Spatiotemporal Response of Vegetation to Rainfall and Air Temperature Fluctuations in the Sahel: Case Study in the Forest Reserve of Fina, Mali
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.1.1. Location and Site Characteristics
2.1.2. Land-Use Map
2.2. Data Description
2.2.1. Rainfall and Air Temperature Data
2.2.2. Normalized Difference Vegetation Index (NDVI)
2.3. Methods of Analysis
2.3.1. Data Preprocessing
2.3.2. Standardized Anomaly
2.3.3. Lag-Correlation Analysis
3. Results
3.1. Spatial Distribution of Rainfall, Temperature and NDVI
3.2. Vegetation Year-to-Year Response to Rainfall Variability
3.3. Seasonal Response of Vegetation to Rainfall and Air Temperature Fluctuations
3.3.1. Relationship between Rainfall and Vegetation at Seasonal
3.3.2. Relationship between Vegetation and Temperature
4. Discussion
5. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Herrmann, S.M.; Anyamba, A.; Tucker, C.J. Recent trends in vegetation dynamics in the African Sahel and their relationship to climate. Glob. Environ. Chang. 2005, 15, 394–404. [Google Scholar] [CrossRef]
- United Nations Development Programme. Human Development Report; UNDP: New York, NY, USA, 2015. [Google Scholar]
- Diallo, H.; Bamba, I.; Sabas, B.Y.S.; Visser, M.; Ballo, A.; Mama, A.; Bogaert, J. Effets combinés du climat et des pressions anthropiques sur la dynamique évolutive de la végétation d’une zone protégée du Mali (Réserve de Fina, Boucle du Baoulé). Sécheresse 2011, 22, 97–107. [Google Scholar]
- Wohl, E.; Barros, A.; Brunsell, N.; Chappell, N.A.; Coe, M.T.; Giambelluca, T.W.; Goldsmith, S.T.; Harmon, R.S.; Hendrickx, J.M.H.; Juvik, O.J.; et al. The hydrology of the humid tropics. Nat. Clim. Chang. 2012, 2, 655–662. [Google Scholar] [CrossRef]
- Bedoya-Soto, J.M.; Poveda, G.; Sauchyn, D. New Insights on Land Surface-Atmosphere Feedbacks over Tropical South America at Interannual Timescales. Water 2018, 10, 1095. [Google Scholar] [CrossRef] [Green Version]
- De Steiguer, J.E.; Burroughs, W.J. Climate Change: A Multidisciplinary Approach. Environ. Hist. 2002, 7, 134–135. [Google Scholar] [CrossRef]
- IPCC. Fourth Assessment Report (AR4) on Climate Change 2007: Synthesis Report; Technical Report; The Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2007. [Google Scholar]
- Rousvel, S.; Armand, N.; Andre, L.; Tengeleng, S.; Alain, T.S.; Armel, K. Comparison between Vegetation and Rainfall of Bioclimatic Ecoregions in Central Africa. Atmosphere 2013, 4, 411–427. [Google Scholar] [CrossRef] [Green Version]
- UNESA. World Urbanization Prospects: The 2003 Revision, Sales No. E.04.XIII.6; UNESA Population Division: New York, NY, USA, 2005. [Google Scholar]
- McNeely, J.A. Human dimensions of invasive alien species. Convention on Biological Diversity News. January/March 2001. Available online: https://www.cbd.int/doc/newsletters/news-letter-01-03-2001.pdf (accessed on 21 April 2021).
