Valuation of Ecological Retrofitting Technology in Existing Buildings: A Real-World Case Study
Abstract
:1. Introduction. Framework of Green Building and Post Carbon City Strategies and Their Benefits
2. Background. Multiple Immediate Benefits Derived from Ecological Retrofitting of Existing Building
2.1. Theoretical Framework: Taxonomy of Benefits Deriving from Ecological Retrofitting
- Energy benefits: a permanent structural and perceptible cut in kWh consumption.
- Economic benefits: a consequent permanent structural saving in expenses (“energy bill”) earmarked and assigned for building energy management.
- Health benefits: a general improvement in indoor wellbeing due to the natural materials used and the resulting improved indoor and outdoor environment.
- Financial real estate benefits: pioneer research has proved that ecological retrofitting increases the building and individual unit selling price in the local real estate market because sustainability positively affects a building’s market value, even in small towns and poor local economies such as the one proposed in the case study [44,45,46,47,48,49,50,51,52].
- Ecological transition benefits: the transition to a near Zero Carbon World, (nZCW) is the main priority of all European states, regions, provinces and urban governments and the same applies to the private sector.
2.2. Theoretical Framework: Answers from Empirical Evidence
- Investigation of the dynamics and forces which influence producers of innovative processes and the suppliers of new ecological products, employing the Theory of Planned Behavior, TPB, ([55] (Ajzen, 1985)).
3. Aims of the Research. Methodological Steps
3.1. Aims of the Research
3.2. Methodological Steps
- (a)
- An existing building ecological retrofit implementation approach, by adopting natural, bio ecological, historical, recyclable/renewable and local/regional materials and products in the framework of the circular economy, focusing more on passivation (gearing towards EU nearly zero energy buildings, nZEBs) before taking into consideration energy production from renewable alternative sources and HVAC implants.
- (b)
- An experimental preview test of the approach and of the targeted retrofit works in the simplest prototype small construction with the purpose of preventive verification of the proposed methodology.
- (c)
- A Data Base Management System and a spatial information system (joint platform) based upon state-of-the-art PostgreSQL DBMS and GIS at the unit and building level. This constitutes a first crucial step in the formulation of an imminent proposition (in future research) of a decision support system, which will then be carried out at larger scales i.e., at ward, quartier, city, regional and country level, but only if the cited DBMS-GIS joint platform is available. Given the limited space available this part of the research will be detailed in a supplementary separate report.
- (d)
- Real-world testing in a case study of simulated ecological retrofitting in the challenging area of existing buildings with architectural importance (but not preserved and not included in the national list of monuments or historic landmarks, the latter managed by so called “Soprintendenze” i.e., government office) such as those in the case study on the main street of the rebuilt post-earthquake city of Reggio Calabria;
- (e)
- An assessment (ecological as well as financial) of energy saving and emissions mitigation.
- (f)
- Estimation of the differential costs involved in ecological retrofitting works compared to ordinary maintenance without energy enhancement.
- (g)
- Estimation of the pay-back period adopting scientific analytical techniques instead of just heuristic or empirical cost assessments.
3.3. Method, Steps and Key Work of Nature-Based Ecological Retrofitting
3.4. Astonishing Low Thermal Conductivity of Bio Produtcs
- cork panel: 0.040 W/m2K;
- natural hydraulic lime base plaster: 0.066 W/m2K;
- natural hydraulic lime base super plaster: 0.029 W/m2K.
4. Test for Materials, Scenarios and a Manageable EPSP on Reference Building
4.1. Ecological Retrofitting Strategy: Alternative Scenarios
- -cork panel (0.040),
- -ime-base plaster (0.066)
- -and lime-base super plaster (0.029).
4.2. Comparative Building Energy Performance Simulation Programs (BEPSPs)
- Energy Plus® (Version 8.3.0) together with Design Builder (Version 4.5.0.178) is one of the best-known energy simulation software tools. It is complex software for energy diagnosis and thermal simulation in dynamic building arrangements. It has external graphical interfaces that facilitate the creation of the thermal model of the building and the inclusion of its characteristics, like Design Builder and others BIMs. Energy Plus is adopted to perform this first simple experiment on the elementary prototype edifice or reference building.
- Blumatica Energy® (Version 6.1) is user-friendly and relatively cheap software that allows the planner to design the thermal insulation of buildings as well as the management of their energy certification. It is interesting to compare its performance with that of more complex Energy Plus and more popular Termus.
- Termus® (Version 30.001) is one of the most popular Italian software platforms used for the assessment of energy performance of buildings. Energy certification (APE-AQE), calculation of transmittance and drafting Protocol Ithaca are some of the outputs of this software. It is the best-known standard software in Italy. It is reliable as well as friendly enough to be advised for local professionals and adopted for the present complex Case Study in this first valuation. In future research, a more complex modeling of thermal and wet transmission will be adopted to better understand and reduce the need of improvements.
4.3. Energy Performances and Pay Back Estimate
- total (area x kW/m2 year)
- Global Primary Energy (EPgl) which demonstrates the general efficiency of the building, of the envelope and of the systems;
- total CO2 (area x CO2 kg/m2 y) that the building and the systems release in the environment, as direct consequences of fossil material burning.
