The Tyrrhenian Sea Circulation: A Review of Recent Work
Abstract
:1. Introduction
2. The Tyrrhenian Water Masses
2.1. Surface and Intermediate Waters
2.2. Deep Waters
3. Surface Circulation
3.1. Seasonal Variability
3.2. Coastal Dynamics in the Central TYS
4. Intermediate and Deep Circulation
5. Long-Term Variability
6. Seamount Effects
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fossi, M.C.; Romeo, T.; Baini, M.; Panti, C.; Marsili, L.; Campani, T.; Canese, S.; Galgani, F.; Druon, J.N.; Airoldi, S.; et al. Plastic debris occurrence, convergence areas and fin whales feeding ground in the Mediterranean marine protected area Pelagos Sanctuary: A modeling approach. Front. Mar. Sci. 2017, 4. [Google Scholar] [CrossRef]
- Iacono, R.; Napolitano, E. Aspects of the summer circulation in the eastern Ligurian Sea. Deep Sea Res. Part I 2020, 166, 103407. [Google Scholar] [CrossRef]
- Pisano, A.; Marullo, S.; Artale, V.; Falcini, F.; Yang, C.; Leonelli, F.E.; Santoleri, R.; Buongiorno, N.B. New evidence of Mediterranean climate change and variability from sea surface temperature observations. Remote Sens. 2020, 12, 132. [Google Scholar] [CrossRef] [Green Version]
- Schroeder, K.; Chiggiato, J.; Bryden, H.L.; Borghini, M.; Ismail, S.B. Abrupt climate shift in the Western Mediterranean Sea. Sci. Rep. 2016, 6, 23009. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monecke, T.; Petersen, S.; Augustin, N.; Hannington, M. Seafloor hydrothermal systems and associated mineral deposits of the Tyrrhenian Sea. Mem. Descr. Carta Geol. Ital. 2019, 104, 41–74. [Google Scholar]
- Krivosheya, V.G. Water circulation and structure in the Tyrrhenian Sea. Oceanology 1983, 23, 166–171. [Google Scholar]
- Astraldi, M.; Gasparini, G.P. The seasonal characteristics of the circulation in the Tyrrhenian Sea. In Seasonal and Interannual Variability of the Western Mediterranean Sea, Coastal and Estuarine Studies; Geophysical Monograph Series; La Violette, P., Ed.; American Geophysical Union: Washington, DC, USA, 1994; Volume 46, pp. 115–134. [Google Scholar]
- Millot, C. Circulation in the western Mediterranean Sea. J. Mar. Syst. 1999, 20, 423–442. [Google Scholar] [CrossRef] [Green Version]
- Millot, C.; Taupier-Letage, I. Circulation in the Mediterranean Sea. In The Handbook of Environmental Chemistry; Springer: Berlin/Heidelberg, Germany, 2005; Volume 5, pp. 29–66. [Google Scholar]
- Iacono, R.; Napolitano, E.; Marullo, S.; Artale, V.; Vetrano, A. Seasonal variability of the Tyrrhenian Sea surface geostrophic circulation as assessed by altimeter data. J. Phys. Oceanogr. 2013, 43, 1710–1732. [Google Scholar] [CrossRef]
- Artale, V.; Astraldi, M.; Buffoni, G.; Gasparini, G.P. Seasonal variability of gyre-scale circulation in the Northern Tyrrhenian Sea. J. Geophys. Res. 1994, 99, 14127–14137. [Google Scholar] [CrossRef]
- Pierini, S.; Simioli, A. A wind-driven circulation model for the Tyrrhenian sea area. J. Mar. Syst. 1998, 18, 161–178. [Google Scholar] [CrossRef]
- Roussenov, V.; Stanev, E.; Artale, V.; Pinardi, N. A seasonal model of the Mediterranean Sea general circulation. J. Geophys. Res. 1995, 100, 13515–13538. [Google Scholar] [CrossRef]
