Characteristics of Clay Raw Materials from the Turów Lignite Mine Waste, Poland: Potential for Industrial Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Turoszów Clay Resource Base
2.2. General Characteristics of the Deposit
- light grey clean, approx. 8%;
- light grey sandy, approx. 50%;
- brown, lignite-rich, approx. 30%;
- granitoid and basalt clay detritus, approx. 12%.
2.3. Characteristics of the Tested Materials
3. Results and Discussion
3.1. Grain Composition Tests
3.2. Chemical Composition Tests
- Si content, with the gravimetric method;
- Al content, with the titrimetric method;
- Mg, Mn, K, Na, S, Ti, Ca, and Fe contents with Atomic Absorption Spectrometry (AAS);
- S content, with the IR spectrometry method;
- Hg content, with cold vapor atomic absorption spectrometry (CV AAS);
- Pb, Cu, Zn, Ni content, with atomic absorption spectrometry (AAS),
- As content, with inductively coupled plasma mass spectrometry (ICP MS).
3.3. Determination of Specific Surface Area
- sand formations 7–15 m2/g,
- loamy formations 14–24 m2/g,
- dust formations 13–26 m2/g, and
- clay formations 30–70 m2/g.
3.4. Thermal Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Konta, J. Clay and man: Clay raw materials in the service of man. Appl. Clay Sci. 1995, 10, 275–335. [Google Scholar] [CrossRef]
- Bergaya, F.; Theng, B.K.G.; Lagaly, G. Handbook of Clay Science, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Budkiewicz, M.; Tokarski, Z. Surowce ilaste w Polsce. Kwart. Geol. 1971, 15, 172–193. [Google Scholar]
- European Association for Coal and Lignite. Annual Report 2019; European Association for Coal and Lignite: Brussels, Belgium, 2020. [Google Scholar]
- Kudełko, J. Effectiveness of mineral waste management. Int. J. Min. Reclam. Environ. 2018, 32, 440–448. [Google Scholar] [CrossRef]
- Kudełko, J.; Nitek, D. Using wastes from mining activity as a substitute for raw materials. Cuprum Ore Min. Sci. Tech. Mag. 2011, 3, 51–63. [Google Scholar]
- European Commission. A New Circular Economy Action Plan for a cleaner and more competitive Europe. In Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Region; European Commission: Brussels, Belgium, 2020. [Google Scholar]
- Kaczan, W.; Wirth, H. Preliminary Analysis of Szklary Deposit (SW Poland) in the Aspect of Critical Metals Occurrence with Respect to the Circular Economy. In Proceedings of the XIX Conference of Ph.D. Students and Young Scientists: Interdisciplinary Topics in Mining and Geology, Sosnówka, Poland, 29–31 May 2019. [Google Scholar]
- Kaźmierczak, U.; Kudełko, J.; Bagiński, L.; Wirth, H. Gospodarka o obiegu zamkniętym odpadami pogórniczymi i przeróbczymi—Przegląd możliwych rozwiązań na podstawie literatury polskiej. In Gospodarka o Obiegu Zamkniętym w Polityce i Badaniach Naukowych; Scientific Editor: Dr Hab. Joanna Kulczycka, Prof. AGH; Wydawnictwo IGSMiE PAN: Krakow, Poland, 2019; pp. 151–164. [Google Scholar]
- Ratajczak, T.; Hycnar, E. Kopaliny Towarzyszące w Złożach Węgla Brunatnego, Geologiczno-Surowcowe Aspekty Zagospodarowania Kopalin Towarzyszących; Wydawnictwo IGSMiE PAN: Kraków, Poland, 2017. [Google Scholar]
- Kaczarewski, T.; Pędziwol, A.; Wiśniewski, J. Wykorzystanie iłów turoszowskich—Możliwości i oczekiwania. Węgiel Brunatny Biul. Inf. Prod. Węgla Brunatnego 2007, 60, 27–33. [Google Scholar]
- Nieć, M.; Matl, K.; Wyrwicki, R.; Wiśniewski, J. Iły Turoszowskie—Mit Kopalin Towarzyszących, Studia i Rozprawy; Wydawnictwo IGSMiE PAN: Kraków, Poland, 2004. [Google Scholar]
- Bartmiński, P.; Krusińska, A.; Bieganowski, A.; Ryżak, M. Przygotowanie próbek glebowych do pomiaru składu granulometrycznego gleb metodą dyfrakcji laserowej. Rocz. Glebozn. 2011, 62, 9–15. [Google Scholar]
- Krawczykowski, D. Zastosowanie dyfrakcyjnej analizy laserowej do kontroli uziarnienia produktów przeróbki rud metali. Inżynieria Miner. 2017, 18, 233–240. [Google Scholar]
- Szpila, K.; Widaj, B. Iły kaolinitowe warstw międzywęglowych kopalni Turów. Przegląd Geologiczny 1978, 26, 228–232. [Google Scholar]
- Przelaskowska, A.; Klaja, J.; Kulinowski, P.; Gaweł, A. Zastosowanie metod analizy termicznej w badaniach skał silikoklastycznych o zróżnicowanym zaileniu. Naft. Gaz 2017, 73. [Google Scholar] [CrossRef]
- Asani, A. Application of bentomats and loam barrier as impermeable wall in flood banks. Zesz. Nauk. Uniw. Zielonogórskiego 2007, 13, 21–30. [Google Scholar]
- Majer, E.; Łuczak-Wilamowska, B.; Wysokiński, L.; Drągowski, A. Zasady Oceny Przydatności Gruntów Spoistych Polski do Budowy Mineralnych Barier Izolacyjnych; ITB: Warsaw, Poland, 2007; pp. 1–162. [Google Scholar]
- Majer, E.; Wysokińki, L. Badania Gruntów i Kontrola Jakości Wykonanych z Nich Przesłon Izolacyjnych na Składowiskach Odpadów; ITB: Warsaw, Poland, 2005. [Google Scholar]
- Sałaciński, R.; Gąsiński, A. Możliwości wykorzystania gospodarczego surowców ilastych z plioceńskich iłów z KWB Bełchatów—Pole Szczerców. Górnictwo Odkryw. 2012, 53, 83–89. [Google Scholar]
- Łuczycka, D. Rolnictwo XXI Wieku: Problemy i Wyzwania 2018; Idea Knowledge Future: Wrocław, Poland, 2018; ISBN 978-83-945311-9-5. [Google Scholar]
- Regulation (EC) No 1831/2003 of the European Parliament and of the Council of 22 September 2003 on Additives for Use in Animal Nutrition. Available online: https://ec.europa.eu/jrc/sites/jrcsh/files/EC-1831-2003.pdf (accessed on 7 June 2021).
