Chemical Composition and Bioactive Properties of Purple French Bean (Phaseolus vulgaris L.) as Affected by Water Deficit Irrigation and Biostimulants Application
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Growing Conditions
2.2. Nutritional and Energetic Value
2.3. Analysis of Hydrophilic Compounds
2.4. Analysis of Lipophilic Compounds
2.5. Phenolic Profile Characterization
2.5.1. Preparation of Extracts
2.5.2. Analysis of Phenolic Compounds
2.6. Antioxidant Activity Evaluation
2.6.1. Assessment of the Capacity to Inhibit the Formation of Thiobarbituric Acid Reactive Substances (TBARS)
2.6.2. Assessment of the Capacity to Inhibit the Oxidative Haemolysis
2.7. Antimicrobial Activity Evaluation
2.8. Statistical Analysis
3. Results and Discussion
3.1. Nutritional Composition and Hydrophilic Compounds Content
3.2. Lipophilic Compounds Content
3.3. Phenolic Compounds Composition and Quantification
3.4. Antioxidant Activity
3.5. Antimicrobial Properties
3.6. Principal Components Analysis (PCA)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Devi, B.; Singh, G.; Dash, A.K.; Gupta, S.K. Chemically induced systemic acquired resistance in the inhibition of French bean rust. Curr. Plant Biol. 2020, 23, 100151. [Google Scholar] [CrossRef]
- Kumar, V.; Kumar, P.; Khan, A. Optimization of PGPR and silicon fertilization using response surface methodology for enhanced growth, yield and biochemical parameters of French bean (Phaseolus vulgaris L.) under saline stress. Biocatal. Agric. Biotechnol. 2020, 23, 101463. [Google Scholar] [CrossRef]
- Del Buono, D. Can biostimulants be used to mitigate the effect of anthropogenic climate change on agriculture? It is time to respond. Sci. Total Environ. 2021, 751, 141763. [Google Scholar] [CrossRef]
- Rouphael, Y.; Kyriacou, M.C.; Petropoulos, S.A.; De Pascale, S.; Colla, G. Improving vegetable quality in controlled environments. Sci. Hortic. 2018, 234, 275–289. [Google Scholar] [CrossRef]
- Postel, S.L. Entering an era of water scarcity: The challenges ahead. Ecol. Appl. 2000, 10, 941–948. [Google Scholar] [CrossRef]
- Rouphael, Y.; Petropoulos, S.A.; Cardarelli, M.; Colla, G. Salinity as eustressor for enhancing quality of vegetables. Sci. Hortic. 2018, 234, 361–369. [Google Scholar] [CrossRef]
- Shukla, P.S.; Mantin, E.G.; Adil, M.; Bajpai, S.; Critchley, A.T.; Prithiviraj, B. Ascophyllum nodosum-based biostimulants: Sustainable applications in agriculture for the stimulation of plant growth, stress tolerance, and disease management. Front. Plant Sci. 2019, 10, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Galvão, Í.M.; dos Santos, O.F.; de Souza, M.L.C.; de Jesus Guimarães, J.; Kühn, I.E.; Broetto, F. Biostimulants action in common bean crop submitted to water deficit. Agric. Water Manag. 2019, 225, 105762. [Google Scholar] [CrossRef]
- Zulfiqar, F.; Casadesús, A.; Brockman, H.; Munné-Bosch, S. An overview of plant-based natural biostimulants for sustainable horticulture with a particular focus on moringa leaf extracts. Plant Sci. 2020, 295, 110194. [Google Scholar] [CrossRef] [PubMed]
- Petropoulos, S.A.S.A.; Fernandes, Â.; Plexida, S.; Chrysargyris, A.; Tzortzakis, N.; Barreira, J.; Barros, L.; Ferreira, I.C.F.R. Biostimulants application alleviates water stress effects on yield and chemical composition of greenhouse green bean (Phaseolus vulgaris L.). Agronomy 2020, 10, 181. [Google Scholar] [CrossRef] [Green Version]
- Giordano, M.; Petropoulos, S.A.; Cirillo, C. Biochemical, physiological, and molecular aspects of ornamental plants adaptation to deficit irrigation. Horticulturae 2021, 7, 107. [Google Scholar] [CrossRef]
- Giordano, M.; Petropoulos, S.A. Response and defence mechanisms of vegetable crops against drought, heat and salinity stress. Agriculture 2021, 11, 463. [Google Scholar] [CrossRef]
- Shahrajabian, M.H.; Chaski, C.; Polyzos, N.; Petropoulos, S.A. Biostimulants application: A low input cropping management tool for sustainable farming of vegetables. Biomolecules 2021, 11, 698. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Arato, M.; Borghi, L.; Nouri, E.; Reinhardt, D. Beneficial services of arbuscular mycorrhizal fungi—From ecology to application. Front. Plant Sci. 2018, 9, 1270. [Google Scholar] [CrossRef]
