Sustainable Feasibility of the Environmental-Friendly Policies on Agriculture and Its Related Sectors in India
Abstract
:1. Introduction
2. Conceptual Research Model and Variables
3. Material and Methods
3.1. SBM-DEA Model with Undesirable Outputs
3.2. Tobit Regression Model
4. Data Collection and Empirical Results
4.1. Input and Output Variables
Environmental Efficiency of Indian Agriculture and Its Related Firms
4.2. Descriptive Statistics for Factors Affecting Inefficiency in Indian Agricultural Firms
Results of Tobit Regression
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Agriculture and Food. Available online: https://www.worldbank.org/en/topic/agriculture/overview (accessed on 22 December 2020).
- Vetter, S.H.; Sapkota, T.B.; Hillier, J.; Stirling, C.M.; Macdiarmid, J.I.; Aleksandrowicz, L.; Smith, P. Greenhouse gas emissions from agricultural food production to supply Indian diets: Implications for climate change mitigation. Agric. Ecosyst. Environ. 2017, 237, 234–241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agriculture in India: Information About Indian Agriculture & Its Importance. Available online: https://www.ibef.org/industry/agriculture-india.aspx (accessed on 14 May 2021).
- GDP (Current US$)—India. Available online: https://data.worldbank.org/indicator/NY.GDP.MKTP.CD?locations=IN (accessed on 14 May 2021).
- Agriculture, forestry, and Fishing, Value Added (Current US$)—India. Available online: https://data.worldbank.org/indicator/NV.AGR.TOTL.CD?locations=IN (accessed on 14 May 2021).
- Historical GHG Emissions. Available online: https://www.climatewatchdata.org/ghg-emissions?breakBy=sector&end_year=2018®ions=IND&start_year=1990 (accessed on 14 May 2021).
- Mertz, O.; Halsnæs, K.; Olesen, J.E.; Rasmussen, K. Adaptation to climate change in developing countries. Environ. Manag. 2009, 43, 743–752. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mendelsohn, R. The impact of climate change on agriculture in developing countries. J. Nat. Resour. Policy Res. 2008, 1, 5–19. [Google Scholar] [CrossRef] [Green Version]
- IPCC. Available online: https://report.ipcc.ch/sr15/pdf/sr15_spm_final.pdf (accessed on 14 May 2021).
- Agricoop. Available online: https://agricoop.gov.in/sites/default/files/National_agroforestry_policy_2014.pdf (accessed on 17 May 2021).
- Khoshroo, A.; Izadikhah, M.; Emrouznejad, A. Improving energy efficiency considering reduction of CO2 emission of turnip production: A novel data envelopment analysis model with undesirable output approach. J. Clean. Prod. 2018, 187, 605–615. [Google Scholar] [CrossRef] [Green Version]
- Cecchini, L.; Venanzi, S.; Pierri, A.; Chiorri, M. Environmental efficiency analysis and estimation of CO2 abatement costs in dairy cattle farms in Umbria (Italy): A SBM-DEA model with undesirable output. J. Clean. Prod. 2018, 197, 895–907. [Google Scholar] [CrossRef]
- Le, T.L.; Lee, P.P.; Peng, K.C.; Chung, R.H. Evaluation of total factor productivity and environmental efficiency of agriculture in nine East Asian countries. Agric. Econ. 2019, 65, 249–258. [Google Scholar]
- Zhang, J.; Zeng, W.; Shi, H. Regional environmental efficiency in China: Analysis based on a regional slack-based measure with environmental undesirable outputs. Ecol. Indic. 2016, 71, 218–228. [Google Scholar] [CrossRef]
- Kuang, B.; Lu, X.; Zhou, M.; Chen, D. Provincial cultivated land use efficiency in China: Empirical analysis based on the SBM-DEA model with carbon emissions considered. Technol. Forecast. Soc. Chang. 2020, 151, 119874. [Google Scholar] [CrossRef]
- Horvat, A.M.; Radovanov, B.; Popescu, G.H.; Panaitescu, C. A two-stage DEA model to evaluate agricultural efficiency in case of Serbian districts. Econom. Agric. 2019, 66, 965–974. [Google Scholar]
- Yan, L.P. Evaluation of operating efficiency of agricultural listed enterprises based on DEA-tobit two stage model. In Proceedings of the International Conference on Modeling, Analysis, Simulation Technologies and Applications (MASTA 2019), Hangzhou, China, 26–27 May 2019; Atlantis Press: Paris, France, 2019; pp. 47–53. [Google Scholar]