- Kłapyta, Z.; Żabiński, W. Sorbenty Mineralne Polski; AGH: Kraków, Poland, 2008; ISBN 978-83-7464-107-4. [Google Scholar]
- Choma, J.; Zdenkowski, A.J. Strukturalne i powierzchniowe właściwości wybranych adsorbentów mineralnych. Ochr. Sr. 2001, 4, 5–8. [Google Scholar]
Sample Symbol | Sample Description |
---|---|
S/20–63 | dark orange, a mix of gravels in various grain sizes |
D/20–63 | light yellow, compact, powdery clay |
Z/20–63 | black with darker grains |
S/−20 | dark orange, fine gravel |
D/−20 | light yellow, compact, powdery clay |
Z/−20 | black with very fine darker grains |
Grain Size Class, μm | Grain Size Content, % | |
---|---|---|
Sample D/−63 | Sample Z/−63 | |
0–2 | 7.6 | 8.3 |
2–4 | 18.5 | 27.2 |
4–10 | 31.1 | 40.8 |
10–20 | 19.8 | 16.9 |
20–40 | 14.9 | 5.5 |
40–70 | 8.1 | 1.3 |
Sample Symbol | Al2O3 | SiO2 | MgO | MnO | K2O | SO3 | Na2O | TiO2 | CaO | Fe2O3 |
---|---|---|---|---|---|---|---|---|---|---|
D/−20 | 36.30 | 43.76 | 0.320 | 0.011 | 1.20 | 0.085 | 0.150 | 3.77 | 0.320 | 2.23 |
D/+20 | 4.97 | 83.35 | 0.051 | 0.030 | 2.65 | 0.088 | 0.082 | 0.45 | 0.630 | 2.71 |
S/−20 | 12.10 | 66.77 | 0.850 | 0.049 | 2.47 | 0.055 | 0.820 | 0.92 | 0.630 | 4.93 |
S/+20 | 5.20 | 84.85 | 0.150 | 0.015 | 2.11 | 0.042 | 1.010 | 0.35 | 0.410 | 0.90 |
Z/−20 | 32.30 | 47.29 | 0.600 | 0.0057 | 3.15 | 0.093 | 0.240 | 1.20 | 0.076 | 1.70 |
Z/+20 | 6.39 | 79.61 | 0.093 | 0.0091 | 2.25 | 0.180 | 1.100 | 0.62 | 0.081 | 1.23 |
Sample Symbol | As | Zn | Ni | Pb | Cu | Hg |
---|---|---|---|---|---|---|
D/−20 | 4.1 | 450 | 96 | 32 | 59 | <0.5 |
D/+20 | 1.4 | 62 | 10 | 16 | 24 | <0.5 |
S/−20 | 10.4 | 240 | 23 | 45 | 46 | <0.5 |
S/+20 | 1.5 | 130 | <10 | 25 | 24 | <0.5 |
Z/−20 | 6.8 | 120 | 29 | 49 | 24 | <0.5 |
Z/+20 | 7.9 | 200 | 10 | 26 | 27 | <0.5 |
Sample Symbol | Specific Surface, m2/g | Correlation Coefficient |
---|---|---|
D/−20 | 34.978 ± 0.00770 | 0.99960 |
D/+20 | 1.3823 ± 0.0029 | 0.99960 |
S/−20 | 22.6025 ± 0.0518 | 0.99990 |
S/+20 | 1.4148 ± 0.0071 | 0.99974 |
Z/−20 | 18.1183 ± 0.0251 | 0.99998 |
Z/+20 | 1.2865 ± 0.0036 | 0.99920 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kudełko, J.; Wirth, H.; Kaczan, W.; Bagiński, L. Characteristics of Clay Raw Materials from the Turów Lignite Mine Waste, Poland: Potential for Industrial Applications. Sustainability 2021, 13, 6513. https://doi.org/10.3390/su13126513
Kudełko J, Wirth H, Kaczan W, Bagiński L. Characteristics of Clay Raw Materials from the Turów Lignite Mine Waste, Poland: Potential for Industrial Applications. Sustainability. 2021; 13(12):6513. https://doi.org/10.3390/su13126513
Chicago/Turabian StyleKudełko, Jan, Herbert Wirth, Wojciech Kaczan, and Lesław Bagiński. 2021. "Characteristics of Clay Raw Materials from the Turów Lignite Mine Waste, Poland: Potential for Industrial Applications" Sustainability 13, no. 12: 6513. https://doi.org/10.3390/su13126513
APA StyleKudełko, J., Wirth, H., Kaczan, W., & Bagiński, L. (2021). Characteristics of Clay Raw Materials from the Turów Lignite Mine Waste, Poland: Potential for Industrial Applications. Sustainability, 13(12), 6513. https://doi.org/10.3390/su13126513