The Seismic Coat: A Sustainable and Integrated Approach to the Retrofit of Existing Buildings
Abstract
:1. Introduction
2. Materials and Methods
2.1. A Structural “Skin”
2.2. Natural Stone
2.3. Environmental Impact
- -
- Use local materials, which do not require long-distance and expensive transportation;
- -
- Choose materials based on their lifespan;
- -
- Prefer recycled or recyclable materials;
- -
- Design with the possibility of de-construction at the end of the building’s life cycle in mind by reusing as much demolition materials as possible.
- -
- Local Stone 0.4;
- -
- Mortar 1.3;
- -
- Reinforced Concrete 2.6;
- -
- Plasterboard 2.7;
- -
- Bricks 3;
- -
- Cellulose Insulation 3.3;
- -
- Concrete Blocks 3.5;
- -
- Rock Wool Insulation 16.8;
- -
- Wood Fiber Insulation 20;
- -
- Glass Wool Insulation 28;
- -
- PVC 77.2;
- -
- EPS 88.6.
2.4. Reinforced Masonry
2.5. Building Envelope and Energy Consumption
2.6. The Case Study
3. Results
- ✓ The construction features of the new seismic stone coat;
- ✓ The construction of a single prefabricated panel with industrialized systems;
- ✓ The methods of simplified installation on site of the panels;
- ✓ All types of panel connections: panel-panel, panel-existing structure, and panel-foundation.
3.1. The New Stone Seismic Coat
3.2. Application to the Case Study
3.3. The Installation of the Panel and the Connections on Site
4. Discussion
5. Conclusions
- ✓ Industrial prefabrication of individual panels prestressed in the factory;
- ✓ Easy maintenance because the panel can be easily removed;
- ✓ Complete recovery of the material to be recycled;
- ✓ Far higher durability without requiring any maintenance;
- ✓ Low environmental impact;
- ✓ Flexibility to adopt it as the only envelope or as a second skin;
- ✓ Operation of installation on site extremely simplified;
- ✓ Very fast execution times;
- ✓ Use of unskilled labor;
- ✓ Aesthetic quality of the stone facade;
- ✓ Genius loci with the use of a material of local tradition.
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bradley, P.E.; Kohler, N. Methodology for the survival analysis of urban building stocks. Build. Res. Inf. 2007, 35, 529–542. [Google Scholar] [CrossRef]
- Thomsen, A.; Van der Flier, K. Obsolescence and the end of life phase of buildings. In Management and Innovation for a Sustainable Built Environment MISBE 2011, Proceedings of the CIB International Conference, Amsterdam, The Netherlands, 20–23 June 2011; TU Delft: Delft, The Netherlands, 2011. [Google Scholar]
- Boeri, A.; Gabrielli, L.; Longo, D. Evaluation and feasibility study of retrofitting interventions on social housing in Italy. Procedia Eng. 2011, 21, 1161–1168. [Google Scholar] [CrossRef]
- Turchini, G. New Research for the Restoration; Arketipo: Calenziano, Italy, 2011. [Google Scholar]
- Lombardo, G. La Modernità del Basalto dell’Etna Innovazione e Sperimentazione; Il Lunario: Enna, Italy, 2004; ISBN 88-8181-059-X. [Google Scholar]
- Lombardo, G. Built architecture with natural stone. Int. J. Hous. Sci. Appl. 2011, 35, 103–114. [Google Scholar]
- Pertile, V.; Stella, A.; De Stefani, L.; Scotta, R. Miglioramento Sismico ed Energetico di Edifici in Muratura Mediante Cappotto Sismico: Seconda Campagna di Prove Sperimentali. Ingenio. 2020. Available online: https://www.ingenio-web.it/25301-miglioramento-sismico-ed-energetico-di-edifici-mediante-geniale-cappotto-sismico-i-test-su-edifici-in-muratura (accessed on 9 December 2020).
