two-stage partial nitritation (PN)–anaerobic ammonium oxidation (ANAMMOX) process | A landfill (Jiangmen, China), NH4+ − N = 1040 ± 322 mg/L, COD = 1818 ± 188 mg/L, pH = 8.84 ± 0.38 | High-rate nitrogen removal over 4 kg N/m3/d was observed in the ANAMMOX reactor in the first three months. However, during long-term operation, the ANAMMOX reactor can only stably operate under nitrogen load of 1 kg N/m3/d, with 85 ± 1% of nitrogen removal. | In the PN-SBR ammonium-oxidizing bacteria (AOB) affiliated to Nitrosomonas sp. IWT514, Nitrosomonas eutropha, Nitrosomonas eutropha; In the ANAMMOX reactor anaerobic ammonium-oxidizing bacteria (AnAOB) affiliated to Kuenenia stuttgartiensis | [36] |
The combined processes of pre-denitrification, highly efficient partial nitritation in a ZBAF and Anammox | A municipal solid waste landfill plant located in Zengcheng, Guangdong Province, China, NH4+ − N = 1000–1250 mg/L, COD = 1200–2000 mg/L, pH = 8.20–8.80 | Nitrogen removal efficiencies (NRE) of 90.0%, nitrogen removal rates (NRR) of 0.490 kg·(m3 day)−1 | At the phylum level Bacteroidetes (36.4%), Proteobacteria (31.5%), Chloroflexi (11.2%); In the Anammox reactor Proteobacteria (37.9%), Chloroflexi (20.1%), Planctomycetes (16.6%), Brocadiae (11.2%, Candidatus Kuenenia, Candidatus Anammoxoglobus, Candidatus jettenia and Candidatus brocadia); At the class level Gammaproteobacteria (USB 25.6% and ZBAF 51.4%); At the genus level Paracoccus, Comamonas | [37] |
Simultaneous partial nitrification, Anammox and denitrification (SNAD) process | Changshengqiao MSW landfill (Chongqing, China), TN = 2045 ± 23 mg/L, COD = 1027 ± 14 mg/L, pH = 8.4 ± 0.3 | Ammonia (NH4+-N) removal efficiency of 98.9–99.9%, total nitrogen (TN) removal efficiency of 90.7–94.9% | ammonium-oxidizing bacteria, Anammox bacteria, phyla Chloroflexi, Chlorobi, genera Nitrosomonas, Ignavibacterium, Aminiphilus | [38] |
A pilot-scale low dissolved oxygen (DO) composite biological system (LDOCBS) composed of an anoxic rotating biological contactor (RBC) and four aeration tanks with gradient aeration | Wuhan Landfill Treatment Engineering Project (located in Wuhan city, China), TN = 414.67 mg/L, COD = 2078.22 mg/L, pH = 8.2 | Ammonia (NH4+-N) removal efficiency of 99.92%, total nitrogen (TN) removal efficiency of 84.06% | At the phylum level, Proteobacteria 58.83–68.11%, Bacteroidetes 14.24–34.06% Deinococcus-Thermus and Verrucomicrobia achieved NH4+-N removal by nitrification Acidobacteria, Chloroflexi and Actinobacteria achieved TN removal by denitrification. At the class level, Betaproteobacteria (Thauera, Azoarcus, Nitrosomonas), Gammaproteobacteria, Sphingobacteria; At the genus level Thauera (16.40–24.02%), Arenimonas (10.53–15.96%), Azoarcus (4.98–11.97%), Hydrogenophaga (3.41–6.29%). Denitrifying bacteria, pseudomonas (1.68–2.55%), Ottowia (0.76–1.66%), Thiopseudomonas (0.66–1.54%) | [39] |
A lab-scale two-stage Anammox system using a sequencing biofilm batch reactor | Liulitun Municipal Solid Waste (MSW) sanitation landfill site (Beijing, China), NH4+ − N = 3000 ± 100 mg/L, COD = 3000 ± 1000 mg/L, pH = 8.0 ± 0.2 | Ammonia (NH4+-N) removal efficiency of 95% | Anammox bacteria heterotrophic bacteria | [40] |
