Optimization of Sintering Process of Alumina Ceramics Using Response Surface Methodology
Abstract
:1. Introduction
2. Materials and Methods
2.1. Suspension Preparation
2.2. Determination of Rheological Properties and Density
2.3. Design of Solid-State Sintering Experiments
3. Results and Discussion
3.1. Rheological Measurements of Suspensions Viscosity
3.2. Analysis of Sintering Density with the Response Surface Method
3.3. Linear RSM Model with One Interaction
3.4. Nonlinear RSM Model with One Interaction
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yuan, C.S.; Wang, Z.J.; Zhi, Q.; Zhang, Y.M.; Wang, X.D.; Yang, J.F. The preparation and properties of alumina ceramics through a two-step pressureless sintering process. Mater. Sci. Forum 2018, 922, 47–54. [Google Scholar] [CrossRef]
- Chen, Z.; Li, Z.; Li, J.; Liu, C.; Lao, C.; Fu, Y.; Liu, C.; Li, Y.; Wang, P.; He, Y. 3D printing of ceramics: A review. J. Eur. Ceram. Soc. 2019, 39, 661–687. [Google Scholar] [CrossRef]
- Tsetsekou, A.; Agrafiotis, C.; Leon, I.; Milias, A. Optimization of the rheological properties of alumina slurries for ceramic processing applications Part II: Spray-drying. J. Eur. Ceram. Soc. 2001, 21, 493–506. [Google Scholar] [CrossRef]
- Hotta, T.; Abe, H.; Naito, M.; Takahashi, M.; Uematsu, K.; Kato, Z. Effect of coarse particles on the strength of alumina made by slip casting. Powder Technol. 2005, 149, 106–111. [Google Scholar] [CrossRef]
- Tallon, C.; Limacher, M.; Franks, G.V. Effect of particle size on the shaping of ceramics by slip casting. J. Eur. Ceram. Soc. 2010, 30, 2819–2826. [Google Scholar] [CrossRef]
- Tinke, A.P.; Govoreanu, R.; Weuts, I.; Vanhoutte, K.; De Smaele, D. A review of underlying fundamentals in a wet dispersion size analysis of powders. Powder Technol. 2009, 196, 102–114. [Google Scholar] [CrossRef]
- Zürcher, S.; Graule, T. Influence of dispersant structure on the rheological properties of highly-concentrated zirconia dispersions. J. Eur. Ceram. Soc. 2005, 25, 863–873. [Google Scholar] [CrossRef]
- Wu, L.; Huang, Y.; Liu, L.; Meng, L. Interaction and stabilization of DMF-based alumina suspensions with citric acid. Powder Technol. 2010, 203, 477–481. [Google Scholar] [CrossRef]
- Wu, L.; Huang, Y.; Wang, Z.; Liu, L. Interaction and dispersion stability of alumina suspension with PAA in N,N′-dimethylformamide. J. Eur. Ceram. Soc. 2010, 30, 1327–1333. [Google Scholar] [CrossRef]
- Sarraf, H.; Havrda, J. Rheological behavior of concentrated alumina suspension: Effect of electrosteric stabilization. Ceram. Silik. 2007, 51, 147–152. [Google Scholar]
- Khan, A.U.; Ul Haq, A.; Mahmood, N.; Ali, Z. Rheological studies of aqueous stabilised nano-zirconia particle suspensions. Mater. Res. 2012, 15, 21–26. [Google Scholar] [CrossRef] [Green Version]
- Vukšić, M.; Žmak, I.; Ćurković, L.; Ćorić, D. Effect of additives on stability of alumina-waste alumina suspension for slip casting: Optimization using Box-Behnken design. Materials 2019, 12, 1738. [Google Scholar] [CrossRef] [Green Version]
- Sever, I.; Zmak, I.; Ćurković, L.; Švagelj, Z. Stabilization of highly concentrated alumina suspensions with different dispersants. Trans. Famena 2018, 42, 61–70. [Google Scholar] [CrossRef]