- Scotta, R.; De Stefani, L.; Stella, A.; Pertile, V. Miglioramento Sismico ed Energetico degli Edifici Esistenti Mediante “Cappotto Sismico”: Prove Sperimentali ed Interpretazione dei Risultati. Ingenio. 2020. Available online: https://www.ingenio-web.it/20416-miglioramento-sismico-ed-energetico-degli-edifici-esistenti-mediante-cappotto-sismico (accessed on 9 December 2020).
- Scotta, R.; Lucchetta, S. Adeguamento Sismico ed Efficientamento Energetico di una Scuola Mediante Cappotto Sismico: La Progettazione. Ingenio. 2020. Available online: https://www.ingenio-web.it/26274-adeguamento-sismico-ed-efficientamento-energetico-di-una-scuola-mediante-cappotto-sismico-la-progettazione (accessed on 9 December 2020).
- Trovato, M.R.; Nocera, F.; Giuffrida, S. Life-cycle assessment and monetary measurements for the carbon footprint reduction of public buildings. Sustainability 2020, 12, 3460. [Google Scholar] [CrossRef] [Green Version]
- Nocera, F.; Faro, A.L.; Costanzo, V.; Raciti, C. Daylight performance of classrooms in a mediterranean school heritage building. Sustainability 2018, 10, 3705. [Google Scholar] [CrossRef] [Green Version]
- Molinari, C. Manutenzione in Edilizia; Franco Angeli: Milan, Italy, 1989; ISBN 8820430975. [Google Scholar]
- Cicero, C.; Lombardo, G. Buildings envelopes and energy. J. Civ. Eng. Archit. 2011, 5, 986–995. [Google Scholar]
- Hammond, G.; Jones, G. Inventory of Carbon & Energy (ICE); Version 2.0; Department of Mechanical Engineering, University of Bath: Bath, UK, 2011. [Google Scholar]
- Paolini, R. Sistemi di Isolamento Termico a Cappotto; Arketipo: Calenziano, Italy, 2008; Volume 24, pp. 130–131. [Google Scholar]
- Campioli, A.; Ferrari, S.; Lavagna, M. Il Comportamento Energetico-Ambientale di Involucri in Laterizio. Costr. Laterizio 2007, 120, 58–65. [Google Scholar]
- Lavagna, M. Life Cycle Assessmente in Edilizia; Hoepli: Milan, Italy, 2008. [Google Scholar]
- Lombardo, G. Architectural Vanguard Stone. Front. Archit. Res. 2012, 1, 244–252. [Google Scholar] [CrossRef] [Green Version]
- Salehi, A.; Fayaz, R.; Bozorgi, M.; Asadi, S.; Costanzo, V.; Imani, N.; Nocera, F. Investigation of thermal comfort efficacy of solar chimneys under different climates and operation time periods. Energy Build. 2019, 205, 109528. [Google Scholar] [CrossRef]
- Fernandez-Antolin, M.; del Río, J.M.; Costanzo, V.; Nocera, F.; Gonzalez-Lezcano, R. Passive design strategies for residential buildings in different Spanish climate zones. Sustainability 2019, 11, 4816. [Google Scholar] [CrossRef] [Green Version]
- Gajda, J.; Van Geem, M. Energy Use in Residential Housing: A Comparison of Insulating Concrete Form and Wood Frame Walls; Portland Cement Association: Skokie, IL, USA, 2000. [Google Scholar]
- Gajda, J. Energy Use of Single-Family Houses with Various Exterior Walls; Portland Cement Association: Skokie, IL, USA, 2001. [Google Scholar]
Material | fb,k | f1b,k | Mi | E | G | dutt. | γ | fk | fvko | fk,tab | fvko,tab |