4.4. Taxonomy of Multiple Contextual Benefits. Healthiness, Salubrity and Other Impact Benefits
5. The Real-World Case Study
5.1. Liberty Style City. Rebuilt after 1908-Earthquake
5.2. Quartiers
5.3. Green Quartier and Ecological Retrofitting of Historic Buildings
5.4. Urban Block #102 Experimentation
5.5. Urban Block #102. Two Buildings. Four Bodies
5.6. Urban Block #102 2D Direct Survey
5.7. Urban Block #102 3D Direct Survey
5.8. Block #102 Indirect Façade Metric Orthophotographic Survey
- Urban Buildings (parcels).
- Urban Real Estate Units (“Subalterni Catastali”).
5.9. Block #102. Cadastral Systems and Data
- 5 apartments with 4 rooms, with kitchen, bathroom and accessories.
- 21 apartments with 3 rooms, with kitchen, bathroom and accessories.
- 11 apartments with 2 rooms, with kitchen, bathroom and accessories.
- 8 apartments with 1 room, with kitchen, bathroom and accessories.
5.10. Historical Technical Archive of City Reconstruction
- General planimetry. Scale 1: 500.
- Roof plan. Scale 1: 500.
- Ground floor plan. Scale 1: 500.
- First floor plan. Scale 1: 500.
- Second floor plan. Scale 1: 500.
- Front on Garibaldi Main Street. Part A. Scale 1: 500.
- Front on Garibaldi Main Street. Part B. Scale 1: 500.
- Front on Mattia Preti Street. Scale 1: 500.
- Front on Rosevelt Street. Scale 1: 500.
5.11. Urban Block #102 Needs Urgent Repair: Maintenance versus Eco Retrofitting. Over Lapping among Direct Survey and Archive Documents
5.12. Urban Block #102: Coordination among Direct Survey, Ortophoto Survey and Cadastre: Units (“Subalterni Catastali)” on Fronts\Facades
- Small alterations to East Front\Elevation; due to unauthorized elements on shop front of real estate commercial units (so called: “Subalterni Catastali”).
- Relevant and invasive alterations to East Front\Elevation; due to unauthorized elements on front of residential units.
- first floor: new window frames\fixtures, different from the previous as well as from the original design reproduced and attached in the appendix;
- second floor: new window frames and shutters, addition of new volumes not included in the original design, reproduced and attached in the appendix;
- third floor: new window frames and shutters, addition of new volumes not included in the original design in the archive documents.
6. Units and Building Energy Performances Simulation Outcomes: kWh Consumption and CO2 Emission in Alterative Common and Sustainable Scenarios
6.1. Foreword. Taxonomy of Back Bone External Works
- new insulating plaster (on the vertical walls) based on natural mineral Marlstone and on derived natural hydraulic lime, NHL (so called: “calce romana”);
- new insulation for a flat roof, a terrace or a pitched roof, based on natural vegetal cork panels derived from local (Circular Economy) and Mediterranean cork oak forests, and on an additional new slope layer based on natural mineral expanded (insulating) pearly-stone;
- new insulation for the crawl space on slab intrados based on natural vegetal cork derived from local and Mediterranean cork oak forests;
- efficient new windows possessing optimum thermal efficiency involving window-structures based on natural wood or chloride or PVC, and low-emission stratified double/triple glazing.
6.2. Energy Performance of Each of 54 Real Estate Units of Block #102
- Envelope index (EPi, inv), i.e., the energy dispersed by the building itself.
- Global primary energy index (EPgl), which demonstrates the efficiency of both the building-plant system on heating and the domestic hot water production and distribution system.
- CO2, i.e., the Kg of Carbon Dioxide that the building and heating system emits into the environment.
7. Cost Estimation and Pay-Back over Time
7.1. Ecological Retrofit Strategy and Circular Economy
7.2. Cost Engineering: Bridging Quantity Estimation
7.3. Cost Estimation
- the necessary processes for the passivation intervention;
- related microeconomic analyses of the elementary factors used i.e., economic production function;
- estimates of the market prices of the factors.
7.3.1. Retrofitting Cost Report. Metric Calculation. Scenario #1: Common Scenario
7.3.2. Retrofitting Cost Report. Metric Calculation. Scenario 2: Sustainable Scenario
7.4. Necessary Indivisible Operation Cost Estimation
- the technologies used in the necessary indivisible operations;
- the consequent production functions, compared with information commonly known and available in local markets;
- microeconomic analysis of the necessary indivisible operations and their Elementary Factors (so called: “Elementary Factor Analysis, EFA”);
- estimates of the market prices of the factors.
- Business As Usual, in the Common Scenario;
- Ecological Retrofitting, in the Sustainable Scenario.
7.5. Estimate of Energy Management Costs and CO2 Emissions
- Energy (€/kWh): 0.35; (statistical technical cost for the average user);
8. First Results and Conclusions
- adopt natural, bio-ecological, historical, renewable/recyclable and local/regional raw materials in the framework of the Circular Economy;
- include in the energy retrofit strategy the challenging aim of conserving and restoring existing buildings of architectural relevance;
- enhance the energy performance of such existing buildings;
- estimate the energy enhancement of such constructions as a result of few targeted external works (=Lavorazioni), examining, in particular, the initial investment costs and the longer-term multiple benefits stemming from structural energy saving as well as permanent CO2 emission mitigation.