- Dhuban, S.B.; Ramesh, S.; Tan, C.Y.; Wong, Y.H.; Alengaram, U.J.; Teng, W.D.; Tarlochan, F.; Sutharsini, U. Sintering behaviour and properties of manganese-doped alumina. Ceram. Int. 2019, 45, 7049–7054. [Google Scholar] [CrossRef]
- Yang, Z.; Yin, Z.; Wang, D.; Wang, H.; Song, H.; Zhao, Z.; Zhang, G.; Qing, G.; Wu, H.; Jin, H. Effects of ternary sintering aids and sintering parameters on properties of alumina ceramics based on orthogonal test method. Mater. Chem. Phys. 2020, 241, 122453. [Google Scholar] [CrossRef]
- Ćurković, L.; Veseli, R.; Gabelica, I.; Žmak, I.; Ropuš, I.; Vukšić, M. A review of microwave-assisted sintering technique. Trans. Famena 2021, 45, 1–16. [Google Scholar] [CrossRef]
- Curto, H.; Thuault, A.; Jean, F.; Violier, M.; Dupont, V.; Hornez, J.C.; Leriche, A. Coupling additive manufacturing and microwave sintering: A fast processing route of alumina ceramics. J. Eur. Ceram. Soc. 2020, 40, 2548–2554. [Google Scholar] [CrossRef]
- Liu, L.; Hou, Z.; Zhang, B.; Ye, F.; Zhang, Z.; Zhou, Y. A new heating route of spark plasma sintering and its effect on alumina ceramic densification. Mater. Sci. Eng. A 2013, 559, 462–466. [Google Scholar] [CrossRef]
- Sun, Z.; Li, B.; Hu, P.; Ding, F.; Yuan, F. Alumina ceramics with uniform grains prepared from Al2O3 nanospheres. J. Alloy. Compd. 2016, 688, 933–938. [Google Scholar] [CrossRef]
- Batista, H.A.; Silva, F.N.; Lisboa, H.M.; Costa, A.C.F.M. Modeling and optimization of combustion synthesis for hydroxyapatite production. Ceram. Int. 2020, 46, 11638–11646. [Google Scholar] [CrossRef]
- Khajelakzay, M.; Bakhshi, S.R. Optimization of spark plasma sintering parameters of Si3N4-SiC composite using response surface methodology (RSM). Ceram. Int. 2017, 43, 6815–6821. [Google Scholar] [CrossRef]
- Das, S.; Madheshiya, A.; Das, S.; Gautam, S.S.; Gautam, C. Mechanical, surface morphological and multi-objective optimization of tribological properties of V2O5 doped lead calcium titanate borosilicate glass ceramics. Ceram. Int. 2020, 46, 19170–19180. [Google Scholar] [CrossRef]
- Jiang, L.; Guo, S.; Bian, Y.; Zhang, M.; Ding, W. Effect of sintering temperature on mechanical properties of magnesia partially stabilized zirconia refractory. Ceram. Int. 2016, 42, 10593–10598. [Google Scholar] [CrossRef]
- Arzani, M.; Mahdavi, H.R.; Bakhtiari, O.; Mohammadi, T. Preparation of mullite ceramic microfilter membranes using Response surface methodology based on central composite design. Ceram. Int. 2016, 42, 8155–8164. [Google Scholar] [CrossRef]
- Kockal, N.U. Optimizing production parameters of ceramic tiles incorporating fly ash using response surface methodology. Ceram. Int. 2015, 41, 14529–14536. [Google Scholar] [CrossRef]
- Li, J.; Peng, J.; Guo, S.; Zhang, L. Application of response surface methodology (RSM) for optimization of the sintering process of preparation calcia partially stabilized zirconia (CaO-PSZ) using natural baddeleyite. J. Alloy. Compd. 2013, 574, 504–511. [Google Scholar] [CrossRef]
- Tarõ, G.; Ferreira, J.M.F.; Lyckfeldt, O. Infuence of the stabilising mechanism and solid loading on slip casting of alumina. J. Eur. Ceram. Soc. 1998, 18, 479–486. [Google Scholar] [CrossRef]
- Rao, S.P.; Tripathy, S.S.; Raichur, A.M. Dispersion studies of sub-micron zirconia using Dolapix CE 64, Colloids and Surfaces A: Physicochem. Eng. Asp. 2007, 302, 553–558. [Google Scholar] [CrossRef]