- Zavatarelli, M.; Mellor, G.L. A numerical study of the Mediterranean Sea circulation. J. Phys. Oceanogr. 1995, 25, 1384–1414. [Google Scholar] [CrossRef] [Green Version]
- Marullo, S.; Santoleri, R.; Bignami, F. The surface characteristics of the Tyrrhenian Sea: Historical satellite data analysis. In Seasonal and Interannual Variability of the Western Mediterranean Sea, Coastal and Estuarine Studies; Geophysical Monograph Series; American Geophysical Union: Washington, DC, USA, 1994; Volume 46, pp. 135–154. [Google Scholar] [CrossRef]
- Amitai, Y.; Lehahn, Y.; Lazar, A.; Heifetz, E. Surface circulation of the eastern Mediterranean Levantine basin: Insights from analyzing 14 years of satellite altimetry data. J. Geophys. Res. 2010, 115, C10058. [Google Scholar] [CrossRef]
- Mohamed, B.; Mohamed, A.; El-Din, K.A.; Nagy, H.; Shaltout, M. Inter-annual variability and trends of sea level and sea surface temperature in the Mediterranean Sea over the last 25 years. Pure Appl. Geophys. 2019, 176, 3787–3810. [Google Scholar] [CrossRef]
- Rubino, A.; Gačić, M.; Bensi, M.; Kovacevic, V.; Malačič, V.; Menna, M.; Negretti, M.E.; Sommeria, J.; Zanchettin, D.; Barreto, R.V.; et al. Experimental evidence of long-term oceanic circulation reversals without wind influence in the North Ionian Sea. Sci. Rep. 2020, 10, 1905. [Google Scholar] [CrossRef]
- Ciuffardi, T.; Napolitano, E.; Iacono, R.; Reseghetti, F.; Raiteri, G.; Bordone, A. Analysis of surface circulation structures along a frequently repeated XBT transect crossing the Ligurian and Tyrrhenian seas. Ocean Dyn. 2016, 66, 767–783. [Google Scholar] [CrossRef]
- Poulain, P.M.; Menna, M.; Gerin, R. Mapping Mediterranean tidal currents with surface drifters. Deep Sea Res. Part I 2018, 138, 22–33. [Google Scholar] [CrossRef]
- Napolitano, E.; Iacono, R.; Ciuffardi, T.; Reseghetti, F.; Poulain, P.M.; Notarstefano, G. The Tyrrhenian intermediate water (TIW): Characterization and formation mechanisms. Progr. Oceanogr. 2019, 170, 53–68. [Google Scholar] [CrossRef]
- Hopkins, T.S. Recent observation on the intermediate and deep water circulation in the southern Tyrrhenian Sea. In Océanographie Pélagique Méditerranéenne; Oceanologica Acta; Special Issue; Minas, H.-J., Nival, P., Eds.; Archimer: Copenhagen, Denmark, 1988; pp. 41–50. Available online: https://archimer.ifremer.fr/doc/00267/37839/ (accessed on 12 May 2019).
- Povero, P.; Hopkins, T.S.; Fabiano, M. Oxygen and nutrient observations in the Southern Tyrrhenian Sea. Oceanol. Acta 1990, 13, 299–305. [Google Scholar]
- Sparnocchia, S.; Gasparini, G.P.; Astraldi, M.; Borghini, M.; Pistek, P. Dynamics and mixing of the Eastern Mediterranean outflow in the Tyrrhenian basin. J. Mar. Syst. 1990, 20, 301–317. [Google Scholar] [CrossRef]
- Rhein, M.; Send, U.; Klein, B.; Krhaman, G. Interbasin deep water exchange in the western Mediterranean. J. Geophys. Res. 1999, 104, 23495–23508. [Google Scholar] [CrossRef] [Green Version]
- Durante, S.; Schroeder, K.; Mazzei, L.; Pierini, S.; Borghini, M.; Sparnocchia, S. Permanent thermohaline staircases in the Tyrrhenian Sea. Geophys. Res. Lett. 2019, 46, 1562–1570. [Google Scholar] [CrossRef] [Green Version]
- Zodiatis, G.; Gasparini, G.P. Thermohaline staircase formations in the Tyrrhenian Sea. Deep Sea Res. Part I 1996, 43, 655–678. [Google Scholar] [CrossRef]