- Raheli, H.; Rezaei, R.M.; Jadidi, M.R.; Mobtaker, H.G. A two-stage DEA model to evaluate sustainability and energy efficiency of tomato production. Inf. Process. Agric. 2017, 4, 342–350. [Google Scholar] [CrossRef]
- Vlontzos, G.; Niavis, S.; Pardalos, P. Testing for environmental Kuznets curve in the EU agricultural sector through an eco-(in) efficiency index. Energies 2017, 10, 1992. [Google Scholar] [CrossRef] [Green Version]
- You, H.; Zhang, X. Ecoefficiency of intensive agricultural production and its influencing factors in China: An application of DEA-Tobit analysis. Discret. Dyn. Nat. Soc. 2016, 2016. [Google Scholar] [CrossRef]
- Ray, S.C.; Ghose, A. Production efficiency in Indian agriculture: An assessment of the post green revolution years. Omega 2014, 44, 58–69. [Google Scholar] [CrossRef]
- Hansson, H.; Öhlmér, B. The effect of operational managerial practices on economic, technical and allocative efficiency at Swedish dairy farms. Livest. Sci. 2008, 118, 34–43. [Google Scholar] [CrossRef]
- Javed, M.I.; Adil, S.A.; Ali, A.; Raza, M.A. Measurement of technical efficiency of rice-wheat system in Punjab, Pakistan using DEA technique. J. Agric. Res. 2010, 48, 227–238. [Google Scholar]
- Frija, A.; Wossink, A.; Buysse, J.; Speelman, S.; Van Huylenbroeck, G. Irrigation pricing policies and its impact on agricultural inputs demand in Tunisia: A DEA-based methodology. J. Environ. Manag. 2011, 92, 2109–2118. [Google Scholar] [CrossRef]
- Escobar, N.; Tizado, E.J.; zu Ermgassen, E.K.; Löfgren, P.; Börner, J.; Godar, J. Spatially-explicit footprints of agricultural commodities: Mapping carbon emissions embodied in Brazil’s soy exports. Glob. Environ. Change 2020, 62, 102067. [Google Scholar] [CrossRef]
- Ayaz, S.; Hussain, Z.; Sial, M.H. Role of credit on production efficiency of farming sector in Pakistan (A data envelopment analysis). World Acad. Sci. Eng. Technol. 2010, 60, 1028–1033. [Google Scholar]
- Choi, Y.; Yang, F.; Lee, H. On the unbalanced atmospheric environmental performance of major cities in China. Sustainability 2020, 12, 5391. [Google Scholar] [CrossRef]
- Mei, G.; Gan, J.; Zhang, N. Metafrontier environmental efficiency for China’s regions: A slack-based efficiency measure. Sustainability 2015, 7, 4004–4021. [Google Scholar] [CrossRef] [Green Version]
- Choirina, V.N.; Hartono, S.; Suryantini, A. Supply response analysis of paddy in Kediri: Managerial implications. Agro Ekon. 2016, 27, 107–120. [Google Scholar] [CrossRef] [Green Version]
- Long, X.; Oh, K.; Cheng, G. Are stronger environmental regulations effective in practice? The case of China’s accession to the WTO. J. Clean. Prod. 2013, 39, 161–167. [Google Scholar] [CrossRef]
- Kutlar, A.; Kabasakal, A.; Sarikaya, M. Determination of the efficiency of the world railway companies by method of DEA and comparison of their efficiency by Tobit analysis. Qual. Quant. 2013, 47, 3575–3602. [Google Scholar] [CrossRef]
- Sharma, K.R.; Leung, P.; Zaleski, H.M. Technical, allocative and economic efficiencies in swine production in Hawaii: A comparison of parametric and nonparametric approaches. Agric. Econom. 1999, 20. [Google Scholar] [CrossRef]
- Galanopoulos, K.; Aggelopoulos, S.; Kamenidou, I.; Mattas, K. Assessing the effects of managerial and production practices on the efficiency of commercial pig farming. Agric. Syst. 2006, 88. [Google Scholar] [CrossRef]
- Choi, Y.; Lee, H.; Debbarma, J. Are global companies better in environmental efficiency in India? Based on metafrontier malmquist CO2 performance. Sustainability 2020, 12, 8359. [Google Scholar] [CrossRef]
- Why Do Indian Businesses Need to Take Air Pollution Seriously? Available online: https://wri-india.org/blog/why-do-indian-businesses-need-take-air-pollution652seriously (accessed on 14 May 2021).