- Kang, S.J.L.; Jung, Y. Sintering kinetics at final stage sintering: Model calculation and map construction. Acta Mater. 2004, 52, 4573–4578. [Google Scholar] [CrossRef]
Symbol | Factors | Levels | ||
---|---|---|---|---|
−1 | 0 | 1 | ||
A | Sintering temperature (°C) | 1600 | 1625 | 1650 |
B | Heating rate (°C/min) | 3 | 5 | 7 |
C | Holding time (h) | 2 | 4 | 7 |
Run | Factor A | Factor B | Factor C | ρ |
---|---|---|---|---|
Sintering Temperature, °C | Heating Rate, °C/min | Holding Time, h | Density, g/cm3 | |
1 | 1650 | 5 | 2 | 3.841 ± 0.0297 |
2 | 1600 | 7 | 4 | 3.836 ± 0.0267 |
3 | 1625 | 3 | 6 | 3.891 ± 0.0074 |
4 | 1625 | 7 | 6 | 3.893 ± 0.0040 |
5 | 1625 | 5 | 4 | 3.885 ± 0.0086 |
6 | 1600 | 3 | 4 | 3.854 ± 0.0316 |
7 | 1650 | 7 | 4 | 3.887 ± 0.0095 |
8 | 1650 | 5 | 6 | 3.887 ± 0.0046 |
9 | 1600 | 5 | 2 | 3.879 ± 0.0032 |
10 | 1600 | 5 | 6 | 3.869 ± 0.0012 |
11 | 1625 | 7 | 2 | 3.844 ± 0.0036 |
12 | 1650 | 3 | 4 | 3.885 ± 0.0040 |
13 | 1625 | 3 | 2 | 3.833 ± 0.0103 |
Source of Variations | Sum of Squares | DF | Mean Square | F-Value | p-Value | p < 0.05 |
---|---|---|---|---|---|---|
Model | 0.0112 | 4 | 0.0028 | 4.3100 | 0.0216 | Significant |
A: Temperature | 0.0001 | 1 | 0.0001 | 0.0849 | 0.7757 | |
B: Heating rate | 1.13 × 10−6 | 1 | 1.13 × 10−6 | 0.0017 | 0.9675 | |
C: Holding time | 0.0064 | 1 | 0.0064 | 9.8300 | 0.0086 | |
Interaction AC | 0.0048 | 1 | 0.0048 | 7.3300 | 0.0190 | |
Residual | 0.0078 | 12 | 0.0006 | |||
Lack of Fit | 0.0071 | 8 | 0.0009 | 5.1400 | 0.0655 | Not significant |
Pure Error | 0.0007 | 4 | 0.00017 | |||
Cor Total | 0.0189 | 16 |
Source of Variations | Sum of Squares | DF | Mean Square | F-Value | p-Value | p < 0.05 |
---|---|---|---|---|---|---|
Model | 0.0043 | 3 | 0.00148 | 6.580 | 0.012 | Significant |
A′: Temperature | 0.0030 | 1 | 0.00300 | 2.727 | 0.023 | Significant |
C′: Holding time | 0.0004 | 1 | 0.00089 | 2.509 | 0.033 | Significant |
Interaction A′C′ | 0.0014 | 1 | 0.00135 | 2.478 | 0.035 | Significant |
Residual | 0.0020 | 9 | 0.00022 | |||
Lack of Fit | 0.0018 | 5 | 0.00035 | 6.200 | 0.051 | Not significant |
Pure Error | 0.0002 | 4 | 0.00006 | |||
Cor Total | 0.0148 | 16 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Landek, D.; Ćurković, L.; Gabelica, I.; Kerolli Mustafa, M.; Žmak, I. Optimization of Sintering Process of Alumina Ceramics Using Response Surface Methodology. Sustainability 2021, 13, 6739. https://doi.org/10.3390/su13126739
Landek D, Ćurković L, Gabelica I, Kerolli Mustafa M, Žmak I. Optimization of Sintering Process of Alumina Ceramics Using Response Surface Methodology. Sustainability. 2021; 13(12):6739. https://doi.org/10.3390/su13126739
Chicago/Turabian StyleLandek, Darko, Lidija Ćurković, Ivana Gabelica, Mihone Kerolli Mustafa, and Irena Žmak. 2021. "Optimization of Sintering Process of Alumina Ceramics Using Response Surface Methodology" Sustainability 13, no. 12: 6739. https://doi.org/10.3390/su13126739
APA StyleLandek, D., Ćurković, L., Gabelica, I., Kerolli Mustafa, M., & Žmak, I. (2021). Optimization of Sintering Process of Alumina Ceramics Using Response Surface Methodology. Sustainability, 13(12), 6739. https://doi.org/10.3390/su13126739