Environmental Behaviors of Procymidone in Different Types of Chinese Soil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Soil Samples
2.3. Degradation of Procymidone in the Soils
2.4. Adsorption and Desorption of Procymidone in Soil
2.5. Isothermal Adsorption Experiment
2.6. Mobility of Procymidone in Soil
2.6.1. Thin-Layer Chromatography
2.6.2. Soil Column Leaching
2.7. Extraction and Analysis
2.8. Identification of Procymidone Metabolites by LC-Q-TOF-MS/MS
3. Results
3.1. Method Validation
3.2. Degradation of Procymidone in Soil
3.2.1. Degradation in Four Types of Soil
3.2.2. Degradation in Soils with Different Moisture Content
3.2.3. Degradation in Removed Organic Matter and Sterilized Soils
3.2.4. Soil Surface Photolysis
3.3. Adsorption and Desorption of Procymidone in Soil
3.3.1. Adsorption and Desorption
3.3.2. Isothermal Adsorption
3.4. Mobility of Procymidone in Soil
3.5. Identification of Metabolites of Procymidone in Soil
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Fismes, J.; Schwartz, C.; Ganier, C.P.; Morel, J.L.; Charissou, A.M.; Jourdain, M.J. Risk of contamination for edible vegetables growing on soils polluted by polycyclic aromatic hydrocarbons. Polycycl. Aromat. Comp. 2004, 24, 827–836. [Google Scholar] [CrossRef]
- Silva, V.; Mol, H.G.J.; Zomer, P.; Tienstra, M.; Ritsema, C.J.; Geissen, V. Pesticide residues in european agricultural soils–A hidden reality unfolded. Sci. Total Environ. 2019, 653, 1532–1545. [Google Scholar] [CrossRef] [PubMed]
- Sarmah, A.K.; Close, M.E.; Mason, N.W.H. Dissipation and sorption of six commonly used pesticides in two contrasting soils of New Zealand. J. Environ. Sci. Health B 2009, 44, 325–336. [Google Scholar] [CrossRef] [Green Version]
- Sarmah, A.K.; Muller, K.; Ahmad, R. Fate and behaviour of pesticides in the agro-ecosystem–A review with a New Zealand perspective. Aust. J. Soil Res. 2004, 42, 125–257. [Google Scholar] [CrossRef]
- Allen, R.; Walker, A. The influence of soil properties on the rates of degradation of metamitron, metazachlor and metribuzin. Pest Manag. Sci. 2010, 18, 95–111. [Google Scholar] [CrossRef]
- Gevao, B.; Semple, K.T.; Jones, K.C. Bound pesticide residues in soils: A review. Environ. Pollut. 2000, 108, 3–14. [Google Scholar] [CrossRef]
- Lin, S.H.; Han, Y.Y.; Jiangyuan, C.Z.; Luo, Y.B.; Xu, W.T.; Luo, H.X.; Pang, G.F. Revealing the biodiversity and the response of pathogen to a combined use of procymidone and thiamethoxam in tomatoes. Food Chem. 2019, 284, 73–79. [Google Scholar] [CrossRef]
- Pang, L.; Close, M.E. A field tracer study of attenuation of atrazine, hexazinone and procymidone in a pumice sand aquifer. Pest Manag. Sci. 2001, 57, 1142–1150. [Google Scholar] [CrossRef]
- Pang, D.L.; Close, M.; Flintoft, M. Degradation and sorption of atrazine, hexazinone and procymidone in coastal sand aquifer media. Pest Manag. Sci. 2005, 61, 133–143. [Google Scholar] [CrossRef]
- Abe, J.; Tomigahara, Y.; Tarui, H.; Omori, R.; Kawamura, S. Identification of metabolism and excretion differences of procymidone between rats and humans using chimeric mice: Implications for differential developmental toxicity. J. Agric. Food Chem. 2018, 66, 1955–1963. [Google Scholar] [CrossRef]