- Sanogo, S.; Fink, A.H.; Omotosho, J.A.; Ba, A.; Redl, R.; Ermert, V. Spatio-temporal characteristics of the recent rainfall recovery in West Africa. Int. J. Clim. 2015, 35, 4589–4605. [Google Scholar] [CrossRef]
- Adepoju, K.; Adelabu, S.; Fashae, O. Vegetation Response to Recent Trends in Climate and Landuse Dynamics in a Typical Humid and Dry Tropical Region under Global Change. Adv. Meteorol. 2019, 2019, 4946127. [Google Scholar] [CrossRef] [Green Version]
- Georganos, S.; Abdi, A.M.; Tenenbaum, D.E.; Kalogirou, S. Examining the NDVI-rainfall relationship in the semi-arid Sahel using geographically weighted regression. J. Arid Environ. 2017, 146, 64–74. [Google Scholar] [CrossRef]
- Dagnachew, M.; Kebede, A.; Moges, A.; Abebe, A. Effects of Climate Variability on Normalized Difference Vegetation Index (NDVI) in the Gojeb River Catchment, Omo-Gibe Basin, Ethiopia. Adv. Meteorol. 2020, 2020, 8263246. [Google Scholar] [CrossRef]
- Ning, W.; Liu, W.; Lin, W.; Song, X. NDVI variation and its responses to climate change on the northern loess plateau of China from 1998 to 2012. Adv. Meteorol. 2015, 2015, 725427. [Google Scholar] [CrossRef] [Green Version]
- Huang, C.; Li, Y.; Liu, G.; Zhang, H.; Liu, Q. Recent climate variability and its impact on precipitation, temperature, and vegetation dynamics in the Lancang River headwater area of China. Int. J. Remote Sens. 2014, 35, 2822–2834. [Google Scholar] [CrossRef]
- Qi, Y.; Wang, J.; Yan, C.; Xu, Z. Vegetation Dynamics in Arid and Semi-Arid Ecotone: A Case Study in Yanchi County. In Proceedings of the IGARSS 2008—2008 IEEE International Geoscience and Remote Sensing Symposium, Boston, MA, USA, 8–11 July 2008. [Google Scholar]
- Wu, Y.; Zhang, X.; Fu, Y.; Hao, F.; Yin, G. Response of Vegetation to Changes in Temperature and Precipitation at a Semi-Arid Area of Northern China Based on Multi-Statistical Methods. Forests 2020, 11, 340. [Google Scholar] [CrossRef] [Green Version]
- Cañón, J.; Domínguez, F.; Valdes, J.B. Vegetation responses to precipitation and temperature: A spatiotemporal analysis of ecoregions in the Colorado River Basin. Int. J. Remote Sens. 2011, 32. [Google Scholar] [CrossRef]
- Wang, J.; Rich, P.M.; Price, K.P. Temporal responses of NDVI to precipitation and temperature in the central Great Plains, USA. Int. J. Remote Sens. 2003, 24, 2345–2364. [Google Scholar] [CrossRef]
- Farrar, T.J.; Nicholson, S.E.; Lare, A.R. The influences of soil type on the relationships between NDVI, rainfall, and soil moisture in semiarid Botswana. II. NDVI response to soil moisture. Remote Sens. Environ. 1994, 50, 121–133. [Google Scholar] [CrossRef]
- Nasi, R. La Végétation du Centre Régional D’Endémisme Soudanien au Mali. Etude de la forêt Des Monts Mandingues ET Essai de SynthèSE. Ph.D. Thesis, Université de Paris-Sud, Paris, France, 1994. [Google Scholar]
- Coulibaly, T.; Heringa, A.C.; Wijingaarden, W. Région du Baoulé: Environnement et végétation. Projet Recherche pour l’utilisation rationnelle du gibier au Sahel. Aust. Range Land J. 1988, 9, 14–20. [Google Scholar]
- Sanogo, K.; Abdulkadir, A.; Okhimamhe, A.A.; Diakité, C.H. Spatio-temporal Change in Land Use and Land Cover: Implications for Conservation of Fina Faunal Reserve in Mali. NJTR 2015, 10. [Google Scholar] [CrossRef]
- Love, T.B.; Kumar, V.; Xie, P.; Thiaw, W. A 20-year daily Africa precipitation climatology using satellite and gauge data. In Proceedings of the 84th AMS Annual Meeting, Seattle, WA, USA, 11–15 January 2004. [Google Scholar]