- India Greenhouse Gas Program. Available online: https://www.wri.org/our-work/project/india-greenhouse-gas-program (accessed on 14 May 2021).
- Hu, Y. Energy conservation assessment of fixed-asset investment projects: An attempt to improve energy efficiency in China. Energy Policy 2012, 43, 327–334. [Google Scholar] [CrossRef]
- Aggarwal, N.; Narayanan, S. Impact of India’s demonetization on domestic agricultural markets. SSRN 2017. [Google Scholar] [CrossRef]
- Demonetisation Will Hit Agriculture, Informal Workers Worst: Study (But It’s Good Idea). Available online: https://archive.indiaspend.com/cover-story/demonetisation-will-hit-agriculture-informal-workers-worst-study-but-its-good-idea-56666 (accessed on 14 May 2021).
- Latest Releases. Available online: https://censusindia.gov.in/2011-Common/Latest_Releases.html (accessed on 14 May 2021).
- Publications. Available online: https://m.rbi.org.in/Scripts/PublicationsView.aspx?id=19992 (accessed on 14 May 2021).
- Statewise Rainfall Information. Available online: https://mausam.imd.gov.in/imd_latest/contents/index_rainfall_state_new.php (accessed on 14 May 2021).
- Zhang, J.F.; Fang, H.; Wang, H.X.; Jia, M.S.; Wu, J.J.; Fang, S.R. Energy efficiency of airlines and its influencing factors: A comparison between China and the United States. Resour. Conserv. Recy. 2017, 125, 1–8. [Google Scholar] [CrossRef]
- Dalei, N.N.; Joshi, J.M. Estimating technical efficiency of petroleum refineries using DEA and tobit model: An India perspective. Comput. Chem. Eng. 2020, 142, 107047. [Google Scholar] [CrossRef]
- Tirado, R.; Gopikrishna, S.R.; Krishnan, R.; Smith, P. Greenhouse gas emissions and mitigation potential from fertilizer manufacture and application in India. Int. J. Agric. Sustain. 2010, 8, 176–185. [Google Scholar] [CrossRef]
- Velmurugan, A.; Dadhwal, V.K.; Abrol, Y.P. Regional nitrogen cycle: An Indian perspective. Curr. Sci. 2008, 94, 1455–1468. [Google Scholar]
- Sah, D.; Devakumar, A.S. The carbon footprint of agricultural crop cultivation in India. Carbon Manag. 2018, 9, 213–225. [Google Scholar] [CrossRef]
Author(s) (Year) | Field of Application | First-Stage | Second-Stage | ||
---|---|---|---|---|---|
Variables | Method | Variables | Method | ||
Kuang et al. (2020) [15] | CLUE for 31 provinces in China from 2000 to 2017. | Land, labor, machinery, fertilizers, pesticides, plastic film, irrigation, gross agricultural production, output of grain, and carbon emissions. | SBM-DEA | Natural condition, cultivated land resource endowments, agricultural production condition, regional economic development, and regional science and technology development. | Tobit model |