- Pereira, C.; Dias, M.I.; Petropoulos, S.A.; Plexida, S.; Chrysargyris, A.; Tzortzakis, N.; Calhelha, R.C.; Ivanov, M.; Stojković, D.; Soković, M.; et al. The effects of biostimulants, biofertilizers and water-stress on nutritional value and chemical composition of two spinach genotypes (Spinacia oleracea L.). Molecules 2019, 24, 4494. [Google Scholar] [CrossRef] [Green Version]
- Pylak, M.; Oszust, K.; Frąc, M. Review report on the role of bioproducts, biopreparations, biostimulants and microbial inoculants in organic production of fruit. Rev. Environ. Sci. Biotechnol. 2019, 18, 597–616. [Google Scholar] [CrossRef] [Green Version]
- Sarma, R.K.; Saikia, R. Alleviation of drought stress in mung bean by strain Pseudomonas aeruginosa GGRJ21. Plant Soil 2014, 377, 111–126. [Google Scholar] [CrossRef]
- Figueiredo, M.V.B.; Burity, H.A.; Martínez, C.R.; Chanway, C.P. Alleviation of drought stress in the common bean (Phaseolus vulgaris L.) by co-inoculation with Paenibacillus polymyxa and Rhizobium tropici. Appl. Soil Ecol. 2008, 40, 182–188. [Google Scholar] [CrossRef]
- Rafiee, H.; Badi, H.N.; Mehrafarin, A. Application of plant biostimulants as new approach to improve the biological responses of medicinal plants—A critical review. J. Med. Plants 2016, 15, 6–39. [Google Scholar]
- Darkwa, K.; Ambachew, D.; Mohammed, H.; Asfaw, A.; Blair, M.W. Evaluation of common bean (Phaseolus vulgaris L.) genotypes for drought stress adaptation in Ethiopia. Crop J. 2016, 4, 367–376. [Google Scholar] [CrossRef] [Green Version]
- Petropoulos, S.A.; Taofiq, O.; Fernandes, Â.; Tzortzakis, N.; Ciric, A.; Sokovic, M.; Barros, L.; Ferreira, I.C. Bioactive properties of greenhouse-cultivated green beans Phaseolus vulgaris L.) under biostimulants and water-stress effect. J. Sci. Food Agric. 2019, 99, 6049–6059. [Google Scholar] [CrossRef]
- Rowell, D. Soil Science: Methods and Applications; Routledge: London, UK, 1994; ISBN 9780582087842. [Google Scholar]
- FAO. Standard Operating Procedure for Soil Calcium Carbonate Equivalent: Volumetric Calcimeter Method; FAO: Rome, Italy, 2020. [Google Scholar]
- Nelson, D.W.; Sommers, L.E. Total Carbon, Organic Carbon, and Organic Matter. In Methods of Soil Analysis; Agronomy Monographs; Part 2 Chemical and Microbiological Properties; American Society of Agronomy, Soil Science Society of America: Madison, WI, USA, 1983; pp. 539–579. ISBN 9780891189770. [Google Scholar]
- Bremner, J.M.; Muvaney, C.S. Nitrogen—Total. In Methods of Soil Analysis, Part 2: Chemical and Microbiological Properties; Page, A.L., Miller, R.H., Keeney, D.R., Eds.; American Society of Agronomy, Soil Science Society of America: Madison, WI, USA, 1982; pp. 595–624. [Google Scholar]
- AOAC. Official Methods of Analysis of AOAC International; Horwitz, W., Latimer, G., Eds.; MD: AOAC International: Gaithersburg, MD, USA, 2016. [Google Scholar]
- European Union. Regulation (EU) No 1169/2011 of the European Parliament and of the Council of 25 October 2011. Off. J. Eur. Union 2011, 54, 1–46. [Google Scholar]
- Spréa, R.M.; Fernandes, Â.; Calhelha, R.C.; Pereira, C.; Pires, T.C.S.P.; Alves, M.J.; Canan, C.; Barros, L.; Amaral, J.S.; Ferreira, I.C.F.R. Chemical and bioactive characterization of the aromatic plant Levisticum officinale W.D.J. Koch: A comprehensive study. Food Funct. 2020, 11, 1292–1303. [Google Scholar] [CrossRef]
- Pereira, C.; Barros, L.; Carvalho, A.M.; Ferreira, I.C.F.R. Use of UFLC-PDA for the analysis of organic acids in thirty-five species of food and medicinal plants. Food Anal. Methods 2013, 6, 1337–1344. [Google Scholar] [CrossRef]
- Obodai, M.; Mensah, D.L.N.; Fernandes, Â.; Kortei, N.K.; Dzomeku, M.; Teegarden, M.; Schwartz, S.J.; Barros, L.; Prempeh, J.; Takli, R.K.; et al. Chemical characterization and antioxidant potential of wild Ganoderma species from Ghana. Molecules 2017, 22, 196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lockowandt, L.; Pinela, J.; Roriz, C.L.; Pereira, C.; Abreu, R.M.V.; Calhelha, R.C.; Alves, M.J.; Barros, L.; Bredol, M.; Ferreira, I.C.F.R. Chemical features and bioactivities of cornflower (Centaurea cyanus L.) capitula: The blue flowers and the unexplored non-edible part. Ind. Crops Prod. 2019, 128, 496–503. [Google Scholar] [CrossRef] [Green Version]