- Robinson, A.R.; Sellschopp, J.; Warn-Varnas, A.; Leslie, W.G.; Lozano, C.J.; Haley, P.J., Jr.; Anderson, L.A.; Lermusiaux, P.F.J. The Atlantic Ionian stream. J. Mar. Syst. 1999, 20, 129–156. [Google Scholar] [CrossRef]
- Menna, M.; Poulain, P.M.; Ciani, D.; Doglioli, A.; Notarstefano, G.; Gerin, R.; Rio, M.H.; Santoleri, R.; Gauci, A.; Drago, A. New insights of the Sicily Channel and Southern Tyrrhenian Sea variability. Water 2019, 11, 1355. [Google Scholar] [CrossRef] [Green Version]
- Vetrano, A.; Napolitano, E.; Iacono, R.; Schroeder, K.; Gasparini, G.P. Tyrrhenian Sea circulation and water mass fluxes in spring 2004: Observations and model results. J. Geophys. Res. 2010, 115, C06023. [Google Scholar] [CrossRef]
- Astraldi, M.; Balopoulos, S.; Candela, J.; Font, J.; Gacic, M.; Gasparini, G.P.; Manca, B.; Theocaris, A.; Tintore, J. The role of straits and channels in understanding the characteristics of Mediterranean circulation. Prog. Oceanogr. 1999, 44, 65–108. [Google Scholar] [CrossRef]
- Vignudelli, S.; Gasparini, G.P.; Astraldi, M.; Schiano, M.E. A possible influence of the North Atlantic oscillation on the circulation of the Western Mediterranean Sea. Geophys. Res. Lett. 1999, 26, 623–626. [Google Scholar] [CrossRef]
- Rinaldi, E.; Nardelli, B.B.; Zambianchi, E.; Santoleri, R.; Poulain, P.M. Lagrangian and Eulerian observations of the surface circulation in the Tyrrhenian Sea. J. Geophys. Res. 2010, 115, C04024. [Google Scholar] [CrossRef] [Green Version]
- Milano, G.; Passaro, S.; Sprovieri, M. Present-day knowledge on the Palinuro Seamount (south-eastern Tyrrhenian Sea). Boll. Geofis. Teor. Appl. 2012, 53, 403–416. [Google Scholar] [CrossRef]
- Innangi, S.; Passaro, S.; Tonielli, R.; Milano, G.; Ventura, G.; Tamburrino, S. Seafloor mapping using high-resolution multibeam backscatter: The Palinuro Seamount (Eastern Tyrrhenian Sea). J. Maps 2015. [Google Scholar] [CrossRef] [Green Version]
- Moen, J. Variability and Mixing of the Surface Layer in the Tyrrhenian Sea; Milex-80; Technical Report; SACLANT ASW Research Centre: La Spezia, Italy, 1984. [Google Scholar]
- Puillat, I.; Taupier-Letage, I.; Millot, C. Algerian eddies lifetime can near 3 years. J. Mar. Syst. 2002, 31, 245–259. [Google Scholar] [CrossRef] [Green Version]
- Pessini, F.; Cotroneo, Y.; Olita, A.; Sorgente, R.; Ribotti, A.; Jendersied, S.; Perilli, A. Life history of an anticyclonic eddy in the Algerian basin from altimetry data, tracking algorithm and In Situ observations. J. Mar. Syst. 2020, 207, 103346. [Google Scholar] [CrossRef]
- Napolitano, E.; Iacono, R.; Marullo, S. The 2009 surface and intermediate circulation of the Tyrrhenian Sea as assessed by an operational model. Geophys. Monogr. Ser. 2014, 202, 59–74. [Google Scholar] [CrossRef]
- Cianelli, D.; Uttieri, M.; Buonocore, B.; Falco, P.; Zambardino, G.; Zambianchi, E. Dynamics of a very special Mediterranean costal area: The Gulf of Naples. In Mediterranean Ecosystems: Dynamics, Management and Conservation; Williams, S.G., Ed.; Nova Science Publishers, Inc.: Hauppauge, NY, USA, 2012; ISBN 978-1-61209-146-4. [Google Scholar]