Horvat et al. (2019) [16] | Technical efficiency for 25 Serbian districts. | Utilized agricultural area, livestock, labor, and economic size. | Two-stage DEA | Utilized agricultural area, irrigated agricultural area, education, years, and DEA efficiency scores. | Tobit model |
Yan (2019) [17] | Efficiency for agricultural enterprises | Total assets, operating costs, management costs, and profit. | DEA | Age, size, ROA, ownership concentration, nature of controlling shareholders, and Crste. | Tobit model |
Raheli et al. (2017) [18] | Efficiency for tomato farming in East Azerbaijan province, Iran. | Labor, machinery, fertilizers, biocides, seed, diesel fuel, water for irrigation, and tomato. | DEA | Age, area, education, and manure. | Fractional regression |
Vlontzos et al. (2017) [19] | Eco-(in)efficiency index for EU agricultural sector from 1999–2012. | Land, energy, chemicals and fertilizers, fixed capital, labor, output, and GHG Emissions. | DEA | Eco-efficiency, Energy, GHG emissions | Regression Model |
You et al. (2016) [20] | Eco-efficiency for 31 provinces in China. | Labor, machinery, pesticide, diesel oil, ammonia nitrogen emission, total nitrogen emission, and total phosphorus emission. | Input-oriented DEA | Education, farmland area, income, wage, population, population burden, fixed assets, agriculture’s position, and industrialization level. | Tobit model |
Ray (2014) [21] | Technical efficiency for individual states over the years 1970–71 to 2000–01. | Land, fertilizers, irrigated area, pump sets, tractors, electricity, labor, rainfall, food grains and nonfood grains. | DEA | Land, degree of openness, education and research, credit, crop diversification index, literacy rate, gross cropped area, irrigated area, annual rainfall, input, output, and Pareto–Koopmans efficiency. | Regression Model |
Hansson (2008) [22] | Efficiency for dairy farms in Sweden. | Fodder, labor, capital, energy, seed, fertilizer, milk, livestock, crops, forage, and ‘‘other’’. | DEA | Personal aspects, management systems, farm performance, efficiency scores, aspects of the management systems. | Logistic and Tobit regression |
Firm | Variable (Unit) | Input/Output | Mean | Std. Deviation | Maximum | Minimum |
---|---|---|---|---|---|---|
Employee (Per person) | Input | 2433.381 | 2133.565 | 7649.000 | 252.000 | |
Capital (Million rupees) | Input | 8655.340 | 10,616.070 | 47,160.000 | 524.340 | |
FDI | Energy (Gj) | Input | 342,959.633 | 408,573.477 | 1,522,000.000 | 6368.390 |
Sales turnover (Million rupees) | Desirable output | 57,201.725 | 77,509.104 | 388,880.000 | 4593.300 | |
GHG emissions (Tons) | Undesirable output | 12,775.394 | 14,428.415 | 54,417.650 | 227.670 | |
Employee (Per person) | Input | 1557.024 | 1551.181 | 5173.000 | 177.000 | |
Capital (Million rupees) | Input | 2591.291 | 3645.471 | 16,409.580 | 150.000 | |
