Component Modification of Basic Oxygen Furnace Slag with C4AF as Target Mineral and Application
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Experimental Methods
2.2.1. Batching Calculation
2.2.2. Preparation of Modified BOF Slag
2.2.3. Characterizations and Performance Tests
3. Results and Discussion
4. Conclusions
- (1)
- Most inert phase in BOF slag can be converted into active minerals phase of C4AF and C2S by reasonable batching calculation and a reasonable amount of the regulating agent. However, the tricalcium silicate (C3S) cannot be detected, even with the highest lime content in the ingredients, due to the low sintering temperature.
- (2)
- The activity index of modified BOF slag increases with the increase in lime content in the ingredients, excess CaO enters into C2S and C4AF, and the f-CaO content of the samples is less than 1.0%.
- (3)
- The flexural strength of samples decreases with the increase in the content of modified BOF slag B, but the capability of resisting sulfate corrode is improved, especially the structure of the hydrated product compact and 90-day sulfate corrosion resistance due to the constant formation of short rod-like shape ettringite in Na2SO4 solution.
- (4)
- Low-cost sulfate-resistant cement can be prepared by mixing Portland cement with modified BOF slag which the main mineral phases are C2S and C4AF.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, Q.; Yan, P.; Feng, J.A. discussion on improving hydration activity of steel slag by altering its mineral compositions. J. Hazard. Mater. 2011, 186, 1070–1075. [Google Scholar] [CrossRef] [PubMed]
- Puertas, F.; Garcia-Diaz, I.; Barba, A.; Gazulla, M.F.; Palacios, M.; Gomez, M.P.; Martinez-Ramirez, S. Ceramic wastes as alternative raw materials for Portland cement clinker production. Cement Concrete Comp. 2008, 30, 798–805. [Google Scholar] [CrossRef]
- Chen, Y.L.; Shih, P.H.; Chiang, L.C.; Chang, Y.K.; Lu, H.C.; Chang, J.E. The influence of heavy metals on the polymorphs of dicalcium silicate in the belite-rich clinkers produced from electroplating sludge. J. Hazard. Mater. 2009, 170, 443–448. [Google Scholar] [CrossRef]
- Li, Z.; Zhao, S.; Zhao, X.; He, T. Cementitious property modification of basic oxygen furnace steel slag. Constr. Build. Mater. 2013, 48, 575–579. [Google Scholar] [CrossRef]
- Pang, B.; Zhou, Z.; Hou, P.; Du, P.; Zhang, L.; Xu, H. Autogenous and engineered healing mechanisms of carbonated steel slag aggregate in concrete. Constr. Build. Mater. 2016, 107, 191–202. [Google Scholar] [CrossRef]
- Wang, Q.; Yan, P.; Yang, J.; Zhang, B. Influence of steel slag on mechanical properties and durability of concrete. Constr. Build. Mater. 2013, 47, 1414–1420. [Google Scholar] [CrossRef]
- Mahieux, P.Y.; Aubert, J.E.; Escadeillas, G. Utilization of weathered basic oxygen furnace slag in the production of hydraulic road binders. Constr. Build. Mater. 2009, 23, 742–747. [Google Scholar] [CrossRef]
- Belhadj, E.; Diliberto, C.; Lecomte, A. Characterization and activation of Basic Oxygen Furnace slag. Cement Concrete Comp. 2012, 34, 34–40. [Google Scholar] [CrossRef]
- Jiang, Y.; Ling, T.C.; Shi, C.; Pan, S.Y. Characteristics of steel slags and their use in cement and concrete—A review. Resour. Conserv. Recy. 2018, 136, 187–197. [Google Scholar] [CrossRef]
- Wang, Q.; Yan, P. Hydration properties of basic oxygen furnace steel slag. Constr. Build. Mater. 2010, 24, 1134–1140. [Google Scholar] [CrossRef]
- Wang, G.; Wang, Y.; Gao, Z. Use of steel slag as a granular material: Volume expansion prediction and usability criteria. J. Hazard. Mater. 2010, 184, 555–560. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Zha, K.; Chen, D. Possibility of Concrete Prepared with Steel Slag as Fine and Coarse Aggregates: A Preliminary Study. Procedia Eng. 2011, 24, 412–416. [Google Scholar]
- Palankar, N.; Ravi Shankar, A.U.; Mithun, B.M. Durability studies on eco-friendly concrete mixes incorporating steel slag as coarse aggregates. J. Clean. Prod. 2016, 129, 437–448. [Google Scholar] [CrossRef]
- Ding, Y.C.; Cheng, T.W.; Liu, P.C.; Lee, W.H. Study on the treatment of BOF slag to replace fine aggregate in concrete. Constr. Build. Mater. 2017, 146, 644–651. [Google Scholar] [CrossRef]
- Mo, L.; Zhang, F.; Deng, M.; Jin, F.; Al-Tabbaa, A.; Wang, A. Accelerated carbonation and performance of concrete made with steel slag as binding materials and aggregates. Cement Concrete Comp. 2017, 83, 138–145. [Google Scholar] [CrossRef]
- Guo, J.; Bao, Y.; Wang, M. Steel slag in China: Treatment, recycling, and management. Waste. Manage. 2018, 78, 318–330. [Google Scholar] [CrossRef] [PubMed]
- World Steel, 2020. About Steel. Available online: https://www.worldsteel.org/about-steel.html (accessed on 10 May 2020).