A novel partial nitrification-Anammox biofilm reactor (PNABR) operated under high dissolved oxygen (DO) with pre-anoxic-aerobic-anoxic operational mode | Liulitun Municipal Solid Waste (MSW) sanitation landfill site (Beijing, China), NH4+ − N = 1600 ± 20 mg/L, COD = 2000 ± 100 mg/L, pH = 8.0 ± 0.2 | Nitrogen removal rate (NRR) of 396.6 g • N/(m3 d), nitrogen removal efficiency (NRE) of 96.1% | Ammonia oxidation bacteria (AOB) (including Nitrosomonas), nitrite-oxidizing bacteria (NOB) (including Nitrospira), Anammox bacteria (including Candidatus Kuenenia belonging to family Brocadiaceae) | [41] |
A membrane bioreactor (MBR) | Anthemounta landfill site (Northern Greece), TN = 1000–1200 mg/L, COD = 2970 mg/L, pH = 8.21 ± 0.22 | MBR unit resulted in NH4+-N removal efficiencies of 86.7%, 97.0% and 97.6% during bioreactor operation with 50%, 75% and 100% v/v landfill leachate, respectively. | TM7 (candidate phylum Saccharibacteria) | [42] |
Dynamic membrane bioreactor (DMBR) | A non-hazardous, municipal solid waste (MSW) landfill situated in northern Italy, TN = 1760–1780 mg/L, COD = 1461–1916 mg/L, pH = 7.56–8.66 | Ammonia (NH4+-N) removal efficiency of more than 98%, total nitrogen (TN) removal efficiency of 90% | Candidatus, Burkholderia genus, Betaproteobacteria (Thauera, Nitrosomonas europaea, Alicycliphilu) | [43] |
An aerobic moving bed biofilm reactor (MBBR) | A waste incineration plant, located in Henan Province, China, NH4+ − N = 2100 mg/L, COD = 4000–7000 mg/L, pH = 7.8–8.2 | Ammonia (NH4+-N) average removal efficiency of 97% | Proteobacteria, Bacteroides, Firmicutes | [44] |
An aged refuse bioreactor | A landfill cell of Shanghai Laogang sanitary landfill treatment plant, TN = 1900 ± 151 mg/L, COD = 2326 ± 370 mg/L, pH = 7.9 ± 0.3 | Total nitrogen (TN) removal efficiency of more than 90% under the nitrogen loading rate (NLR) of 0.74 g/kg (vs) d | Proteobacteria, Chloroflexi, Actinobacteria, Bacteroidetes, Gemmatimonadetes | [45] |
An aged refuse bioreactor | Shanghai Laogang waste disposal plant, TN = 540–1100 mg/L, COD = 2326 ± 370 mg/L, pH = 7.9 ± 0.3 | Ammonia (NH4+-N) average removal efficiency of 89% | Planctomycetes Anammox bacteria | [46] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Tang, F.; Xu, D.; Xie, B. Advances in Biological Nitrogen Removal of Landfill Leachate. Sustainability 2021, 13, 6236. https://doi.org/10.3390/su13116236
Li Y, Tang F, Xu D, Xie B. Advances in Biological Nitrogen Removal of Landfill Leachate. Sustainability. 2021; 13(11):6236. https://doi.org/10.3390/su13116236
Chicago/Turabian StyleLi, Ye, Fan Tang, Dan Xu, and Bing Xie. 2021. "Advances in Biological Nitrogen Removal of Landfill Leachate" Sustainability 13, no. 11: 6236. https://doi.org/10.3390/su13116236
APA StyleLi, Y., Tang, F., Xu, D., & Xie, B. (2021). Advances in Biological Nitrogen Removal of Landfill Leachate. Sustainability, 13(11), 6236. https://doi.org/10.3390/su13116236