Private | Energy (Gj) | Input | 10,355.371 | 11,937.045 | 47,663.470 | 1881.650 |
Sales turnover (Million rupees) | Desirable output | 94,946.336 | 152,120.579 | 741,000.000 | 2270.280 | |
GHG emissions (Tons) | Undesirable output | 4323.290 | 8289.132 | 47,312.370 | 81.160 | |
Employee (Per person) | Input | 1066.837 | 1100.962 | 5077.000 | 6.000 | |
Capital (Million rupees) | Input | 129,638.839 | 764,029.248 | 5,652,745.300 | 12.630 | |
Public | Energy (Gj) | Input | 2,420,438.986 | 12,638,523.524 | 83,526,299.200 | 337.800 |
Sales turnover (Million rupees) | Desirable output | 498,961.030 | 1,607,358.846 | 10,305,640.400 | 2306.730 | |
GHG emissions (Tons) | Undesirable output | 35,916.885 | 119,537.804 | 729,131.140 | 116.140 |
Variables | Employee | Capital | Energy | Sales Turnover | GHG Emissions |
---|---|---|---|---|---|
Employee | 1.000 | ||||
Capital | 0.297 | 1.000 | |||
Energy | 0.324 | 0.964 | 1.000 | ||
Sales turnover | 0.300 | 0.368 | 0.362 | 1.000 | |
GHG emission | 0.412 | 0.367 | 0.915 | 0.874 | 1.000 |
Firms Id | Firm Type | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | Average |
---|---|---|---|---|---|---|---|---|---|
AFL | FDI | 0.457 | 0.594 | 0.697 | 0.781 | 0.811 | 0.873 | 0.865 | 0.725 |
BIL | FDI | 0.340 | 0.377 | 0.376 | 0.481 | 0.621 | 0.743 | 0.878 | 0.545 |
BI | FDI | 0.776 | 0.675 | 0.630 | 0.849 | 0.882 | 0.852 | 0.853 | 0.788 |
BIL | FDI | 0.557 | 0.560 | 0.611 | 0.786 | 0.879 | 0.820 | 0.817 | 0.719 |
CIL | FDI | 0.406 | 0.416 | 0.522 | 0.631 | 0.709 | 0.823 | 0.842 | 0.621 |
DAL | FDI | 0.536 | 0.524 | 0.532 | 0.604 | 0.704 | 0.837 | 0.876 | 0.659 |
ECCL | FDI | 0.319 | 0.455 | 0.445 | 0.506 | 0.708 | 0.836 | 0.850 | 0.588 |
GSCHL | FDI | 0.436 | 0.478 | 0.498 | 0.599 | 0.699 | 0.702 | 0.843 | 0.608 |
GAL | FDI | 0.314 | 0.406 | 0.418 | 0.594 | 0.628 | 0.815 | 0.825 | 0.571 |
HUL | FDI | 0.417 | 0.495 | 0.401 | 0.681 | 0.750 | 0.939 | 0.851 | 0.648 |
IIL | FDI | 0.251 | 0.279 | 0.384 | 0.488 | 0.506 | 0.701 | 0.804 | 0.488 |
MIL | FDI | 0.325 | 0.478 | 0.473 | 0.560 | 0.677 | 0.869 | 0.863 | 0.606 |
NIL | FDI | 0.235 | 0.252 | 0.337 | 0.460 | 0.686 | 0.613 | 0.737 | 0.474 |
RIL | FDI | 0.270 | 0.289 | 0.393 | 0.461 | 0.503 | 0.598 | 0.712 | 0.461 |
TP&GC | FDI | 0.410 | 0.494 | 0.515 | 0.628 | 0.737 | 0.776 | 0.843 | 0.629 |
AFF | Private | 0.293 | 0.468 | 0.491 | 0.411 | 0.687 | 0.870 | 0.854 | 0.582 |
AAL | Private | 0.298 | 0.340 | 0.420 | 0.489 | 0.766 | 0.815 | 0.900 | 0.575 |
BRL | Private | 0.427 | 0.374 | 0.452 | 0.457 | 0.707 | 0.838 | 0.846 | 0.586 |
HAPL | Private | 0.380 | 0.355 | 0.387 | 0.405 | 0.676 | 0.844 | 0.847 | 0.556 |
KSCL | Private | 0.322 | 0.376 | 0.439 | 0.495 | 0.657 | 0.875 | 0.852 | 0.574 |