- Belhadj, E.; Diliberto, C.; Lecomte, A. Properties of hydraulic paste of basic oxygen furnace slag. Cement Concrete Comp. 2014, 45, 15–21. [Google Scholar] [CrossRef]
- Liu, Q.; Liu, J.; Qi, L. Effects of temperature and carbonation curing on the mechanical properties of steel slag-cement binding materials. Constr. Build. Mater. 2016, 124, 999–1006. [Google Scholar] [CrossRef]
- Huang, X.; Hu, S.; Wang, F.; Yang, L.; Rao, M.; Mu, Y. The effect of supplementary cementitious materials on the permeability of chloride in steam cured high-ferrite Portland cement concrete. Constr. Build. Mater. 2019, 197, 99–106. [Google Scholar] [CrossRef]
- Zhang, K.; Yang, L.; Rao, M.; Zhang, W.; Wang, F. Understanding the role of brownmilerite on corrosion resistance. Constr. Build. Mater. 2020, 254, 119262. [Google Scholar] [CrossRef]
Materials | Main Chemical Compositions (wt.%) | LOI * | |||||||
---|---|---|---|---|---|---|---|---|---|
CaO | Fe2O3 | Al2O3 | SiO2 | MgO | BaO | SO3 | Others | ||
BOF slag | 43.41 | 18.44 | 7.33 | 16.60 | 7.50 | - | - | 5.21 | 1.51 |
Sintered bauxite | 1.15 | 1.90 | 79.00 | 12.00 | - | - | - | 4.75 | 1.20 |
Lime | 97.25 | 0.49 | 1.03 | 0.15 | 0.25 | - | - | 0.63 | 0.20 |
Cement | 64.02. | 3.44 | 4.85 | 20.94 | 1.70 | - | 1.88 | 1.29 | 1.88 |
Sample | x * | Ratios of Raw Materials (wt.%) | Sintering Temperature (°C) | ||
---|---|---|---|---|---|
BOF Slag | Sintered Bauxite | Lime | |||
A | 100% | 83.48 | 4.73 | 11.79 | 1310 |
B | 75% | 80.80 | 4.57 | 14.63 | 1320 |
C | 50% | 78.28 | 4.43 | 17.29 | 1330 |
D | 25% | 75.91 | 4.30 | 19.79 | 1340 |
E | 0% | 73.79 | 4.18 | 22.03 | 1345 |
Areas | Main Elements | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Ca | Si | Al | Fe | O | Mg | Ti | P | Mn | Ca/Si | |
A-1 | 28.53 | 13.10 | 0.67 | 0.53 | 54.53 | 0.92 | 0.25 | 1.20 | 0 | 2.17 |
B-1 | 28.18 | 13.06 | 0.63 | 0.52 | 55.51 | 0.75 | 0.21 | 1.14 | 0 | 2.15 |
C-1 | 28.12 | 12.75 | 0.56 | 0.41 | 55.43 | 0.81 | 0.26 | 1.51 | 0 | 2.20 |
D-1 | 28.08 | 11.87 | 1.25 | 0.76 | 55.73 | 0.61 | 0.23 | 1.47 | 0 | 2.36 |
E-1 | 28.31 | 11.19 | 1.62 | 0.82 | 55.84 | 0.39 | 0.22 | 1.19 | 2.53 | |
Al/Fe | ||||||||||
A-2 | 23.66 | 1.07 | 8.48 | 10.77 | 52.01 | 1.35 | 1.13 | 0 | 1.35 | 0.79 |
B-2 | 23.50 | 1.05 | 8.66 | 9.98 | 53.14 | 1.23 | 0.85 | 0 | 1.59 | 0.87 |
C-2 | 23.39 | 1.20 | 9.98 | 10.45 | 51.51 | 1.20 | 0.62 | 0 | 1.65 | 0.96 |
D-2 | 22.87 | 0.39 | 9.31 | 9.97 | 53.80 | 1.39 | 0.59 | 0 | 1.68 | 0.93 |
E-2 | 22.52 | 1.07 | 8.85 | 10.29 | 54.01 | 1.24 | 0.59 | 0 | 1.43 | 0.86 |
Mg/O | ||||||||||
A-3 | 5.39 | 0 | 2.34 | 2.23 | 49.12 | 40.49 | 0.12 | 0.82 | ||
B-3 | 4.03 | 0 | 1.07 | 2.30 | 50.18 | 41.96 | 0.12 | 0.84 | ||
C-3 | 1.72 | 0 | 0.81 | 0.95 | 46.67 | 49.0 | 0.06 | - | 1.05 | |