- De Ruggiero, P.; Esposito, G.; Napolitano, E.; Iacono, R.; Pierini, S.; Zambianchi, E. Modelling the marine circulation of the Campania coastal system (Tyrrhenian Sea) for the year 2016: Analysis of the dynamics. J. Mar. Syst. 2020, 210, 103388. [Google Scholar] [CrossRef]
- Falco, P.; Trani, M.; Zambianchi, E. Water mass structure and deep mixing processes in the Tyrrhenian Sea: Results from the VECTOR project. Deep Sea Res. Part I 2016, 113, 7–21. [Google Scholar] [CrossRef]
- Menna, M.; Poulain, P.M. Mediterranean intermediate circulation estimated from Argo data in 2003–2010. Ocean. Sci. 2010, 6, 331–343. [Google Scholar] [CrossRef] [Green Version]
- Serraval, R.; Cristofalo, G.C. On the presence of a coastal current of Levantine intermediate water in the central Tyrrhenian Sea. Oceanol. Acta 1999, 22, 281–290. [Google Scholar] [CrossRef] [Green Version]
- Hopkins, T.S.; G.O.N.E.G. The existence of the Levantine intermediate water in the Gulf of Naples. Rapp. Comm. Int. Mer. Médit 1977, 24, 38–41. [Google Scholar]
- Pinardi, N.; Zavatarelli, M.; Adani, M.; Coppini, G.; Fratianni, C.; Oddo, P.; Simoncelli, S.; Tonani, M.; Lyubartsev, V.; Dobricic, S.; et al. Mediterranean Sea large-scale low-frequency ocean variability and water mass formation rates from 1987 to 2007: A retrospective analysis. Prog. Oceanogr. 2015, 132, 318–332. [Google Scholar] [CrossRef]
- Palma, M.; Iacono, R.; Bargagli, A.; Carillo, A.; Lombardi, E.; Napolitano, E.; Pisacane, G.; Sannino, G.; Struglia, M.V.; Fekete, B.M. Short-term, linear, and non-linear effects of the tides on the surface dynamics in a new, high-resolution model of the Mediterranean Sea circulation. Ocean Dyn. 2020, 70, 935–963. [Google Scholar] [CrossRef]
- Kane, A.I.; Clare, M.A.; Miramontes, E.; Wogelius, R.; Rothwell, J.J.; Garreau, P.; Pohl, F. Seafloor microplastic hotspots controlled by deep-sea circulation. Science 2020, 368, 1140–1145. [Google Scholar] [CrossRef]
- Send, U.; Testor, P. Direct observations reveal the deep circulation of the Western Mediterranean Sea. J. Geophys. Res. 2017, 122, 10091–10098. [Google Scholar] [CrossRef] [Green Version]
- Hurrell, J.W. Decadal trends in the North Atlantic oscillation: Regional temperatures and precipitation. Science 1995, 269, 676–679. [Google Scholar] [CrossRef] [Green Version]
- Ghil, M.; Allen, M.R.; Dettinger, M.D.; Ide, K.; Kondrashov, D.; Mann, M.E.; Robertson, A.W.; Saunders, A.; Tian, Y.; Varadi, F.; et al. Advanced spectral methods for climatic time series. Rev. Geophys. 2002, 40, 1003. [Google Scholar] [CrossRef] [Green Version]
- Hartmann, D.L.; Tank, A.M.G.K.; Rusticucci, M.; Alexander, L.V.; Brönnimann, S.; Charabi, Y.A.R.; Dentener, F.J.; Dlugokencky, E.J.; Easterling, D.R.; Kapan, A.; et al. Observations: Atmosphere and surface. In Climate Change 2013: The Physical Science Basis; Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F.D., Qin, G.-K., Plattner, M., Tignor, S.K., Allen, J., Boschung, A., Nauels, Y., Xia, V.B., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK, 2014; pp. 159–254. [Google Scholar] [CrossRef] [Green Version]
- Vargas-Yanez, M.; Garcia, M.G.; Salat, J.; Garcia-Martinez, M.C.; Pascual, J.; Moya, F. Warming trends and decadal variability in the Western Mediterranean shelf. Glob. Planet. Chang. 2008, 63, 177–184. [Google Scholar] [CrossRef]