- Bessada, S.M.F.; Barreira, J.C.M.; Barros, L.; Ferreira, I.C.F.R.; Oliveira, M.B.P.P. Phenolic profile and antioxidant activity of Coleostephus myconis (L.) Rchb.f.: An underexploited and highly disseminated species. Ind. Crops Prod. 2016, 89, 45–51. [Google Scholar] [CrossRef] [Green Version]
- Bastos, C.; Barros, L.; Dueñas, M.; Calhelha, R.C.; Queiroz, M.J.R.P.; Santos-Buelga, C.; Ferreira, I.C.F.R. Chemical characterisation and bioactive properties of Prunus avium L.: The widely studied fruits and the unexplored stems. Food Chem. 2015, 173, 1045–1053. [Google Scholar] [CrossRef] [Green Version]
- Sokovic, M.; Glamočlija, J.; Marin, P.D.; Brkić, D.; Van Griensven, L.J.L.D. Antibacterial effects of the essential oils of commonly consumed medicinal herbs using an in vitro model. Molecules 2010, 15, 7532–7546. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soković, M.; Van Griensven, L.J.L.D. Antimicrobial activity of essential oils and their components against the three major pathogens of the cultivated button mushroom, Agaricus bisporus. Eur. J. Plant Pathol. 2006, 116, 211–224. [Google Scholar] [CrossRef]
- Bulgari, R.; Cocetta, G.; Trivellini, A.; Vernieri, P.; Ferrante, A. Biostimulants and crop responses: A review. Biol. Agric. Hortic. 2015, 31, 1–17. [Google Scholar] [CrossRef]
- Castellanos-Barriga, L.G.; Santacruz-Ruvalcaba, F.; Hernández-Carmona, G.; Ramírez-Briones, E.; Hernández-Herrera, R.M. Effect of seaweed liquid extracts from Ulva lactuca on seedling growth of mung bean (Vigna radiata). J. Appl. Phycol. 2017, 29, 2479–2488. [Google Scholar] [CrossRef]
- Kocira, A.; Świeca, M.; Kocira, S.; Złotek, U.; Jakubczyk, A. Enhancement of yield, nutritional and nutraceutical properties of two common bean cultivars following the application of seaweed extract (Ecklonia maxima). Saudi J. Biol. Sci. 2018, 25, 563–571. [Google Scholar] [CrossRef] [Green Version]
- Rosa, M.; Prado, C.; Podazza, G.; Interdonato, R.; González, J.A.; Hilal, M.; Prado, F.E. Soluble sugars-metabolism, sensing and abiotic stress. A complex network in the life of plants. Plant Signal. Behav. 2009, 4, 388–393. [Google Scholar] [CrossRef] [Green Version]
- Singh, S. Enhancing phytochemical levels, enzymatic and antioxidant activity of spinach leaves by chitosan treatment and an insight into the metabolic pathway using DART-MS technique. Food Chem. 2016, 199, 176–184. [Google Scholar] [CrossRef]
- Rathinasabapathi, B. Metabolic engineering for stress tolerance: Installing osmoprotectant synthesis pathways. Ann. Bot. 2000, 86, 709–716. [Google Scholar] [CrossRef]
- Goñi, O.; Quille, P.; O’Connell, S. Ascophyllum nodosum extract biostimulants and their role in enhancing tolerance to drought stress in tomato plants. Plant Physiol. Biochem. 2018, 126, 63–73. [Google Scholar] [CrossRef]
- Begum, N.; Qin, C.; Ahanger, M.A.; Raza, S.; Khan, M.I.; Ashraf, M.; Ahmed, N.; Zhang, L. Role of arbuscular mycorrhizal fungi in plant growth regulation: Implications in abiotic stress tolerance. Front. Plant Sci. 2019, 10, 1068. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rouphael, Y.; Franken, P.; Schneider, C.; Schwarz, D.; Giovannetti, M.; Agnolucci, M.; De Pascale, S.; Bonini, P.; Colla, G. Arbuscular mycorrhizal fungi act as biostimulants in horticultural crops. Sci. Hortic. 2015, 196, 91–108. [Google Scholar] [CrossRef]
- Gupta, A.K.; Kaur, N. Sugar signalling and gene expression in relation to carbohydrate metabolism under abiotic stresses in plants. J. Biosci. 2005, 30, 761–776. [Google Scholar] [CrossRef]
- Zushi, K.; Matsuzoe, N.; Kitano, M. Developmental and tissue-specific changes in oxidative parameters and antioxidant systems in tomato fruits grown under salt stress. Sci. Hortic. 2009, 122, 362–368. [Google Scholar] [CrossRef]
- Palmieri, F.; Estoppey, A.; House, G.L.; Lohberger, A.; Bindschedler, S.; Chain, P.S.G.; Junier, P. Oxalic acid, a molecule at the crossroads of bacterial-fungal interactions. Adv. Appl. Microbiol. 2019, 106, 49–77. [Google Scholar] [CrossRef] [PubMed]
- Upchurch, R.G. Fatty acid unsaturation, mobilization, and regulation in the response of plants to stress. Biotechnol. Lett. 2008, 30, 967–977. [Google Scholar] [CrossRef]