- Novella, N.S.; Thiaw, W.M. African Rainfall Climatology Version 2 for famine early warning systems. J. Appl. Meteor. Climatol. 2013, 52, 588–606. [Google Scholar] [CrossRef]
- Nicholson, S. On the question of the “recovery” of the rains in the West African Sahel. J. Arid Environ. 2005, 63, 615–641. [Google Scholar] [CrossRef]
- Wilks, D.S. Empirical Distributions and Exploratory Data Analysis. In Statistical Methods in the Atmospheric Sciences; Academic Press, Inc.: San Diego, CA, USA, 1995. [Google Scholar]
- Nemani, R.R.; Keeling, C.D.; Hashimoto, H.; Jolly, W.M.; Piper, S.C.; Tucker, C.J.; Myneni, R.B.; Running, S.W. Climate-Driven Increases in Global Terrestrial Net Primary Production from 1982 to 1999. Science 2003, 300, 1560–1563. [Google Scholar] [CrossRef] [Green Version]
- Jiang, B.; Liang, S. Improved vegetation greenness increases summer atmospheric water vapor over Northern China. J. Geophys. Res. Atmos. 2013, 118, 8129–8139. [Google Scholar] [CrossRef]
- Bonan, G.B. Forests and Climate Change: Forcings, Feedbacks, and the Climate Benefits of Forests. Science 2008, 320, 1444–1449. [Google Scholar] [CrossRef] [Green Version]
- Kalisa, W.; Igbawua, T.; Henchiri, M. Assessment of climate impact on vegetation dynamics over East Africa from 1982 to 2015. Sci. Rep. 2019, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.; Piao, S.; Ciais, P.; Li, J.; Friedlingstein, P.; Koven, C.; Chen, A. Spring temperature change and its implication in the change of vegetation growth in North America from 1982 to 2006. Proc. Natl. Acad. Sci. USA 2011, 108, 1240–1245. [Google Scholar] [CrossRef] [Green Version]
- Singh, R.P.; Roy, S.; Kogan, F. Vegetation and temperature condition indices from NOAA AVHRR data for drought monitoring over India. Int. J. Remote Sens. 2003, 24, 4393–4402. [Google Scholar] [CrossRef]
- Peng, S.; Piao, S.; Ciais, P.; Myneni, R.B.; Chen, A.; Chevallier, F.; Dolman, A.J.; Janssens, I.A.; Penuelas, J.; Zhang, G.; et al. Asymmetric effects of daytime and night-time warming on Northern Hemisphere vegetation. Nat. Cell Biol. 2013, 501, 88–92. [Google Scholar] [CrossRef] [PubMed]
- Vicente-Serrano, S.M.; Gouveia, C.; Camarero, J.J.; Beguería, S.; Trigo, R.; López-Moreno, J.I.; Azorin-Molina, C.; Pasho, E.; Lorenzo-Lacruz, J.; Revuelto, J.; et al. Response of vegetation to drought time-scales across global land biomes. Proc. Natl. Acad. Sci. USA 2013, 110, 52–57. [Google Scholar] [CrossRef] [Green Version]
- Wu, N.; Zhao, X.; Zhao, W.; Tang, B.; Xu, W. Response of vegetation to temperature, precipitation and solar radiation time-scales: A case study over mainland Australia. In Proceedings of the 2014 IEEE Geoscience and Remote Sensing Symposium, Quebec City, QC, Canada, 13–18 July 2014. [Google Scholar]
- Singh, D. Evaluation of long-term NDVI time series derived from Landsat data through blending with MODIS data. Atmósfera 2011, 25, 43–63. [Google Scholar]
- Fensholt, R.; Rasmussen, K.; Kaspersen, P.; Huber, S.; Horion, S.; Swinnen, E. Assessing land degradation/recovery in the African Sahel from long-term Earth observation based primary productivity and precipitation relationships. Remote Sens. 2013, 5, 664–686. [Google Scholar] [CrossRef] [Green Version]
- Anyamba, A.; Edwin, W.; Compton, J.; Tucker, P.J.; Small, L. Thirty-two Years of Sahelian Zone Growing Season Non-Stationary NDVI3g Patterns and Trends. Remote Sens. 2014, 6, 3101–3122. [Google Scholar] [CrossRef] [Green Version]
- MEA. Rapport National sur L’état de L’environnement 2009; Ministère de l’Environnement et de l’Assainissement: Paris, France, 2010.