- Mikami, N.; Imanishi, K.; Yamada, H. Photolysis and hydrolysis of the fungicide procymidone in water. J. Pestic. Sci. 1984, 9, 223–228. [Google Scholar] [CrossRef] [Green Version]
- Ambrus, A.; Buys, M.; Miyamoto, J.; Otto, S.; Smart, N.A. IUPAC reports on pesticides (28)–Some aspects of the analysis of residues of dicarboximide fungicides in food. Pure Appl. Chem. 1991, 63, 747–762. [Google Scholar] [CrossRef]
- Xia, S.; Yan, N.; Zhu, J.; Popov, V.K.; Semchishen, V.A.; Tsypina, S.I. Biofilm coupled with UV irradiation for phenol degradation and change of its community structure. Bioproc. Biosyst. Eng. 2011, 34, 607. [Google Scholar] [CrossRef] [PubMed]
- Laufs, S.; Kleffmann, J. Investigations on HONO formation from photolysis of adsorbed HNO3 on quartz glass surfaces. Peys. Chem. Chem. Phys. 2016, 18, 9616–9625. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, L.; Li, X.S.; Wang, Z.Q.; Pan, C.P.; Jin, R.C. Residue dynamics of procymidone in leeks and soil in greenhouses by smoke generator application. Ecotox. Environ. Safe. 2010, 73, 73–77. [Google Scholar] [CrossRef] [PubMed]
- Dechesne, A.; Badawi, N.; Aamand, J.; Smets, B.F. Fine scale spatial variability of microbial pesticide degradation in soil: Scales, controlling factors, and implications. Front. Microbiol. 2014, 5, 667. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sims, G.K.; Cupples, A.M. Factors controlling degradation of pesticides in soil. Pest Manag. Sci. 2015, 55, 598–601. [Google Scholar] [CrossRef]
- Pan, Z.P.; Guo, D.; Chen, J.Q.; Chen, D.; Zheng, J.W.; Li, L.Q.; Pan, G.X. Effect of biochar application on soil and procymidone residues of panax notoginseng. J. Chin. Med. Mater. 2016, 39, 2431–2436. [Google Scholar]
- Tao, L.; Yang, H. Fluroxypyr biodegradation in soils by multiple factors. Environ. Monit. Assess. 2011, 175, 227–238. [Google Scholar] [CrossRef]
- Pan, M.; Chu, L.M. Adsorption and degradation of five selected antibiotics in agricultural soil. Sci. Total Environ. 2016, 545–546, 48–56. [Google Scholar] [CrossRef]
- Yu, Y.L.; Wu, X.M.; Li, S.N.; Fang, H.; Zhan, H.Y.; Yu, J.Q. An exploration of the relationship between adsorption and bioavailability of pesticides in soil to earthworm. Environ. Pollut. 2006, 141, 428–433. [Google Scholar] [CrossRef]
- Kumar, M.; Philip, L. Adsorption and desorption characteristics of hydrophobic pesticide endosulfan in four Indian soils. Chemosphere 2006, 62, 1064–1077. [Google Scholar] [CrossRef]
- Rama, K.K.; Philip, L. Adsorption and desorption characteristics of lindane, carbofuran and methyl parathion on various Indian soils. J. Hazard. Mater. 2008, 160, 559–567. [Google Scholar] [CrossRef]
- Đurović, R.; Gajić-Umiljendić, J.; Đorđević, T. Effects of organic matter and clay content in soil on pesticide adsorption processes. Pesticidi I Fitomedicina 2009, 24, 51–57. [Google Scholar] [CrossRef]
- Qian, S.; Zhu, H.; Xiong, B.; Zheng, G.; Xu, W. Adsorption and desorption characteristics of endosulfan in two typical agricultural soils in Southwest China. Environ. Sci. Pollut. R. 2017, 24, 11493–11503. [Google Scholar] [CrossRef] [PubMed]
- Bajeer, M.A.; Mallah, M.A.; Sherazi, S.T.H.; Bhanger, M.I.; Nizamani, S.M. Investigation of dissipation, adsorption, degradation, and leaching of triazophos pesticide in various soils. Polycycl. Aromat. Comp. 2015, 36, 229–241. [Google Scholar] [CrossRef]