- an existing building retrofit implementation approach by adopting natural, bio-ecological, historical, recyclable/renewable and local/regional materials in the framework of the Circular Economy;
- a real-world test in a case study of bio-ecological retrofitting in the challenging area of existing buildings of architectural importance (although not preserved and not included in the heritage list and record of monuments) such as those in the case study carried out on the main street (Amendola boulevard; previous Garibaldi corso) of the rebuilt post-1908-earthquake, total anti-seismic, innovative new city of Reggio Calabria;
- an assessment (ecological as well as financial) of energy saving and CO2 emission mitigation;
- an assessment of the initial investment costs involved in ecological retrofitting works (versus ordinary maintenance without energy enhancement) adopting a valuation based on scientific analytical techniques (with the estimate of the micro-economic production functions of indivisible works = “Lavorazioni”) instead of just heuristic or empirical cost intuition;
- a forecast of the pay-back period of the additional differential initial cost of sustainable interventions compared with Business as Usual (BAS) ordinary upkeep works.
- energy saving amounts to 47%;
- related monetary annual saving is € 63,108;
- avoided CO2 pollution is 57%,
- the related monetary annual equivalent estimate of avoided ecological damage is € 10,505;
- the additional initial cost of sustainable works is a mere 16% extra where this extra cost is calculated compared to the common scenario;
- the pay-back period of the additional differential cost of sustainable interventions is just two years.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ruggeri, A.G.; Gabrielli, L.; Scarpa, M. Energy Retrofit in European Building Portfolios: A Review of Five Key Aspects. Sustainability 2020, 12, 7465. [Google Scholar] [CrossRef]
- IPCC. Climate Change: The IPCC Scientific Assessment Report Prepared for IPCC by Working Group 1; Houghton, J.T., Jenkins, G.J., Ephraums, J.J., Eds.; Cambridge University Press: Cambridge, UK, 1990. [Google Scholar]
- IPCC. Climate Change 2001: The Physical Science Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2001. [Google Scholar]
- IPCC. Summary for Policymakers. In Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation; A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change; Field, C.B., Barros, V., Stocker, T.F., Qin, D., Dokken, D.J., Ebi, K.L., Mastrandrea, M.D., Mach, K.J., Plattner, G.-K., Allen, S.K., et al., Eds.; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar]
- Westra, L.; Soskolne, C.; Spady, D. Human Health and Ecological Integrity: Ethics, Law and Human Rights; Routledge: Abingdon, UK, 2012. [Google Scholar]
- IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- IPCC. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Pachauri, R.K., Meyer, L.A., Eds.; IPCC: Geneva, Switzerland, 2014. [Google Scholar]
- IPCC. Special Report on Global Warming of 1.5 °C (SR15); United Nations: New York, NY, USA, 2018. [Google Scholar]
- Massimo, D.E. Valuation of urban sustainability and building energy efficiency. A case study. Int. J. Sustain. Dev. 2010, 12, 223–247. [Google Scholar] [CrossRef]
- Massimo, D.E.; Musolino, M.; Barbalace, A.; Fragomeni, C. Multi Dimensional Valuation of Monuments. In Sabiedriba, Integracija, Izglitiba [Society, Integration, Education], Proceedings of the Ispalem / Ipsapa International Scientific Conference, Udine, Italy, 27–28 June 2013; Rezekne Higher Education Institution: Rezekne, Latvija, 2013; Volume 5, pp. 89–100. [Google Scholar]
- Musolino, M.; Massimo, D.E. Mediterranean Urban Landscape. Integrated Strategies for Sustainable Retrofitting of Consolidated City. In Sabiedriba, Integracija, Izglitiba [Society, Integration, Education], Proceedings of the Ispalem/Ipsapa International Scientific Conference, Udine, Italy, 27–28 June 2013; Rezekne Higher Education Institution: Rezekne, Latvija, 2013; Volume 3, pp. 49–60. [Google Scholar]
- Massimo, D.E.; Fragomeni, C.; Musolino, M.; Barbalace, A. Landscape and settlements. Historic center qualitative and quantitative valuation. Agribus. Paesaggio Ambiente 2014, 17, 51–64. [Google Scholar]
- Massimo, D.E. Green Building: Characteristics, Energy Implications and Environmental Impacts. Case Study in Reggio Calabria, Italy. In Green Building and Phase Change Materials: Characteristics, Energy Implications and Environmental Impacts; Coleman-Sanders, M., Ed.; Nova Science Publishers: New York, NY, USA, 2015; Volume 1, pp. 71–101. [Google Scholar]
- Massimo, D.E.; Fragomeni, C.; Malerba, A.; Musolino, M. Valuation supports green university: Case action at Mediterranea campus in Reggio Calabria. Procedia Soc. Behav. Sci. 2016, 223, 17–24. [Google Scholar] [CrossRef] [Green Version]
- Massimo, D.E.; Malerba, A.; Musolino, M. Green district to save the planet. In Integrated Evaluation for the Management of Contemporary Cities; Series: Green Energy and Technology; Mondini, G., Fattinnanzi, E., Oppio, A., Bottero, M., Stanghellini, S., Eds.; Springer: Berlin/Heidelberg, Germany, 2018; pp. 255–269. [Google Scholar] [CrossRef]
- Massimo, D.E.; Malerba, A.; Musolino, M. Valuating Historic Centers to Save the Planet soil. In Integrated Evaluation for the Management of Contemporary Cities; Series: Green Energy and Technology; Mondini, G., Fattinnanzi, E., Oppio, A., Bottero, M., Stanghellini, S., Eds.; Springer: Berlin/Heidelberg, Germany, 2018; pp. 297–311. [Google Scholar] [CrossRef]
- Musolino, M.; Malerba, A.; De Paola, P.; Musarella, C.M. Building Efficiency Adopting Ecological Materials and Bio Architecture Techniques. ArcRHistoR 2019, 1–10. [Google Scholar] [CrossRef]
- Massimo, D.E.; Malerba, A.; Musolino, M.; Nicoletti, F.; De Paola, P. Valutazione energetica comparativa degli edifici per la Post Carbon City [Energy Comparative Assessment of Buildings for the Post Carbon City]. Laborest 2019, 19, 63–70. [Google Scholar]
- Calvin, M.; Bassham, J.A. The Photosyntesis of Carbon Compounds; Benjamin: New York, NY, USA, 1962. [Google Scholar]
- Cellina, F.; De Leo, G. I Modelli per la Valutazione delle Politiche di Riduzione delle Emissioni di Gas Climalteranti: Una Rassegna Preliminare. Available online: https://www.researchgate.net/publication/235754118_I_modelli_per_la_valutazione_delle_politiche_di_riduzione_delle_emissioni_di_gas_climalteranti_una_rassegna_preliminare (accessed on 9 June 2021).