---|---|---|---|---|---|---|---|---|---|---|---|
MPa | MPa | MPa | MPa | MPa | MPa | MPa | MPa | MPa | |||
Basalt | 150 | 130 | 1 | 60,000 | 24,000 | 9.9 | 270 | 60 | 1 | 14 | 0 |
Height h [m] | ƛs = h/s | Seism. Force Fs [kN] | Ord. Mas. P = 0 kN | Reinf. Mas. p = 0 kN | Reinf. Mas. p = 1000 kN | Reinf. Mas. p = 2000 kN | ||||
---|---|---|---|---|---|---|---|---|---|---|
Collap. Force FxR [kN] | Saf. Fac. TxR/Fs | Collap. Force FxR [kN] | Saf. Fac. TxR/Fs | Collap. Force FxR [kN] | Saf. Fac. TxR/Fs | Collap. Force FxR [kN] | Saf. Fac. TxR/Fs | |||
3.50 | 14.58 | 4.253 | 4.633 | 1.09 | 24.382 | 5.73 | 132.313 | 31.11 | 172.855 | 40.65 |
9.00 | 37.50 | 10.935 | 3.735 | 0.34 | 11.239 | 1.03 | 52.346 | 4.79 | 67.322 | 6.16 |
20.00 | 83.33 | 24.300 | 3.376 | 0.14 | 6.639 | 0.27 | 24.358 | 1.00 | 30.386 | 1.25 |
22.00 | 91.67 | 26.730 | 3.344 | 0.13 | 6.297 | 0.24 | 22.276 | 0.83 | 27.615 | 1.03 |
Heat Capacity | EnRyear | Insulation 0.04 m2 KW | PCM | Basalt | Concrete | Brick | Wood |
---|---|---|---|---|---|---|---|
KJm2 K | KWhm2 | (cm) | (cm) | (cm) | (cm) | (cm) | (cm) |
175 | 41.2 | 8 | 3 | 5 | 9 | 12 | 19 |
350 | 40.2 | 8 | 5 | 10 | 18 | 23 | 38 |
1050 | 37.9 | 8 | 15 | 30 | 54 | 70 | 115 |
1750 | 35.3 | 4 | 25 | 50 | 91 | 116 | 192 |
3500 | 29.7 | 4 | 50 | 100 | 180 | 230 | 350 |
Opaque Vertical Closure Actual Situation | S (m) | C (W/mK) | D (Kg/m3) |
---|---|---|---|
Internal Finish | 0.02 | 0.7 | 1400 |
Concrete Full Bricks | 0.20 | 1.1 | 180 |
Air Chamber | 0.08 | 1.3 | 1.23 |
Concrete Full Bricks | 0.30 | 1.1 | 180 |
Total Thickness | 0.60 m |
Opaque Vertical Closure Project | S (m) | C (W/mK) | D (Kg/m3) |
---|---|---|---|
Internal Finish | 0.02 | 0.7 | 1400 |
Plasterboard Panel | 0.013 | 0.43 | 1250 |
Thermal Insulation | 0.08 | 0.04 | 60 |
Air Chamber | 0.025 | 1.3 | 1.23 |
Stone Panel | 0.10 | 2.1 | 2800 |
Total Thickness | 0.238 m |
Opaque Vertical Closure | Limit of Law | Actual Situation | After Intervention |
---|---|---|---|
Transmittance “U” (W/m2 K) | 0.41 | 1.344 | 0.322 |
Phase Shift “S” (hours) | >12 | 4.35 | 9.82 |
Attenuation “Fd” | <0.15 | 0.767 | 0.251 |
Envelope summer performance | Class III | Class V | Class III |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lombardo, G. The Seismic Coat: A Sustainable and Integrated Approach to the Retrofit of Existing Buildings. Sustainability 2021, 13, 6466. https://doi.org/10.3390/su13116466
Lombardo G. The Seismic Coat: A Sustainable and Integrated Approach to the Retrofit of Existing Buildings. Sustainability. 2021; 13(11):6466. https://doi.org/10.3390/su13116466
Chicago/Turabian StyleLombardo, Grazia. 2021. "The Seismic Coat: A Sustainable and Integrated Approach to the Retrofit of Existing Buildings" Sustainability 13, no. 11: 6466. https://doi.org/10.3390/su13116466
APA StyleLombardo, G. (2021). The Seismic Coat: A Sustainable and Integrated Approach to the Retrofit of Existing Buildings. Sustainability, 13(11), 6466. https://doi.org/10.3390/su13116466