D-3 | 1.25 | 0 | 0.63 | 0.87 | 46.50 | 50.04 | 0 | 1.07 | ||
E-3 | 0.35 | 0 | 0 | 0.83 | 46.35 | 52.32 | 0 | 1.13 |
Sample | BOF Slag | A | B | C | D | E | Cement |
---|---|---|---|---|---|---|---|
f-CaO (%) | 6.50 | 0.15 | 0.21 | 0.34 | 0.63 | 0.97 | 0.63 |
Sample-Cement (30:70) | Specific Surface (m2/kg) | Setting Time(min) | Soundness | Compressive Strength (MPa) |
Activity Index (%) | |||||
---|---|---|---|---|---|---|---|---|---|---|
Initial | Final | 7d | 28d | 90d | 7d | 28d | 90d | |||
A–C | 403 | 156 | 252 | Qualified | 22.3 | 36.7 | 49.6 | 68.2 | 84.3 | 88.7 |
B–C | 396 | 149 | 236 | Qualified | 23.2 | 37.9 | 50.3 | 70.9 | 87.1 | 89.9 |
C–C | 389 | 146 | 229 | Qualified | 23.9 | 39.0 | 50.7 | 73.1 | 89.6 | 90.7 |
D–C | 401 | 138 | 210 | Qualified | 25.3 | 40.7 | 54.6 | 77.3 | 93.6 | 97.6 |
E–C | 383 | 127 | 196 | Qualified | 26.5 | 42.3 | 55.3 | 81.0 | 97.2 | 98.9 |
BOF slag–C | 396 | 161 | 260 | Qualified | 21.6 | 33.8 | 45.0 | 66.0 | 77.7 | 80.5 |
Cement | 358 | 105 | 163 | Qualified | 32.7 | 43.5 | 55.9 | 100 | 100 | 100 |
Sample | 28 Days | 90 Days | |||||
---|---|---|---|---|---|---|---|
Cement (%) | Modified BOF Slag * (%) | Flexural Strength (MPa) | Corrosion Resistance Coefficient | Flexural Strength (MPa) | Corrosion Resistance Coefficient | ||
Water | 5% Na2SO4 Solution | Water | 5% Na2SO4 Solution | ||||
100 | 0 | 10.81 | 10.37 | 0.96 | 11.98 | 11.02 | 0.92 |
90 | 10 | 10.56 | 10.876 | 1.03 | 11.65 | 12.11 | 1.04 |
85 | 15 | 10.50 | 11.23 | 1.07 | 11.50 | 12.76 | 1.11 |
80 | 20 | 10.27 | 10.58 | 1.08 | 11.26 | 12.83 | 1.14 |
75 | 25 | 10.01 | 11.31 | 1.11 | 11.02 | 12.56 | 1.14 |
70 | 30 | 9.73 | 11.57 | 1.13 | 10.78 | 12.50 | 1.16 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Y.; Sun, P.; Chen, P.; Guan, X.; Wang, Y.; Liu, R.; Wei, J. Component Modification of Basic Oxygen Furnace Slag with C4AF as Target Mineral and Application. Sustainability 2021, 13, 6536. https://doi.org/10.3390/su13126536
Zhao Y, Sun P, Chen P, Guan X, Wang Y, Liu R, Wei J. Component Modification of Basic Oxygen Furnace Slag with C4AF as Target Mineral and Application. Sustainability. 2021; 13(12):6536. https://doi.org/10.3390/su13126536
Chicago/Turabian StyleZhao, Yanrong, Pengliang Sun, Ping Chen, Xiaomin Guan, Yuanhao Wang, Rongjin Liu, and Jincan Wei. 2021. "Component Modification of Basic Oxygen Furnace Slag with C4AF as Target Mineral and Application" Sustainability 13, no. 12: 6536. https://doi.org/10.3390/su13126536
APA StyleZhao, Y., Sun, P., Chen, P., Guan, X., Wang, Y., Liu, R., & Wei, J. (2021). Component Modification of Basic Oxygen Furnace Slag with C4AF as Target Mineral and Application. Sustainability, 13(12), 6536. https://doi.org/10.3390/su13126536