- Tol, R. Estimates of the Damage Costs of Climate Change, Part I: Benchmark Estimates. Environ. Resour. Econ. 2002, 21, 47–73. [Google Scholar] [CrossRef]
- Bosello, F.; Roson, R.; Tol, R. Economy-wide estimates of the implications of climate change: Human health. Ecol. Econ. 2006, 58, 579–591. [Google Scholar] [CrossRef] [Green Version]
- Hope, C.W. The Marginal Impact of CO2 from PAGE 2002: An Integrated Assessment Model Incorporating the IPCC’s Five Reasons for Concern. Integr. Assess. J. 2006, 6, 19–56. [Google Scholar]
- Artale, V.; Danesi, I. Lo stato delle conoscenze sui cambiamenti climatici: Il IV Rapporto dell’IPCC e un esempio di studio. Riv. Giuridica Dell Ambiente 2007, 3, 477–506. [Google Scholar]
- Nordhaus, W. A Question of Balance: Weighing the Options on Global Warming Policies; Yale University Press: New Haven, CT, USA, 2008. [Google Scholar]
- EPA. Proposed Rulemaking to Establish Light-Duty Vehicle Greenhouse Gas Emission Standards and Corporate Average Fuel Economy Standards. EPA Docket EPA-HQ-OAR-2009-0472. Fed. Regist. 2009, 74, 49418–49454. [Google Scholar]
- Hanemann, W.M. What Is the Economic Cost of Climate Change? 2008. Available online: https://ideas.repec.org/p/ags/ucbecw/46999.html (accessed on 9 June 2021).
- Newbold, S.; Griffiths, C.; Moore, C.; Wolverton, A.; Kopits, E. The “Social Cost of Carbon” Made Simple. 2010. Available online: https://ageconsearch.umn.edu/record/280887/ (accessed on 9 June 2021).
- Dell, M.; Jones, B.; Olken, B. Temperature shocks and economic growth: Evidence from the last half century. Am. Econ. J. Macroecon. 2012, 4, 66–95. [Google Scholar] [CrossRef] [Green Version]
- Gago, A.; Hanemann, M.; Labandeira, X.; Ramos, A. Climate Change, Buildings and Energy Prices in Roger Fouquet (ed) Handbook on Energy and Climate Change; Edward Elgar Publishing: Northampton, MA, USA, 2013; pp. 434–452. [Google Scholar]
- Pindyck, R. Climate change policy: What do the models tell us? J. Econ. Lit. 2013, 51, 860–872. [Google Scholar] [CrossRef] [Green Version]
- Nocera, S.; Cavallaro, F. A methodological framework for the economic evaluation of CO2 emissions from transport. J. Adv. Transp. 2014, 48, 138–164. [Google Scholar] [CrossRef]
- Nocera, S.; Tonin, S.; Murino, M.; Cavallaro, F. La complessità della valutazione della CO7 nella pianificazione dei trasporti. Riv. Econ. Politica Trasp. 2014, 2, 1–21. [Google Scholar]
- Moore, F.; Diaz, D. Temperature impacts on economic growth warrant stringent mitigation policy. Nat. Clim. Chang. 2015, 5, 1–5. [Google Scholar]
- Pindyck, R. The Use and Misuse of Models for Climate Policy. NBER Working Paper, 2015. No. w21097. Available online: https://www.nber.org/papers/w21097 (accessed on 25 May 2021).
- Clarkson, R.; Deyes, K. Estimating the Social Cost of Carbon Emissions, Department of Environment; Food and Rural Affairs: London, UK, 2002. [Google Scholar]
- Watkiss, P. The social costs of carbon (SCC) review: Methodological approaches for using SCC estimates in policy assessment. In AEA Technology Environment, Department for Environment; Food and Rural Affairs: London, UK, 2005. [Google Scholar]
- Stern, N. The Economics of Climate Change. In The Stern Review; Cambridge University Press: Cambridge, UK, 2006. [Google Scholar]
- Ackerman, F.; Stanton, E. The Social Cost of Carbon. Report for the Economics for Equity and the Environment Network April 1, 2010. Available online: https://mediamanager.sei.org/documents/Publications/Climate-mitigation-adaptation/socialcostofcarbon_sei_20100401.pdf (accessed on 25 May 2021).