- Guil-Guerrero, J.L.; Gómez-Mercado, F.; Ramos-Bueno, R.P.; González-Fernández, M.J.; Urrestarazu, M.; Jiménez-Becker, S.; de Bélair, G. Fatty acid profiles and sn-2 fatty acid distribution of γ-linolenic acid-rich Borago species. J. Food Compos. Anal. 2018, 66, 74–80. [Google Scholar] [CrossRef]
- Ahmad, P.; Hashem, A.; Abd-Allah, E.F.; Alqarawi, A.A.; John, R.; Egamberdieva, D.; Gucel, S. Role of Trichoderma harzianum in mitigating NaCl stress in Indian mustard (Brassica juncea L) through antioxidative defense system. Front. Plant Sci. 2015, 6, 868. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- López-Bucio, J.; Pelagio-Flores, R.; Herrera-Estrella, A. Trichoderma as biostimulant: Exploiting the multilevel properties of a plant beneficial fungus. Sci. Hortic. 2015, 196, 109–123. [Google Scholar] [CrossRef]
- Chen, P.X.; Tang, Y.; Marcone, M.F.; Pauls, P.K.; Zhang, B.; Liu, R.; Tsao, R. Characterization of free, conjugated and bound phenolics and lipophilic antioxidants in regular- and non-darkening cranberry beans (Phaseolus vulgaris L.). Food Chem. 2015, 185, 298–308. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Huang, Y.; Adeleye, A.S.; Keller, A.A. Metabolomics Reveals Cu(OH)2 Nanopesticide-activated anti-oxidative pathways and decreased beneficial antioxidants in spinach leaves. Environ. Sci. Technol. 2017, 51, 10184–10194. [Google Scholar] [CrossRef] [Green Version]
- Kellős, T.; Tímár, I.; Szilágyi, V.; Szalai, G.; Galiba, G.; Kocsy, G. Stress hormones and abiotic stresses have different effects on antioxidants in maize lines with different sensitivity. Plant Biol. 2008, 10, 563–572. [Google Scholar] [CrossRef]
- Rady, M.M.; Desoky, E.S.M.; Elrys, A.S.; Boghdady, M.S. Can licorice root extract be used as an effective natural biostimulant for salt-stressed common bean plants? South African J. Bot. 2019, 121, 294–305. [Google Scholar] [CrossRef]
- Luthria, D.L.; Pastor-Corrales, M.A. Phenolic acids content of fifteen dry edible bean (Phaseolus vulgaris L.) varieties. J. Food Compos. Anal. 2006, 19, 205–211. [Google Scholar] [CrossRef]
- Kan, L.; Nie, S.; Hu, J.; Liu, Z.; Xie, M. Antioxidant activities and anthocyanins composition of seed coats from twenty-six kidney bean cultivars. J. Funct. Foods 2016, 26, 622–631. [Google Scholar] [CrossRef]
- Arribas, C.; Pereira, E.; Barros, L.; Alves, M.J.; Calhelha, R.C.; Guillamón, E.; Pedrosa, M.M.; Ferreira, I.C.F.R. Healthy novel gluten-free formulations based on beans, carob fruit and rice: Extrusion effect on organic acids, tocopherols, phenolic compounds and bioactivity. Food Chem. 2019, 292, 304–313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kang, J.; Price, W.E.; Ashton, J.; Tapsell, L.C.; Johnson, S. Identification and characterization of phenolic compounds in hydromethanolic extracts of sorghum wholegrains by LC-ESI-MSn. Food Chem. 2016, 211, 215–226. [Google Scholar] [CrossRef] [Green Version]
- Chen, P.X.; Zhang, H.; Marcone, M.F.; Pauls, K.P.; Liu, R.; Tang, Y.; Zhang, B.; Renaud, J.B.; Tsao, R. Anti-inflammatory effects of phenolic-rich cranberry bean (Phaseolus vulgaris L.) extracts and enhanced cellular antioxidant enzyme activities in Caco-2 cells. J. Funct. Foods 2017, 38, 675–685. [Google Scholar] [CrossRef]
- Madrera, R.R.; Valles, B.S. Development and validation of ultrasound assisted extraction (UAE) and HPLC-DAD method for determination of polyphenols in dry beans (Phaseolus vulgaris). J. Food Compos. Anal. 2020, 85, 103334. [Google Scholar] [CrossRef]
- Kałużewicz, A.; Gąsecka, M.; Spiżewski, T. Influence of biostimulants on phenolic content in broccoli heads directly after harvest and after storage. Folia Hortic. 2017, 29, 221–230. [Google Scholar] [CrossRef] [Green Version]
- Szparaga, A.; Kuboń, M.; Kocira, S.; Czerwińska, E.; Pawłowska, A.; Hara, P.; Kobus, Z.; Kwaśniewski, D. Towards sustainable agriculture-agronomic and economic effects of biostimulant use in common bean cultivation. Sustainability 2019, 11, 4575. [Google Scholar] [CrossRef] [Green Version]
- Iqbal, N.; Umar, S.; Khan, N.A.; Khan, M.I.R. A new perspective of phytohormones in salinity tolerance: Regulation of proline metabolism. Environ. Exp. Bot. 2014, 100, 34–42. [Google Scholar] [CrossRef]