- Morillo, E.; Undabeytia, T.; Cabrera, A.; Villaverde, J.; Maqueda, C. Effect of soil type on adsorption-desorption, mobility, and activity of the herbicide norflurazon. J. Agric. Food Chem. 2004, 52, 884–890. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.M.; Li, M.; Long, Y.H.; Liu, R.X.; Li, S.N. Effects of adsorption on degradation and bioavailability of metolachlor in soil. J. Soil. Sci. Plant Nut. 2011, 11, 83–97. [Google Scholar]
- Fenoll, J.; Vela, N.; Navarro, G.; Pérez-Lucas, G.; Navarro, S. Assessment of agro-industrial and composted organic wastes for reducing the potential leaching of triazine herbicide residues through the soil. Sci. Total Environ. 2014, 493, 124–132. [Google Scholar] [CrossRef] [PubMed]
- Racine, C.R.; Ferguson, T.; Preston, D.; Ward, D.; Ball, J.; Anestis, D. The role of biotransformation and oxidative stress in 3,5-dichloroaniline (3,5-DCA) induced nephrotoxicity in isolated renal cortical cells from male Fischer 344 rats. Toxicology 2016, 341–343, 47–55. [Google Scholar] [CrossRef] [Green Version]
Treatment | Degradation Kinetic Equation (Ct = Co e–kt) | Degradation Constant (k/d−1) | Half-Lives (T1/2/d) | Determination Coefficient (R2) | |
---|---|---|---|---|---|
Four types of soil | Black soil | Ct = 1.9201 × 10–0.0485t | 0.0485 | 14.3 | 0.9632 |
Chestnut soil | Ct = 1.9954 × 10–0.0367t | 0.0367 | 18.9 | 0.9821 | |
Yellow brown soil | Ct = 1.9787 × 10–0.0343t | 0.0343 | 20.2 | 0.9901 | |
Laterite soil | Ct = 1.9332 × 10–0.0288t | 0.0288 | 24.1 | 0.9855 | |
Soil moisture content (%) | 10 | Ct = 1.9201 × 10–0.0151t | 0.0151 | 45.9 | 0.9732 |
20 | Ct = 1.9954 × 10–0.0340t | 0.0340 | 20.4 | 0.9002 | |
30 | Ct = 1.9787 × 10–0.0413t | 0.0413 | 16.8 | 0.9101 | |
40 | Ct = 1.9332 × 10–0.0459t | 0.0459 | 15.1 | 0.9335 | |
Waterlogging | Ct = 1.9398 × 10–0.0558t | 0.0558 | 11.3 | 0.9445 | |
Sterilization or/and removing organic matter | Sterilization | Ct = 1.9064 × 10–0.0228t | 0.0228 | 30.4 | 0.9601 |
Removing organic matter | Ct = 1.9347 × 10–0.0173t | 0.0173 | 40.1 | 0.9453 | |
Sterilization and removing organic matter | Ct = 1.8939 × 10–0.0108t | 0.0108 | 64.0 | 0.9235 |
Soil | Organic Carbon Content (%) | Freundlich | |||
---|---|---|---|---|---|
Kf | Koc | 1/n ads | R2 | ||
Black soil | 2.68 | 314.4 | 11,716.4 | 0.9751 | 0.9249 |
Chestnut soil | 0.88 | 137.3 | 14,010.2 | 0.9825 | 0.9742 |
Yellow brown soil | 0.92 | 141.1 | 8656.4 | 0.9279 | 0.9972 |
Laterite soil | 1.63 | 21.1 | 2579.3 | 0.8913 | 0.9831 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, S.; Li, L.; Meng, G.; Zhang, X.; Hou, L.; Hua, X.; Wang, M. Environmental Behaviors of Procymidone in Different Types of Chinese Soil. Sustainability 2021, 13, 6712. https://doi.org/10.3390/su13126712
Zhang S, Li L, Meng G, Zhang X, Hou L, Hua X, Wang M. Environmental Behaviors of Procymidone in Different Types of Chinese Soil. Sustainability. 2021; 13(12):6712. https://doi.org/10.3390/su13126712
Chicago/Turabian StyleZhang, Shuguang, Lianshan Li, Ge Meng, Xu Zhang, Lina Hou, Xiude Hua, and Minghua Wang. 2021. "Environmental Behaviors of Procymidone in Different Types of Chinese Soil" Sustainability 13, no. 12: 6712. https://doi.org/10.3390/su13126712