- Ackerman, F.; Stanton, E. Climate Risks and Carbon Prices: Revising the Social Cost of Carbon. Econ. Open Access Open Assess. E J. 2012, 6, 1–25. [Google Scholar] [CrossRef] [Green Version]
- Brantley, H.; Hagler, G.; Deshmukh, P.; Baldauf, R. Using Portable Samplers to Determine the Effect of Roadside Vegetation on Near-Road Air Quality. In National Risk Management Research Laboratory; Report 6–7 November 2012; United States Environmental Protection Agency: Durham, NC, USA, 2012. [Google Scholar]
- Ceronsky, M.; Revesz, R.; Keohane, N.; Cleetus, R.; Convery, F.; Schwartz, J.; Howard, P.; Sterner, T.; Johnson, L.; Wagner, G. Comments on the U.S. Social Cost of Carbon; Columbia University Academic Commons: New York, NY, USA, 2014. [Google Scholar]
- Interagency Working Group on Social Cost of Carbon, United States Government. Technical Support Document: Technical Update of the Social Cost of Carbon for Regulatory Impact Analysis—Under Executive Order 12866, Revised July 2015. Available online: https://obamawhitehouse.archives.gov/sites/default/files/omb/inforeg/scc-tsd-final-july-2015.pdf (accessed on 25 May 2021).
- Massimo, D.E. Stima del green premium per la sostenibilità architettonica mediante Market Comparison Approach. Valori Valutazioni 2011, 6, 127–144. [Google Scholar]
- Massimo, D.E. Emerging Issues in Real Estate Appraisal: Market Premium for Building Sustainability. Aestimum 2013, 653–673. [Google Scholar] [CrossRef]
- Massimo, D.E.; Battaglia, L.; Fragomeni, C.; Guidara, M.; Rudi, G.; Scala, C. Sustainability valuation for urban regeneration. The Geomatic Valuation University Lab research. Adv. Eng. Forum 2014, 594–599. [Google Scholar] [CrossRef] [Green Version]
- Del Giudice, V.; Massimo, D.E.; De Paola, P.; Forte, F.; Musolino, M.; Malerba, A. Post Carbon City and Real Estate Market: Testing the Dataset of Reggio Calabria Market Using Spline Smoothing Semiparametric Method. In Smart Innovation, Systems and Technologies; New Metropolitan Perspectives. ISHT 2018; Calabrò, F., Della Spina, L., Bevilacqua, C., Eds.; Springer: Cham, Switzerland, 2019; Volume 100, pp. 206–214. [Google Scholar] [CrossRef]
- De Paola, P.; Del Giudice, V.; Massimo, D.E.; Forte, F.; Musolino, M.; Malerba, A. Isovalore Maps for the Spatial Analysis of Real Estate Market: A Case Study for a Central Urban Area of Reggio Calabria, Italy. In Smart Innovation, Systems and Technologies; New Metropolitan Perspectives. ISHT 2018; Calabrò, F., Della Spina, L., Bevilacqua, C., Eds.; Springer: Cham, Switzerland, 2019; Volume 100, pp. 402–410. [Google Scholar] [CrossRef]
- Massimo, D.E.; Del Giudice, V.; De Paola, P.; Forte, F.; Musolino, M.; Malerba, A. Geographically Weighted Regression for the Post Carbon City and Real Estate Market Analysis: A Case Study. In Smart Innovation, Systems and Technologies; New Metropolitan Perspectives. ISHT 2018; Calabrò, F., Della Spina, L., Bevilacqua, C., Eds.; Springer: Cham, Switzerland, 2019; Volume 100, pp. 142–149. [Google Scholar] [CrossRef]
- Del Giudice, V.; Massimo, D.E.; De Paola, P.; Del Giudice, F.P.; Musolino, M. Green Buildings for Post Carbon City: Determining Market Premium Using Spline Smoothing Semiparametric Method. In Smart Innovation, Systems and Technologies; New Metropolitan Perspectives. NMP 2020; Bevilacqua, C., Calabrò, F., Della Spina, L., Eds.; Springer: Cham, Switzerland, 2021; Volume 178, pp. 1227–1236. [Google Scholar] [CrossRef]
- Del Giudice, V.; Massimo, D.E.; Salvo, F.; De Paola, P.; De Ruggiero, M.; Musolino, M. Market Price Premium for Green Buildings: A review of empirical evidence. case study. In Smart Innovation, Systems and Technologies; New Metropolitan Perspectives. NMP 2020; Bevilacqua, C., Calabrò, F., Della Spina, L., Eds.; Springer: Cham, Switzerland, 2021; Volume 178, pp. 1237–1247. [Google Scholar] [CrossRef]
- De Paola, P.; Del Giudice, V.; Massimo, D.E.; Del Giudice, F.P.; Musolino, M.; Malerba, A. Green Building Market Premium: Detection Through Spatial Analysis of Real Estate Values. A Case Study. In Smart Innovation, Systems and Technologies; New Metropolitan Perspectives. NMP 2020; Bevilacqua, C., Calabrò, F., Della Spina, L., Eds.; Springer: Cham, Switzerland, 2021; Volume 178, pp. 1413–1422. [Google Scholar] [CrossRef]
- Rogers, E.M. Diffusion of Innovations; The Free Press: New York, NY, USA, 1995. [Google Scholar]