- Shahid, M.A.; Sarkhosh, A.; Khan, N.; Balal, R.M.; Ali, S.; Rossi, L.; Gómez, C.; Mattson, N.; Nasim, W.; Garcia-Sanchez, F. Insights into the physiological and biochemical impacts of salt stress on plant growth and development. Agronomy 2020, 10, 938. [Google Scholar] [CrossRef]
- Fatemi, H.; Carvajal, M.; Rios, J.J. Foliar application of Zn alleviates salt stress symptoms of pak choi plants by activating water relations and glucosinolate synthesis. Agronomy 2020, 10, 1528. [Google Scholar] [CrossRef]
- Cakmak, I. Tansley Review No. 111 Possible roles of zinc in protecting plant cells from damage by reactive oxygen species. New Phytol. 2000, 146, 185–205. [Google Scholar] [CrossRef] [PubMed]
- Gan, R.Y.; Deng, Z.Q.; Yan, A.X.; Shah, N.P.; Lui, W.Y.; Chan, C.L.; Corke, H. Pigmented edible bean coats as natural sources of polyphenols with antioxidant and antibacterial effects. Lwt 2016, 73, 168–177. [Google Scholar] [CrossRef]
- Cho, M.J.; Howard, L.R.; Prior, R.L.; Morelock, T. Flavonoid content and antioxidant capacity of spinach genotypes determined by high-performance liquid chromatography/mass spectrometry. J. Sci. Food Agric. 2008, 88, 1099–1106. [Google Scholar] [CrossRef]
- Xie, Y.; Yang, W.; Tang, F.; Chen, X.; Ren, L. Antibacterial activities of Flavonoids: Structure-activity relationship and mechanism. Curr. Med. Chem. 2014, 22, 132–149. [Google Scholar] [CrossRef]
- Mello, É.D.O.; Santos, I.S.; Carvalho, A.D.O.; De Souza, L.S.; Souza-filho, G.A. De Functional expression and activity of the recombinant antifungal defensin PvD1r from Phaseolus vulgaris L. (common bean) seeds. BMC Biochem. 2014, 15, 1–13. [Google Scholar]
- Mello, E.O.; Ribeiro, S.F.F.; Carvalho, A.; Santos, I.; da Cunha, M.; Santa-Catarina, C.; Gomes, V. Antifungal activity of PvD1 defensin involves plasma membrane permeabilization, inhibition of medium acidification, and induction of ROS in fungi cells. Curr. Microbiol. 2011, 62, 1209–1217. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Shao, B.; Fu, H.; Rao, P. Isolation of a thermostable legume chitinase and study on the antifungal activity. Appl. Microbiol. Biotechnol. 2009, 85, 313–321. [Google Scholar] [CrossRef]
- Pereira, E.; Barros, L.; Calhelha, R.C.; Dueñas, M.; Carvalho, A.M.; Santos-Buelga, C.; Ferreira, I.C.F.R. Bioactivity and phytochemical characterization of Arenaria Montana L. Food Funct. 2014, 5, 1848–1855. [Google Scholar] [CrossRef] [Green Version]
- El-Nakhel, C.; Petropoulos, S.A.; Pannico, A.; Kyriacou, M.C.; Giordano, M.; Colla, G.; Dario Troise, A.; Vitaglione, P.; De Pascale, S.; Rouphael, Y. The bioactive profile of lettuce produced in a closed soilless system as configured by combinatorial effects of genotype and macrocation supply composition. Food Chem. 2020, 309, 125713. [Google Scholar] [CrossRef]
- Perrino, E.V.; Musarella, C.M.; Magazzini, P. Management of grazing Italian river buffalo to preserve habitats defined by Directive 92/43/EEC in a protected wetland area on the Mediterranean coast: Palude Frattarolo, Apulia, Italy. Euro-Mediterranean J. Environ. Integr. 2021, 6. [Google Scholar] [CrossRef]
- Mehalaine, S.; Chenchouni, H. Plants of the same place do not have the same metabolic pace: Soil properties affect differently essential oil yields of plants growing wild in semiarid Mediterranean lands. Arab. J. Geosci. 2020, 13. [Google Scholar] [CrossRef]
CW+ | NW+ | TWW+ | XSW+ | CW− | NW− | TWW− | XSW− | |
---|---|---|---|---|---|---|---|---|
Nutritional value | (g/100 g dw) | |||||||
Fat | 1.05 ± 0.02a | 1.04 ± 0.09ab | 0.97 ± 0.01c | 1.09 ± 0.03a | 0.85 ± 0.03d | 1.08 ± 0.03a | 1.00 ± 0.01bc | 0.97 ± 0.05c |
Proteins | 17.51 ± 0.03b | 16.87 ± 0.04c | 16.4 ± 0.4c | 17.44 ± 0.09b | 17.9 ± 0.8b | 17.6 ± 0.9b | 20.02 ± 0.03a | 19.6 ± 0.7a |
Ash | 3.38 ± 0.05b | 3.20 ± 0.08d | 3.10 ± 0.05e | 3.12 ± 0.06e | 3.09 ± 0.08e | 3.44 ± 0.09a | 3.30 ± 0.06c | 3.14 ± 0.02e |
Carbohydrates | 78.07 ± 0.05c | 78.89 ± 0.02b | 79.5 ± 0.3a | 78.3 ± 0.2c | 78.2 ± 0.6c | 77.9 ± 0.6c | 75.68 ± 0.03d | 76.3 ± 0.4d |
Energy (kcal/100 g dw) | 391.7 ± 0.2c | 392.4 ± 0.5b | 392.4 ± 0.1b | 393.4 ± 0.1a | 391.9 ± 0.3c | 391.6 ± 0.3c | 391.8 ± 0.1c | 392.3 ± 0.1b |