ML | Private | 0.283 | 0.311 | 0.388 | 0.390 | 0.684 | 0.862 | 0.871 | 0.541 |
ALIL | Public | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
CCL | Public | 0.410 | 0.449 | 0.608 | 0.707 | 0.856 | 0.869 | 0.945 | 0.692 |
DSML | Public | 0.276 | 0.380 | 0.757 | 0.806 | 0.806 | 0.820 | 0.922 | 0.681 |
DDL | Public | 0.376 | 0.289 | 0.566 | 0.619 | 0.707 | 0.794 | 0.850 | 0.600 |
DSIL | Public | 0.256 | 0.248 | 0.464 | 0.630 | 0.693 | 0.728 | 0.786 | 0.544 |
FCL | Public | 0.368 | 0.283 | 0.475 | 0.611 | 0.670 | 0.733 | 0.880 | 0.574 |
GOL | Public | 0.530 | 0.799 | 0.880 | 0.853 | 0.857 | 1.000 | 0.952 | 0.839 |
HFL | Public | 0.327 | 0.317 | 0.550 | 0.657 | 0.774 | 0.857 | 0.724 | 0.601 |
ISL | Public | 0.200 | 0.278 | 0.444 | 0.596 | 0.662 | 0.674 | 0.750 | 0.515 |
KSML | Public | 0.325 | 0.392 | 0.642 | 0.657 | 0.787 | 0.753 | 0.837 | 0.628 |
KI | Public | 0.755 | 0.823 | 0.902 | 0.928 | 0.928 | 1.000 | 1.000 | 0.905 |
KL | Public | 1.000 | 1.000 | 0.973 | 0.905 | 0.893 | 0.875 | 0.808 | 0.922 |
LCCL | Public | 0.312 | 0.468 | 0.505 | 0.736 | 0.850 | 0.827 | 0.815 | 0.645 |
MFL | Public | 1.000 | 1.000 | 0.632 | 0.763 | 0.803 | 0.738 | 0.750 | 0.812 |
MC&FL | Public | 0.625 | 0.324 | 0.397 | 0.516 | 0.691 | 0.602 | 0.725 | 0.554 |
NIL | Public | 0.246 | 0.245 | 0.273 | 0.570 | 0.714 | 0.709 | 0.711 | 0.495 |
NS | Public | 0.307 | 0.386 | 0.550 | 0.764 | 0.806 | 0.816 | 0.808 | 0.634 |
OFL | Public | 0.935 | 1.000 | 0.860 | 0.966 | 0.926 | 0.835 | 0.895 | 0.917 |
PMFL | Public | 0.259 | 0.270 | 0.419 | 0.517 | 0.724 | 0.819 | 0.839 | 0.550 |
PSL | Public | 0.156 | 0.265 | 0.347 | 0.481 | 0.673 | 0.719 | 0.824 | 0.495 |
RPL | Public | 0.420 | 0.481 | 0.425 | 0.722 | 0.820 | 0.822 | 0.883 | 0.653 |
HGAIL | Public | 0.336 | 0.317 | 0.454 | 0.653 | 0.721 | 0.803 | 0.870 | 0.593 |
SFL | Public | 0.665 | 0.675 | 0.790 | 0.872 | 0.863 | 0.855 | 0.851 | 0.796 |
SSLEL | Public | 0.251 | 0.547 | 0.652 | 0.873 | 0.889 | 0.864 | 0.825 | 0.700 |
SEPEL | Public | 0.312 | 0.257 | 0.395 | 0.590 | 0.766 | 0.713 | 0.805 | 0.548 |
SPICL | Public | 0.236 | 0.301 | 0.486 | 0.668 | 0.837 | 0.881 | 0.840 | 0.607 |
TCL | Public | 0.762 | 0.363 | 0.449 | 0.653 | 0.808 | 0.830 | 0.816 | 0.669 |
TCPL | Public | 0.525 | 0.648 | 0.514 | 0.723 | 0.889 | 0.889 | 0.888 | 0.725 |
TF&CTL | Public | 0.414 | 0.798 | 0.430 | 0.651 | 0.797 | 0.768 | 0.814 | 0.667 |
TUSWL | Public | 0.221 | 0.520 | 0.462 | 0.511 | 0.754 | 0.892 | 0.823 | 0.598 |
TWL | Public | 0.516 | 0.715 | 0.618 | 0.715 | 0.819 | 0.826 | 0.825 | 0.719 |
ZAL | Public | 0.227 | 0.599 | 0.456 | 0.544 | 0.788 | 0.878 | 0.832 | 0.618 |
ZACL | Public | 0.551 | 0.803 | 0.684 | 0.827 | 0.840 | 0.830 | 0.831 | 0.767 |
ZGL | Public | 0.598 | 0.814 | 0.578 | 0.808 | 0.866 | 0.864 | 0.943 | 0.782 |