- Rogers, E.M. Diffusion of Innovations, 5th ed.; Free Press: New York, NY, USA, 2003. [Google Scholar]
- Ajzen, I. From Intentions to Actions: A Theory of Planned Behavior. In Action Control. SSSP Springer Series in Social Psychology; Kuhl, J., Beckmann, J., Eds.; Springer: Berlin/Heidelberg, Germany, 1985; pp. 11–39. [Google Scholar] [CrossRef]
- Crawley, D.B.; Lawrie, L.; Winkelmann, F.C.; Pedersen, C.O. Energy Plus: New capabilities in a whole-building energy simulation program. Build. Simul. 2001, 33, 51–58. [Google Scholar]
- Yilmaz, A.Z. Evaluation of energy efficient design strategies for different climatic zones: Comparison of thermal performance of buildings in temperate-humid and hot-dry climate. Energy Build. 2007, 39, 306–316. [Google Scholar] [CrossRef]
- Crawley, D.B.; Hand, J.W.; Kummert, M.; Griffith, B.T. Contrasting the capabilities of building energy performance simulation programs. Build. Environ. 2008, 43, 661–673. [Google Scholar] [CrossRef] [Green Version]
- Stoakes, P.J. Simulation of airflow and heat transfer in buildings. Master’s Thesis, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, 2009. [Google Scholar]
- Rallapalli, H.S. A comparison of EnergyPlus and eQuest whole building energy simulation results for a medium sized office building. Master’s Thesis, Arizona State University, Tempe, AZ, USA, 2010. [Google Scholar]
- Sousa, J. Energy Simulation Software for Buildings: Review and Comparison. 2012. Available online: https://www.semanticscholar.org/paper/Energy-Simulation-Software-for-Buildings-%3A-Revie-Sousa/b4b6593df77024a585b68d066bf2bd668838f852 (accessed on 25 May 2021).
- Malerba, A.; Massimo, D.E.; Musolino, M.; Nicoletti, F.; De Paola, P. Post Carbon City: Building Valuation and Energy Performance Simulation Programs. In Smart Innovation, Systems and Technologies; New Metropolitan Perspectives. ISHT 2018; Calabrò, F., Della Spina, L., Bevilacqua, C., Eds.; Springer: Cham, Switzerland, 2019; Volume 101, pp. 513–521. [Google Scholar] [CrossRef]
- Mercurio, R.; Spampinato, G. Le sugherete della Calabria: Ecologia, fitosociologia e selvicoltura. In Proceedings of the: III Congresso Nazionale SISEF “Alberi e foreste per il nuovo millennio”. Università degli Studi della Tuscia, Viterbo, Italy, 15–18 October 2001. [Google Scholar]
- Caridi, D.; Iovino, F. La presenza della quercia da sughero (Quercus suber L.) in Calabria. L Ital. For. Mont. 2002, 6, 513–532. [Google Scholar]
- Barreca, L.; Marziliano, P.; Menguzzato, G.; Scuderi, A. Analisi strutturale e caratterizzazione della necromassa in sugherete della Calabria. Forest 2010, 7, 158–168. [Google Scholar] [CrossRef] [Green Version]
- Vessella, F.; Schirone, B. Predicting potential distribution of Quercus suber in Italy based on ecological niche models: Conservation insights and reforestation involvements. For. Ecol. Manag. 2013, 314, 150–161. [Google Scholar] [CrossRef]
- Spampinato, G.; Massimo, D.E.; Musarella, C.M.; De Paola, P.; Malerba, A.; Musolino, M. Carbon Sequestration by Cork Oak Forests and Raw Material to Built up Post Carbon City. In Smart Innovation, Systems and Technologies; New Metropolitan Perspectives. ISHT 2018; Calabrò, F., Della Spina, L., Bevilacqua, C., Eds.; Springer: Cham, Switzerland, 2019; Volume 101, pp. 663–671. [Google Scholar]
- Berardi, U. Aerogel–enhanced systems for building energy retrofits: Insights from a case study. In Energy and Buildings; Niu, J., Santamouris, M., Eds.; Elsevier: Amsterdam, The Nederland, 2018; Volume 159, pp. 370–381. [Google Scholar] [CrossRef]
- Rabinowitch, E.I. Photosyntesis and Related Processes, I–II; American Institute of Physics Publisher: New York, NY, USA, 1951; Volume 12, p. 482. [Google Scholar] [CrossRef]
- Dolgosheev, V.M. Increasing the Effectiveness of the Management of Forest Utilization; Mimeo: Bhopal, India, 1980. [Google Scholar]
- Smith, W.H. Air pollution and Forests: Interactions between Air Contaminants and Forest Ecosystems; Springer: New York, NY, USA, 1990. [Google Scholar] [CrossRef]
- Matthews, G. The Carbon Contents of Trees. Forestry Commission; Techn. Paper 4; Forestry Commission: Edinburgh, UK, 1993. [Google Scholar]
- Seebregts, J.; Goldstein, G.; Smekens, K. Energy/Environmental Modeling with the MARKAL Family of Models. In Selected Papers of the International Conference on Operations Research (OR 2001) Duisburg, 3–5 September 2001; Springer: Berlin/Heidelberg, Germany, 2002; pp. 75–82. [Google Scholar] [CrossRef]