Free sugars | (g/100 g dw) | |||||||
Fructose | 3.07 ± 0.01c | 3.73 ± 0.02a | 2.93 ± 0.05d | 3.43 ± 0.08b | 2.85 ± 0.03d | 2.10 ± 0.02e | 2.93 ± 0.06d | 2.19 ± 0.06e |
Glucose | 1.06 ± 0.02d | 1.35 ± 0.06a | 1.36 ± 0.06a | 1.13 ± 0.06c | 1.26 ± 0.05b | 0.72 ± 0.01f | 1.33 ± 0.03a | 0.84 ± 0.06e |
Sucrose | 3.61 ± 0.01f | 4.32 ± 0.04c | 4.53 ± 0.09b | 4.03 ± 0.05d | 5.63 ± 0.03a | 3.37 ± 0.01g | 4.52 ± 0.08b | 3.81 ± 0.04e |
Total | 7.74 ± 0.03c | 9.4 ± 0.1a | 8.8 ± 0.2b | 8.6 ± 0.2b | 9.74 ± 0.05a | 6.19 ± 0.03e | 8.8 ± 0.2b | 6.8 ± 0.2d |
Organic acids | (g/100 g dw) | |||||||
Oxalic acid | 3.47 ± 0.02b | 3.43 ± 0.04b | 2.69 ± 0.02e | 3.49 ± 0.05b | 3.75 ± 0.09a | 3.13 ± 0.03c | 2.12 ± 0.02f | 2.96 ± 0.02d |
Malic acid | 3.33 ± 0.05e | 5.09 ± 0.02b | 3.72 ± 0.03d | 5.46 ± 0.08a | 3.34 ± 0.04e | 4.24 ± 0.07c | 2.47 ± 0.04f | 3.94 ± 0.01d |
Citric acid | 1.64 ± 0.01e | 3.02 ± 0.03c | 3.26 ± 0.02b | 3.85 ± 0.06a | 3.21 ± 0.04bc | 2.53 ± 0.05d | 2.56 ± 0.02d | 3.66 ± 0.07a |
Fumaric acid | tr | tr | tr | tr | tr | tr | tr | tr |
Total | 8.45 ± 0.03g | 11.54 ± 0.09b | 9.66 ± 0.07f | 12.8 ± 0.2a | 10.30 ± 0.01d | 9.9 ± 0.1e | 7.14 ± 0.08h | 10.55 ± 0.07c |
CW+ | NW+ | TWW+ | XSW+ | CW− | NW− | TWW− | XSW− | |
---|---|---|---|---|---|---|---|---|
Fatty acids | (Relative percentage %) | |||||||
C6:0 | 0.241 ± 0.001 | 0.170 ± 0.002 | 0.032 ± 0.001 | 0.068 ± 0.002 | 0.56 ± 0.01 | 0.107 ± 0.006 | 0.33 ± 0.01 | 0.37 ± 0.01 |
C8:0 | 0.103 ± 0.003 | 0.150 ± 0.002 | 0.087 ± 0.004 | 0.071 ± 0.001 | 0.350 ± 0.009 | 0.309 ± 0.004 | 0.218 ± 0.001 | 0.375 ± 0.004 |
C10:0 | 0.045 ± 0.004 | 0.075 ± 0.001 | 0.082 ± 0.001 | 0.061 ± 0.001 | 0.079 ± 0.001 | 0.23 ± 0.01 | 0.125 ± 0.003 | 0.107 ± 0.003 |
C12:0 | 0.135 ± 0.005 | 0.117 ± 0.001 | 0.169 ± 0.002 | 0.124 ± 0.001 | 0.17 ± 0.01 | 0.34 ± 0.01 | 0.232 ± 0.001 | 0.237 ± 0.006 |
C13:0 | 0.338 ± 0.001 | 0.308 ± 0.002 | 0.295 ± 0.005 | 0.335 ± 0.001 | 0.32 ± 0.01 | 0.277 ± 0.004 | 0.360 ± 0.001 | 0.306 ± 0.004 |
C14:0 | 0.49 ± 0.01 | 0.572 ± 0.004 | 0.692 ± 0.009 | 0.542 ± 0.002 | 0.66 ± 0.01 | 0.87 ± 0.03 | 0.867 ± 0.007 | 1.02 ± 0.01 |
C15:0 | 0.793 ± 0.004 | 0.685 ± 0.006 | 0.783 ± 0.003 | 0.56 ± 0.01 | 0.692 ± 0.004 | 0.65 ± 0.02 | 0.49 ± 0.02 | 1.23 ± 0.01 |
C16:0 | 24.57 ± 0.05 | 25.48 ± 0.03 | 30.13 ± 0.01 | 23.70 ± 0.01 | 30.6 ± 0.2 | 30.50 ± 0.01 | 24.20 ± 0.08 | 30.59 ± 0.07 |
C16:1 | 0.343 ± 0.002 | 0.54 ± 0.05 | 0.221 ± 0.009 | 0.288 ± 0.003 | 0.605 ± 0.005 | 0.96 ± 0.02 | 0.747 ± 0.005 | 0.409 ± 0.001 |
C17:0 | 0.904 ± 0.004 | 0.82 ± 0.02 | 0.920 ± 0.005 | 0.652 ± 0.006 | 3.11 ± 0.01 | 0.333 ± 0.003 | 0.520 ± 0.003 | 1.08 ± 0.01 |
C18:0 | 7.70 ± 0.01 | 6.14 ± 0.01 | 7.28 ± 0.03 | 6.01 ± 0.01 | 7.15 ± 0.03 | 7.38 ± 0.08 | 6.45 ± 0.05 | 7.90 ± 0.04 |
C18:1n9c | 8.17 ± 0.01 | 6.84 ± 0.03 | 6.20 ± 0.01 | 7.13 ± 0.01 | 10.63 ± 0.03 | 13.48 ± 0.07 | 16.4 ± 0.4 | 8.91 ± 0.01 |
C18:2n6c | 28.21 ± 0.01 | 26.81 ± 0.01 | 23.92 ± 0.08 | 28.43 ± 0.01 | 19.9 ± 0.3 | 19.2 ± 0.1 | 20.0 ± 0.6 | 19.54 ± 0.08 |
C18:3n3 | 16.28 ± 0.06 | 18.91 ± 0.02 | 17.09 ± 0.01 | 18.64 ± 0.04 | 14.2 ± 0.1 | 13.71 ± 0.01 | 13.5 ± 0.1 | 14.47 ± 0.05 |
C20:0 | 1.44 ± 0.03 | 2.11 ± 0.08 | 2.51 ± 0.03 | 3.05 ± 0.01 | 2.4 ± 0.2 | 2.41 ± 0.02 | 2.4 ± 0.1 | 2.38 ± 0.04 |
C20:1 | 0.184 ± 0.001 | 0.202 ± 0.003 | 0.157 ± 0.004 | 0.164 ± 0.007 | 0.22 ± 0.02 | 0.59 ± 0.02 | 0.27 ± 0.02 | 0.227 ± 0.006 |
C20:2 | 0.226 ± 0.006 | 0.215 ± 0.001 | 0.176 ± 0.004 | 0.165 ± 0.003 | 0.36 ± 0.05 | 0.57 ± 0.03 | 0.73 ± 0.01 | 0.37 ± 0.01 |
C21:0 | 0.155 ± 0.004 | 0.134 ± 0.002 | 0.235 ± 0.005 | 0.089 ± 0.002 | 0.175 ± 0.003 | 0.430 ± 0.003 | 0.678 ± 0.007 | 0.449 ± 0.008 |
C22:0 | 3.51 ± 0.07 | 2.95 ± 0.06 | 4.20 ± 0.01 | 3.03 ± 0.01 | 3.01 ± 0.02 | 2.49 ± 0.07 | 4.03 ± 0.02 | 3.59 ± 0.07 |
C22:1 | 0.40 ± 0.02 | 0.473 ± 0.002 | 0.431 ± 0.004 | 0.373 ± 0.005 | 0.272 ± 0.005 | 0.538 ± 0.006 | 0.659 ± 0.007 | 0.501 ± 0.004 |
C20:5n3 | 0.23 ± 0.02 | 0.306 ± 0.004 | 0.285 ± 0.001 | 0.383 ± 0.006 | 0.162 ± 0.001 | 0.187 ± 0.004 | 0.209 ± 0.004 | 0.237 ± 0.003 |
C23:0 | 1.38 ± 0.01 | 1.54 ± 0.04 | 1.29 ± 0.02 | 1.77 ± 0.01 | 1.27 ± 0.02 | 1.35 ± 0.02 | 1.55 ± 0.03 | 1.43 ± 0.00 |
C24:0 | 3.83 ± 0.02 | 4.1 ± 0.1 | 2.46 ± 0.05 | 3.96 ± 0.04 | 2.83 ± 0.01 | 2.71 ± 0.04 | 4.27 ± 0.08 | 3.68 ± 0.04 |