- Lionello, P.; Scarascia, L. The relation between climate change in the Mediterranean region and global warming. Reg. Environ. Chang. 2018, 18, 1481–1493. [Google Scholar] [CrossRef]
- Pastor, F.; Valiente, J.A.; Khodayar, S. A warming Mediterranean: 38 years of increasing sea surface temperature. Remote Sens. 2020, 12, 2687. [Google Scholar] [CrossRef]
- Trenberth, K.; Fasullo, J.; Shepherd, J. Attribution of climate extreme events. Nat. Clim. Chang. 2015, 5, 725–730. [Google Scholar] [CrossRef]
- Krauzig, N.; Falco, P.; Zambianchi, E. Contrasting surface warming of a marginal basin due to large-scale climatic patterns and local forcing. Nat. Sci. Rep. 2020, 10, 17648. [Google Scholar] [CrossRef]
- Roether, W.B.; Manca, B.B.; Klein, B.; Bregant, D.; Georgopoulos, D.; Beitzel, V.; Kovačević, V.; Lucchetta, A. Recent changes in eastern Mediterranean deep waters. Science 1996, 271, 333–335. [Google Scholar] [CrossRef]
- Klein, B.; Roether, W.; Manca, B.B.; Bregant, D.; Beitzel, V.; Kovacevic, V.; Lucchetta, A. The large deep water transient in the Eastern Mediterranean. Deep Sea Res. Part I 1999, 46, 371–414. [Google Scholar] [CrossRef]
- Theocharis, A.; Klein, B.; Nittis, K.; Roether, W. Evolution and status of the Eastern Mediterranean Transient (1997–1999). J. Mar. Syst. 2002, 33, 91–116. [Google Scholar] [CrossRef]
- Gasparini, G.P.; Ortona, A.; Budillon, G.; Astraldi, M.; Sansone, E. The effect of the Eastern Mediterranean Transient on the hydrographic characteristics in the Strait of Sicily and in the Tyrrhenian Sea. Deep Sea Res. Part I 2005, 52, 915–935. [Google Scholar] [CrossRef]
- Shroeder, K.; Gasparini, G.P.; Tangherlini, M.; Astraldi, M. Deep and intermediate water in the western Mediterranean under the influence of the Eastern Mediterranean Transient. Geophys. Res. Lett. 2006, 33, 21. [Google Scholar] [CrossRef] [Green Version]
- Ribotti, A.; Sorgente, R.; Olita, A.; Orilia, F.; Borghini, M.; Reseghetti, F. Indication of recent warming process at the intermediate level in the Tyrrhenian sea from SOOP XBT measurements. Mediterr. Mar. Sci. 2016, 17, 467–475. [Google Scholar] [CrossRef] [Green Version]
- Gačić, M.; Schroeder, K.; Civitarese, G.; Cosoli, S.; Vetrano, A.; Borzelli, G.L.E. Salinity in the Sicily Channel corroborates the role of the Adriatic-Ionian Bimodal Oscillating System (BiOS) in shaping the decadal variability of the Mediterranean overturning circulation. Ocean Sci. 2013, 9, 83–90. [Google Scholar] [CrossRef] [Green Version]
- Adloff, F.; Somot, S.; Sevault, F.; Jordà, G.; Aznar, R.; Déqué, M.; Herrmann, M.; Marcos, M.; Dubois, C.; Padorno, E. Mediterranean Sea response to climate change in an ensemble of twenty first century scenarios. Clim. Dyn. 2015, 45, 2775–2802. [Google Scholar] [CrossRef]
- Palmiotto, C.; Loreto, M.F. Regional scale morphological pattern of the Tyrrhenian Sea: New insights from EMODnet bathymetry. Geomorphology 2019, 332, 88–99. [Google Scholar] [CrossRef]
- Würtz, M.; Rovere, M. Atlas of the Mediterranean Seamounts and Seamount-Like Structures; IUCN: Gland, Switzerland, 2015; pp. 1–276. [Google Scholar] [CrossRef]
- Mohn, C.; White, M.; Denda, A.; Erofeeva, S.; Springer, B.; Turnewitsch, R.; Christiansen, B. Dynamics of currents and biological scattering layers around Senghor Seamount, a shallow seamount inside a tropical Northeast Atlantic eddy corridor. Deep Sea Res. Part I 2021, 171, 103497. [Google Scholar] [CrossRef]