- Hales, B.; Karp-Boss, L.; Perlin, A.; Wheeler, P. Oxygen production and carbon sequestration in an upwelling coastal margin. Glob. Biogeochem. Cycles 2006, 20. [Google Scholar] [CrossRef]
- Nowak, D.J.; Crane, E.D.; Stevens, J.C. Air pollution removal by urban trees and shrubs in the United States. Urban For. Urban Green. 2006, 4, 115–123. [Google Scholar] [CrossRef]
- Nowak, D.J.; Hoehn, R.; Crane, E.D. Oxygen Production by Urban Trees in the United States. Arboric. Urban For. 2007, 33, 220–226. [Google Scholar]
- Nowak, D.J.; Dwyer, J.F. Understanding the benefits and costs of urban forest ecosystems. In Handbook of Urban and Community Forestry in the Northeast, 2nd ed.; Kuser, J., Ed.; Springer: New York, NY, USA, 2010; pp. 25–46. [Google Scholar] [CrossRef]
- Lakyda, I. Carbon-Sequestering and Oxygen-Producing Functions of Urban Forests of Kyiv City and Pre-Urban Forests of Stockholm City; Swedish University of Agricultural Sciences: Uppsala, Sweden, 2010. [Google Scholar] [CrossRef]
- Copa-Cogeca. Le Foreste Europee, Una Fonte di Soluzioni Per le Future Sfide; Report; Copa-Cogeca: Bruxelles, Belgium, 2011. [Google Scholar]
- Nowak, D.J.; Greenfield, E.J. Tree and impervious cover change in U.S. cities. Urban For. Urban Green. 2012, 11, 21–30. [Google Scholar] [CrossRef] [Green Version]
- Nowak, D.J.; Greenfield, E.J. Tree and impervious cover in the United States. Landsc. Urban Plan. 2012, 107, 21–30. [Google Scholar] [CrossRef] [Green Version]
- Fregonara, E.; Curto, R.; Grosso, M.; Mellano, P.; Rolando, D.; Tulliani, J.-M. Environmental Technology, Materials Science, Architectural Design, and Real Estate Market Evaluation: A Multidisciplinary Approach for Energy-Efficient Buildings. J. Urban Technol. 2013, 20, 57–80. [Google Scholar] [CrossRef]
- Antoniucci, V.; D’Alpaos, C.; Marella, G. Energy saving in tall buildings: From urban planning regulation to smart grid building solutions. Int. J. Hous. Sci. Its Appl. 2015, 39, 101–110. [Google Scholar]
- Nestico, A.; Pipolo, O. A protocol for sustainable building interventions: Financial analysis and environmental effects. In. J. Bus. Intell. Data Min. 2015, 10, 199–212. [Google Scholar] [CrossRef]
- Calabrò, F.; Sturiale, L.; Della Spina, L. The Management Tools for Urban Transformation, in Future Useful, Attractive and Friendly Cities. The Role of Evaluation Work. In The Usefulness of the Useless in the Landscape-Cultural Mosaic: Liveability, Typicality, Biodiversity, Proceedings of the 18th IPSAPA/ISPALEM International Scientific Conference, Catania, Italy, 3–4 July 2014; Piccinini, L.C., Chang, T.F.M., Taverna, M., Iseppi, L., Eds.; IPSAPA/ISPALEM: Udine, Italy, 2015; pp. 299–307. [Google Scholar]
- Bisello, A.; Marella, G.; Grilli, G. SINFONIA Project Mass Appraisal: Beyond the Value of Energy Performance in Buildings. Procedia Soc. Behav. Sci. 2016, 223, 37–44. [Google Scholar] [CrossRef]
- Canesi, R.; D’Alpaos, C.; Marella, G. Forced Sale Values vs. Market Values in Italy. J. Real Estate Lit. 2016, 24, 109670. [Google Scholar] [CrossRef]
- Tajani, F.; Morano, P.; Locurcio, M.; Torre, C. Data-driven techniques for mass appraisals. Applications to the Residential Market of the City of Bari (Italy). Int. J. Bus. Intell. Data Min. 2016, 11, 109–129. [Google Scholar] [CrossRef]
- Del Giudice, V.; De Paola, P.; Manganelli, B.; Forte, F. The Monetary Valuation of Environmental Externalities through the Analysis of Real Estate Prices. Sustain. Build. Environ. 2017, 9, 229. [Google Scholar] [CrossRef] [Green Version]
- Nesticò, A.; Sica, F. The sustainability of urban renewal projects: A model for economic multi-criteria analysis. J. Prop. Investig. Financ. 2017, 35, 397–409. [Google Scholar] [CrossRef]
- Salvo, F.; De Ruggiero, M.; Forestiero, G.; Manganelli, B. Buildings Energy Performance in a Market Comparison Approach. Buildings 2017, 7, 16. [Google Scholar] [CrossRef]
- Berto, R.; Stival, C.A.; Rosato, P. Green Roofs vs. Cool Roofs. Economic Evaluation of Private and Public Benefits Derived from Industrial Buildings Retrofit in Italian Different Climate Conditions. Urban Transitions 2018—Integrating Urban and Transport Planning, Environment and Health for Healthier Urban Living. Available online: https://arts.units.it/handle/11368/2954363#.YMCAb_kzaUk (accessed on 25 May 2021).