C24:1 | 0.320 ± 0.002 | 0.38 ± 0.01 | 0.36 ± 0.02 | 0.41 ± 0.01 | 0.314 ± 0.001 | 0.382 ± 0.004 | 0.75 ± 0.04 | 0.596 ± 0.006 |
SFA | 45.64 ± 0.04e | 45.3 ± 0.1ef | 51.17 ± 0.04c | 44.02 ± 0.03f | 53.3 ± 0.3b | 50.38 ± 0.04c | 46.7 ± 0.1d | 54.74 ± 0.08a |
MUFA | 9.42 ± 0.01de | 8.4 ± 0.1ef | 7.36 ± 0.03f | 8.37 ± 0.01ef | 12.05 ± 0.04c | 15.94 ± 0.07b | 18.9 ± 0.3a | 10.64 ± 0.03cd |
PUFA | 44.95 ± 0.03c | 46.25 ± 0.01b | 41.47 ± 0.07d | 47.62 ± 0.03a | 34.7 ± 0.4e | 33.7 ± 0.1g | 34.4 ± 0.4f | 34.62 ± 0.05ef |
Tocopherols | (mg/100 g dw) | |||||||
α-Tocopherol | 0.138 ± 0.001c | 0.169 ± 0.003b | 0.177 ± 0.002b | 0.134 ± 0.003cd | 0.119 ± 0.008d | 0.091 ± 0.003e | 0.250 ± 0.008a | 0.14 ± 0.01c |
γ-Tocopherol | 0.78 ± 0.01c | 0.88 ± 0.02b | 1.08 ± 0.01a | 0.878 ± 0.001b | 0.755 ± 0.008c | 0.359 ± 0.006e | 0.683 ± 0.008d | 0.77 ± 0.03c |
Total | 0.92 ± 0.02e | 1.05 ± 0.02b | 1.26 ± 0.01a | 1.02 ± 0.01c | 0.870 ± 0.001f | 0.450 ± 0.001g | 0.93 ± 0.01d | 0.92 ± 0.04e |
Non-Anthocyanin Phenolic Compounds | |||||
---|---|---|---|---|---|
Compound Number | Rt (min) | λmax (nm) | [M−H]− (m/z) | MS2 (m/z) | Tentative identification |
1 | 3.71 | 309 | 387 | 341 (100), 207 (18), 163 (5) | p-Coumaric acid derivative a |
2 | 4.95 | 269 | 341 | 179 (100) | Caffeoyl-O-hexoside b |
3 | 6.54 | 280 | 289 | 245 (91), 203 (60), 137 (38) | (+)-Catechin c |
4 | 9.22 | 278 | 289 | 245 (83), 205 (46), 151 (24), 137 (26) | (−)-Epicatechin c |
5 | 12.07 | 278 | 577 | 451 (32), 425 (100), 289 (11) | B-type (epi)catechin dimer d |
6 | 13.71 | 353 | 741 | 300 (100) | Quercetin-3-O-xylorutinoside e |
7 | 14.96 | 352 | 741 | 301 (100) | Quercetin 3-O-pentoside-rutinoside d |
8 | 16.32 | 342 | 725 | 311 (100) | Kaempferol-O-pentosyl-rhamnosyl-hexoside d |
9 | 16.69 | 352 | 609 | 301 (100) | Quercetin-3-O-rutinoside c |
10 | 17.85 | 350 | 463 | 301 (100) | Quercetin 3-O-glucoside c |
11 | 20.70 | 345 | 623 | 315 (100) | Isorhamnetin-3-O-rutinoside c |
Anthocyanin Phenolic Compounds | |||||
Compound number | Rt (min) | λmax (nm) | [M+H]+ (m/z) | MS2 (m/z) | Tentative identification |
12 | 10.68 | 523 | 655 | 494 (11), 493 (100), 332 (8), 331 (68) f | Malvidin 3,5-di-O-glucoside |
Non-Anthocyanin Phenolic Compounds | ||||||||
---|---|---|---|---|---|---|---|---|
Compound Number | CW+ | NW+ | TWW+ | XSW+ | CW− | NW− | TWW− | XSW− |
1 | 0.35 ± 0.02d | 0.51 ± 0.01a | 0.44 ± 0.02c | 0.46 ± 0.01b | 0.253 ± 0.004f | 0.50 ± 0.02a | 0.29 ± 0.01e | 0.302 ± 0.001e |
2 | 0.224 ± 0.01d | 0.59 ± 0.02b | 0.181 ± 0.005e | 0.82 ± 0.02a | 0.178 ± 0.001e | 0.40 ± 0.03c | 0.16 ± 0.01e | 0.24 ± 0.01d |
3 | 0.136 ± 0.005f | 0.18 ± 0.01ef | 0.24 ± 0.01cd | 0.28 ± 0.01c | 1.18 ± 0.02b | 0.22 ± 0.01de | 1.3 ± 0.1a | 0.194 ± 0.01de |
4 | 0.46 ± 0.01e | 0.76 ± 0.01b | 0.50 ± 0.01d | 0.082 ± 0.001g | 0.34 ± 0.03f | 0.60 ± 0.01c | 0.91 ± 0.04a | 0.50 ± 0.01d |
5 | 0.37 ± 0.01d | 0.52 ± 0.01b | 0.390 ± 0.004c | 0.66 ± 0.01a | 0.33 ± 0.02e | 0.54 ± 0.01b | 0.106 ± 0.005f | 0.36 ± 0.01d |
6 | 0.193 ± 0.001d | 0.24 ± 0.01b | 0.208 ± 0.003d | 0.254 ± 0.002a | 0.18 ± 0.01e | 0.212 ± 0.001c | 0.20 ± 0.01c | 0.166 ± 0.003f |
7 | 0.115 ± 0.001de | 0.126 ± 0.001a | 0.118 ± 0.003bc | 0.126 ± 0.001a | 0.116 ± 0.001cd | 0.12 ± 0.001b | 0.110 ± 0.001e | 0.113 ± 0.001d |
8 | 0.113 ± 0.001c | 0.120 ± 0.001b | 0.118 ± 0.001b | 0.112 ± 0.001c | 0.109 ± 0.001c | 0.263 ± 0.005a | 0.112 ± 0.001c | 0.110 ± 0.001c |
9 | 0.206 ± 0.002d | 0.302 ± 0.005a | 0.242 ± 0.002b | 0.304 ± 0.003a | 0.192 ± 0.003e | 0.115 ± 0.001g | 0.217 ± 0.003c | 0.178 ± 0.001f |
10 | 0.126 ± 0.001d | 0.151 ± 0.003b | 0.139 ± 0.003c | 0.158 ± 0.002a | 0.125 ± 0.001de | 0.138 ± 0.002c | 0.139 ± 0.003c | 0.122 ± 0.001e |
11 | 0.111 ± 0.001e | 0.128 ± 0.005a | 0.114 ± 0.001cde | 0.120 ± 0.001b | 0.107 ± 0.001f | 0.117 ± 0.001bcd | 0.113 ± 0.001de | 0.118 ± 0.001bc |
TPA | 0.58 ± 0.03e | 1.10 ± 0.01b | 0.62 ± 0.03d | 1.28 ± 0.02a | 0.431 ± 0.005f | 0.90 ± 0.01c | 0.45 ± 0.01f | 0.54 ± 0.01e |
TFNA | 1.82 ± 0.01f | 2.53 ± 0.02c | 2.08 ± 0.01e | 2.10 ± 0.01e | 2.67 ± 0.06b | 2.32 ± 0.02d | 3.2 ± 0.1a | 1.87 ± 0.01f |
TPCNA | 2.4 ± 0.01f | 3.64 ± 0.03a | 2.69 ± 0.03e | 3.38 ± 0.03b | 3.10 ± 0.06d | 3.22 ± 0.03c | 3.6 ± 0.1a | 2.42 ± 0.02f |