- Chapman, D.C.; Haidvogel, D.B. Formation of Taylor caps over a tall and isolated seamount in a stratified ocean. Geophys. Astrophys. Fluid Dyn. 1992, 64, 31–65. [Google Scholar] [CrossRef]
- Kunze, E.; Toole, J.M. Tidally driven vorticity, diurnal shear, and turbulence atop fieberling seamount. J. Phys. Oceanogr. 1997, 27, 2663–2693. [Google Scholar] [CrossRef]
- Vlasenko, V.; Stashchuk, N.; Nimmo-Smith, W.A.M. Threedimensional dynamics of baroclinic tides over a seamount. J. Geophys. Res. Oceans 2018, 123, 1263–1285. [Google Scholar] [CrossRef]
- Sutyrin, G.G. Critical effects of a tall seamount on a drifting vortex. J. Mar. Res. 2006, 64, 297–317. [Google Scholar] [CrossRef]
- Budillon, G.; Gasparini, G.P.; Shroeder, K. Persistence of an eddy signature in the central Tyrrhenian basin. Deep Sea Res. Part II 2009, 56, 713–724. [Google Scholar] [CrossRef]
- Rio, M.-H.; Pascual, A.; Poulain, P.M.; Menna, M.; Barcelo’, B.; Tintoré, J. Computation of a new mean dynamic topography for the Mediterranean Sea from model outputs, altimeter measurements and oceanographic In Situ data. Ocean Sci. 2014, 10, 731–744. [Google Scholar] [CrossRef] [Green Version]
- Misic, C.; Bavestrello, G.; Bo, M.; Borghini, M.; Castellano, M.; Harriague, A.C.; Massa, F.; Spotorno, F.; Povero, P. The “seamount effect” as revealed by organic matter dynamics around a shallow seamount in the Tyrrhenian Sea (Vercelli Seamount, western Mediterranean). Deep Sea Res. Part I 2012, 67, 1–11. [Google Scholar] [CrossRef]
- Mauri, E.; Gerin, R.; Poulain, P.M. Glider measurements around the Vercelli Seamount (Tyrrhenian Sea) in May 2009. Boll. Geofis. Teor. Appl. 2018, 59, 193–202. [Google Scholar] [CrossRef]
- Ferron, B.; Aubertot, P.B.; Cuypers, Y.; Schroeder, K.; Borghini, M. How important are diapycnal mixing and geothermal heating for the deep circulation of the Western Mediterranean? Geophys. Res. Lett. 2017, 44, 7845–7854. [Google Scholar] [CrossRef] [Green Version]
- Aulicino, G.; Cotroneo, Y.; Lacava, T.; Sileo, G.; Fusco, G.; Carlon, R.; Satriano, V.; Pergola, N.; Tramutoli, V.; Budillon, G. Results of the first Wave Glider experiment in the southern Tyrrhenian Sea. Adv. Oceanogr. Limnol. 2016, 7, 16–35. [Google Scholar] [CrossRef] [Green Version]
- Martellucci, R.; Pierattini, A.; de Mendoza, F.P.; Melchiorri, C.; Piermattei, V.; Marcelli, M. Physical and biological water column observations during summer sea/land breeze winds in the coastal northern Tyrrhenian Sea. Water 2018, 10, 1673. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iacono, R.; Napolitano, E.; Palma, M.; Sannino, G. The Tyrrhenian Sea Circulation: A Review of Recent Work. Sustainability 2021, 13, 6371. https://doi.org/10.3390/su13116371
Iacono R, Napolitano E, Palma M, Sannino G. The Tyrrhenian Sea Circulation: A Review of Recent Work. Sustainability. 2021; 13(11):6371. https://doi.org/10.3390/su13116371
Chicago/Turabian StyleIacono, Roberto, Ernesto Napolitano, Massimiliano Palma, and Gianmaria Sannino. 2021. "The Tyrrhenian Sea Circulation: A Review of Recent Work" Sustainability 13, no. 11: 6371. https://doi.org/10.3390/su13116371