RC&F | Public | 0.220 | 0.530 | 0.400 | 0.480 | 0.800 | 0.810 | 0.905 | 0.592 |
FDI Firm | 0.403 | 0.451 | 0.482 | 0.607 | 0.700 | 0.786 | 0.831 | 0.609 | |
Private Firm | 0.334 | 0.371 | 0.430 | 0.441 | 0.696 | 0.851 | 0.862 | 0.569 | |
Public Firm | 0.455 | 0.531 | 0.572 | 0.702 | 0.802 | 0.820 | 0.845 | 0.675 | |
Average | 0.397 | 0.451 | 0.495 | 0.583 | 0.733 | 0.819 | 0.846 | 0.618 |
Explanatory Variables (Unit) | Mean | Std. Deviation | Maximum | Minimum |
---|---|---|---|---|
Land (Million rupees) | 0.75 | 0.70 | 4.90 | 0.20 |
Livestock (Tons) | 11,052.00 | 6502.46 | 30,000.00 | 0.00 |
Fertilizers (Kg. Per Hectare) | 100.83 | 27.73 | 143.00 | 11.00 |
Agricultural cultivation (Mil. hectares) | 22.13 | 6.96 | 32.23 | 3.24 |
Urbanization rate (Percentage) | 30.00 | 8.746 | 40.620 | 6.800 |
Average rainfall (Millimeter) | 1226.60 | 833.56 | 4321.00 | 108.00 |
Economics openness- export (Million rupees) | 286.93 | 298.35 | 1029.19 | 1.63 |
Credit access (Million rupees) | 5171.53 | 1522.62 | 11,621.76 | 1000.84 |
Dependent Variable = Efficiency Scores from the First Stage of the DEA Application | |||||
---|---|---|---|---|---|
OLS Model | Tobit Model | ||||
Explanatory Variables | Unit | Coefficient | t-Statistics | Coefficient | t-Statistics |
Land | Million rupees | 0.742 | 5.690 *** | 0.765 | 3.130 *** |
Livestock | Tons | −1.575 | −2.830 *** | −1.850 | −1.310 |
Fertilizer | Kg. Per Hectare | −2.836 | −0.595 | −3.350 | −2.905 *** |
Agricultural cultivation | Million hectares | −0.020 | −5.450 *** | −0.010 | −5.030 *** |
Urbanization rate | Percentage | −0.030 | −1.740 * | −0.027 | −1.090 |
Average rainfall | Millimeter | 0.152 | 1.772 * | 0.051 | 1.122 |
Economics openness—export | Million rupees | 0.015 | 4.720 *** | 0.013 | 2.160 ** |
Credit access | Million rupees | 2.579 | 2.560 ** | 2.710 | 2.150 ** |
Industry fixed effects | Yes | Yes | |||
FDI/Private/Public fixed effects | Yes | Yes | |||
Year fixed effects | Yes | Yes | |||
Year of observation | 2019 | 2019 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Debbarma, J.; Lee, H.; Choi, Y. Sustainable Feasibility of the Environmental-Friendly Policies on Agriculture and Its Related Sectors in India. Sustainability 2021, 13, 6680. https://doi.org/10.3390/su13126680
Debbarma J, Lee H, Choi Y. Sustainable Feasibility of the Environmental-Friendly Policies on Agriculture and Its Related Sectors in India. Sustainability. 2021; 13(12):6680. https://doi.org/10.3390/su13126680
Chicago/Turabian StyleDebbarma, Jahira, Hyoungsuk Lee, and Yongrok Choi. 2021. "Sustainable Feasibility of the Environmental-Friendly Policies on Agriculture and Its Related Sectors in India" Sustainability 13, no. 12: 6680. https://doi.org/10.3390/su13126680