Anthocyanin Phenolic Compounds | ||||||||
12 | 0.60 ± 0.02a | 0.398 ± 0.003b | 0.390 ± 0.002b | 0.348 ± 0.004d | 0.370 ± 0.001c | 0.388 ± 0.003b | 0.367 ± 0.004c | 0.370 ± 0.001c |
TAC | 0.60 ± 0.02a | 0.398 ± 0.003b | 0.390 ± 0.002b | 0.348 ± 0.004d | 0.370 ± 0.001c | 0.388 ± 0.003b | 0.367 ± 0.004c | 0.370 ± 0.001c |
IC50 Values (mg/mL) | ||
---|---|---|
TBARS | OxHLIA | |
CW+ | 0.55 ± 0.02d | 1.16 ± 0.06b |
NW+ | 0.57 ± 0.06d | 0.59 ± 0.04c |
TWW+ | 0.57 ± 0.07d | 1.80 ± 0.09a |
XSW+ | 0.64 ± 0.02c | 0.14 ± 0.01f |
CW− | 0.74 ± 0.04b | 0.333 ± 0.005d |
NW− | 0.87 ± 0.07a | 0.249 ± 0.004e |
TWW− | 0.52 ± 0.04d | 0.243 ± 0.009e |
XSW− | 0.59 ± 0.04cd | 0.32 ± 0.01d |
Trolox | 0.0054 ± 0.0003 | 0.020 ± 0.001 |
Antibacterial Activity | |||||||
---|---|---|---|---|---|---|---|
S. aureus | B. cereus | L. monocytogenes | E. coli | S. Typhimurium | E. cloacae | ||
CW+ | MIC | 2 | 2 | 2 | 1 | 2 | 2 |
MBC | 4 | 4 | 4 | 2 | 4 | 4 | |
NW+ | MIC | 4 | 1 | 2 | 1 | 2 | 1 |
MBC | 8 | 2 | 4 | 2 | 4 | 2 | |
TWW+ | MIC | 4 | 1 | 2 | 1 | 2 | 2 |
MBC | 8 | 2 | 4 | 2 | 4 | 4 | |
XSW+ | MIC | 2 | 2 | 2 | 1 | 2 | 2 |
MBC | 4 | 4 | 4 | 2 | 4 | 4 | |
CW− | MIC | 4 | 2 | 2 | 1 | 1 | 2 |
MBC | 8 | 4 | 4 | 2 | 2 | 4 | |
NW− | MIC | 4 | 1 | 2 | 1 | 2 | 2 |
MBC | 8 | 2 | 4 | 2 | 4 | 4 | |
TWW− | MIC | 2 | 1 | 2 | 1 | 2 | 1 |
MBC | 4 | 2 | 4 | 2 | 4 | 2 | |
XSW− | MIC | 2 | 1 | 2 | 1 | 2 | 2 |
MBC | 4 | 2 | 4 | 2 | 4 | 4 | |
E211 | MIC | 4.0 | 0.5 | 1.0 | 1.0 | 1.0 | 2.0 |
MBC | 4.0 | 0.5 | 2.0 | 2.0 | 2.0 | 4.0 | |
E224 | MIC | 1.0 | 2.0 | 0.5 | 0.5 | 1.0 | 0.5 |
MBC | 1.0 | 4.0 | 1.0 | 1.0 | 1.0 | 0.5 | |
Antifungal Activity | |||||||
A. fumigatus | A. niger | A. versicolor | P. funiculosum | P. verrucosum var. cyclopium | T. viride | ||
CW+ | MIC | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 |
MFC | 1 | 1 | 1 | 1 | 1 | 1 | |
NW+ | MIC | 0.5 | 0.5 | 0.5 | 0.5 | 1 | 1 |
MFC | 1 | 1 | 1 | 1 | 2 | 2 | |
TWW+ | MIC | 0.25 | 0.25 | 0.5 | 0.5 | 0.25 | 1 |
MFC | 0.5 | 0.5 | 1 | 1 | 0.5 | 2 | |
XSW+ | MIC | 1 | 1 | 1 | 1 | 1 | 1 |
MFC | 2 | 2 | 2 | 2 | 2 | 2 | |
CW− | MIC | 0.5 | 0.25 | 0.5 | 0.5 | 1 | 4 |
MFC | 1 | 0.5 | 1 | 1 | 2 | 8 | |
NW− | MIC | 0.5 | 0.5 | 0.5 | 0.5 | 0.25 | 1 |
MFC | 1 | 1 | 1 | 1 | 0.5 | 2 | |
TWW− | MIC | 1 | 0.5 | 1 | 1 | 1 | 1 |
MFC | 2 | 1 | 2 | 2 | 2 | 2 | |
XSW− | MIC | 2 | 4 | 1 | 1 | 1 | 1 |
MFC | 4 | 8 | 2 | 2 | 2 | 2 | |
E211 | MIC | 1.0 | 1.0 | 2.0 | 1.0 | 2.0 | 1.0 |
MFC | 2.0 | 2.0 | 2.0 | 2.0 | 4.0 | 2.0 | |
E224 | MIC | 1.0 | 1.0 | 1.0 | 0.5 | 1.0 | 0.5 |
MFC | 1.0 | 1.0 | 1.0 | 0.5 | 1.0 | 0.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernandes, Â.; Figueiredo, S.; Finimundy, T.C.; Pinela, J.; Tzortzakis, N.; Ivanov, M.; Soković, M.; Ferreira, I.C.F.R.; Petropoulos, S.A.; Barros, L. Chemical Composition and Bioactive Properties of Purple French Bean (Phaseolus vulgaris L.) as Affected by Water Deficit Irrigation and Biostimulants Application. Sustainability 2021, 13, 6869. https://doi.org/10.3390/su13126869
Fernandes Â, Figueiredo S, Finimundy TC, Pinela J, Tzortzakis N, Ivanov M, Soković M, Ferreira ICFR, Petropoulos SA, Barros L. Chemical Composition and Bioactive Properties of Purple French Bean (Phaseolus vulgaris L.) as Affected by Water Deficit Irrigation and Biostimulants Application. Sustainability. 2021; 13(12):6869. https://doi.org/10.3390/su13126869
Chicago/Turabian StyleFernandes, Ângela, Sara Figueiredo, Tiane C. Finimundy, José Pinela, Nikolaos Tzortzakis, Marija Ivanov, Marina Soković, Isabel C. F. R. Ferreira, Spyridon A. Petropoulos, and Lillian Barros. 2021. "Chemical Composition and Bioactive Properties of Purple French Bean (Phaseolus vulgaris L.) as Affected by Water Deficit Irrigation and Biostimulants Application" Sustainability 13, no. 12: 6869. https://doi.org/10.3390/su13126869
APA StyleFernandes, Â., Figueiredo, S., Finimundy, T. C., Pinela, J., Tzortzakis, N., Ivanov, M., Soković, M., Ferreira, I. C. F. R., Petropoulos, S. A., & Barros, L. (2021). Chemical Composition and Bioactive Properties of Purple French Bean (Phaseolus vulgaris L.) as Affected by Water Deficit Irrigation and Biostimulants Application. Sustainability, 13(12), 6869. https://doi.org/10.3390/su13126869