- Hashemi, S.A. Investigation of Relationship between Rainfall and Vegetation Index by Using NOAA/AVHRR Satellite Images. World Appl. Sci. J. 2011, 14, 1678–1682. [Google Scholar]
- Propastin, P.; Kappas, M. Spatial Response of Vegetation to Precipitation in Dry Lands of Kazakhstan: Combination of Remote Sensing Data with Climate Records. Int. J. Nat. Eng. Sci. 2008, 2, 139–146. [Google Scholar]
- Zhao, W.; Zhao, X.; Zhou, T.; Wu, D.; Tang, B.; Wei, H. Climatic factors driving vegetation declines in the 2005 and 2010 Amazon droughts. PLoS ONE 2017, 12, e0175379. [Google Scholar] [CrossRef]
- Qiu, B.; Li, W.; Zhong, M.; Tang, Z.; Chen, C. Spatio-temporal analysis of vegetation variability and its relationship with climate change in China. Geo. Spat. Inf. Sci. 2014, 17, 170–180. [Google Scholar] [CrossRef] [Green Version]
- Bao, G.; Qin, Z.; Bao, Y.; Zhou, Y.; Li, W.; Sanjjav, A. NDVI-Based Long-Term Vegetation Dynamics and Its Response to Climatic Change in the Mongolian Plateau. Remote Sens. 2014, 6, 8337–8358. [Google Scholar] [CrossRef] [Green Version]
- Bradley, R.C. The effects of climatic factors on vegetation dynamics of tall-grass and short grass cover. Geocarto Int. 2000, 15, 33–38. [Google Scholar]
- Xu, Y.; Yang, J.; Chen, Y. NDVI-based vegetation responses to climate change in an arid area of China. Theor. Appl. Clim. 2015, 126, 213–222. [Google Scholar] [CrossRef]
- Srivastava, S.K.; Jayaraman, V.; Nageswara Rao, P.P.; Manikiam, B.; Chandraskehar, G. Inter-linkages of NO-AA/AVHRR derived integrated NDVI to seasonal precipitation and transpiration in dryland tropics. Int. J. Remote Sens. 1997, 18, 2931–2952. [Google Scholar] [CrossRef]
Data | Source | Period Used | Time Interval | Spatial Resolution | Product Availability |
---|---|---|---|---|---|
Rainfall | ARC2 1 | 1983–2017 | Daily | 0.1 degree | 1983 to present |
Temperature | MODIS 2 | 2006–2017 | 8 Days | 1 km | 2006 to present |
Landsat 8 Image | GLCF | 2017 | - | 30 m | 2013 to present |
NDVI | GIMMS 3 | 1983–2005 | 16 Days | 8 km | 1983–2005 |
MODIS 4 | 2006–2017 | 15 Days | 1 km | 2006 to present |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sanogo, K.; Birhanu, B.Z.; Sanogo, S.; Aishetu, A.; Ba, A. Spatiotemporal Response of Vegetation to Rainfall and Air Temperature Fluctuations in the Sahel: Case Study in the Forest Reserve of Fina, Mali. Sustainability 2021, 13, 6250. https://doi.org/10.3390/su13116250
Sanogo K, Birhanu BZ, Sanogo S, Aishetu A, Ba A. Spatiotemporal Response of Vegetation to Rainfall and Air Temperature Fluctuations in the Sahel: Case Study in the Forest Reserve of Fina, Mali. Sustainability. 2021; 13(11):6250. https://doi.org/10.3390/su13116250
Chicago/Turabian StyleSanogo, Karamoko, Birhanu Zemadim Birhanu, Souleymane Sanogo, Abdulkadir Aishetu, and Abdramane Ba. 2021. "Spatiotemporal Response of Vegetation to Rainfall and Air Temperature Fluctuations in the Sahel: Case Study in the Forest Reserve of Fina, Mali" Sustainability 13, no. 11: 6250. https://doi.org/10.3390/su13116250
APA StyleSanogo, K., Birhanu, B. Z., Sanogo, S., Aishetu, A., & Ba, A. (2021). Spatiotemporal Response of Vegetation to Rainfall and Air Temperature Fluctuations in the Sahel: Case Study in the Forest Reserve of Fina, Mali. Sustainability, 13(11), 6250. https://doi.org/10.3390/su13116250