- Berto, R.; Stival, C.A.; Rosato, P. Enhancing the environmental performance of industrial settlements: An economic evaluation of extensive green roof competitiveness. Build. Environ. 2018, 127, 58–68. [Google Scholar] [CrossRef] [Green Version]
- Bottero, M.; Bravi, M.; Dell’Anna, F.; Mondini, G. Valuing buildings energy efficiency through Hedonic Prices Method: Are spatial effects relevant? Valori Valutazioni 2018, 21, 27–39. [Google Scholar]
- D’Alpaos, C.; Bragolusi, P. Buildings energy retrofit valuation approaches: State of the art and future perspectives. Valori Valutazioni 2018, 20, 79–94. [Google Scholar]
- Fregonara, E.; Ferrando, D.G. How to Model Uncertain Service Life and Durability of Components in Life Cycle Cost Analysis Applications? The Stochastic Approach to the Factor Method. Sustainability 2018, 10, 3642. [Google Scholar] [CrossRef] [Green Version]
- Fregonara, E.; Ferrando, D.G.; Pattono, S. Economic–Environmental Sustainability in Building Projects: Introducing Risk and Uncertainty in LCCE and LCCA. Sustainability 2018, 10, 1901. [Google Scholar] [CrossRef] [Green Version]
- Bottero, M.; Caprioli, C.; Cotella, G.; Santangelo, M. Sustainable Cities: A Reflection on Potentialities and Limits based on Existing Eco-Districts in Europe. Sustainability 2019, 11, 5794. [Google Scholar] [CrossRef] [Green Version]
- Bottero, M.; D’Alpaos, C.; Dell’Anna, F. Boosting Investments in Buildings Energy Retrofit: The Role of Incentives. In Smart Innovation, Systems and Technologies; New Metropolitan Perspectives. ISHT 2018; Calabrò, F., Della Spina, L., Bevilacqua, C., Eds.; Springer: Cham, Switzerland, 2019; Volume 100, pp. 593–600. [Google Scholar] [CrossRef] [Green Version]
- Gabrielli, L.; Aurora Greta Ruggeri, A.G. Developing a model for energy retrofit in large building portfolios: Energy assessment, optimization and uncertainty. Energy Build. 2019, 202, 109356. [Google Scholar] [CrossRef]
- Moghadam, S.T.; Lombardi, P. An interactive multi-criteria spatial decision support system for energy retrofitting of building stocks using CommuntiyVIZ to support urban energy planning. Build. Environ. 2019, 163, 102214. [Google Scholar] [CrossRef]
- Moghadam, S.T.; Coccolo, S.; Mutani, G.; Lombardi, P.; Scartezzini, J.L.; Mauree, D. A new clustering and visualization method to evaluate urban heat energy planning scenarios. Cities 2019, 88, 19–36. [Google Scholar] [CrossRef]
- Moghadam, S.T.; Di Nicoli, M.V.; Giacomini, A.; Lombardi, P.; Toniolo, J. The role of prosumers in supporting renewable energies sources. Earth Environ. Sci. 2019, 297, 012041. [Google Scholar] [CrossRef] [Green Version]
- Genta, C.; Lombardi, P.; Mari, V.; Moghadam, S.T. Key Performance Indicators for Sustainable Urban Development: Case Study Approach. Earth Environ. Sci. 2019, 296, 012009. [Google Scholar] [CrossRef]
- Sonetti, G.; Lombardi, P. Multi-criteria Decision Analysis of a Building Element Integrating Energy Use, Environmental, Economic. Values Funct. Future Cities 2019, 163, 463–477. [Google Scholar] [CrossRef]
- Stival, C.A.; Berto, R.; Rosato, P. Modello Multi-Attributo Per la Valutazione del Riuso Sostenibile di Abitazioni Tradizionali Nelle Alpi Carniche; Franco, A., Ed.; 2019; Volume 461, pp. 1443–1452. [Google Scholar]
- Appiotti, F.; Assumma, V.; Bottero, M.; Campostrini, P.; Datola, G.; Lombardi, P. Definition of a Risk Assessment Model within a European Interoperable Database Platform (EID) for Cultural Heritage. J. Cult. Herit. 2020, 46, 268–277. [Google Scholar] [CrossRef]
- Bisello, A.; Antoniucci, V.; Marella, G. Measuring the price premium of energy efficiency: A two-step analysis in the Italian housing market. Energy Build. 2020, 208, 109670. [Google Scholar] [CrossRef]
- Becchio, C.; Bottero, M.; Bravi, M.; Corgnati, S.P.; Dell’Anna, F.; Mondini, G.; Vergerio, G. Integrated Assessments and Energy Retrofit: The Contribution of the Energy Center Lab of the Politecnico di Torino. In Values and Functions for Future Cities; Springer: Cham, Switzerland, 2020; pp. 365–384. [Google Scholar] [CrossRef]
- Buffoli, M.; Rebecchi, A.; Dell’Ovo, M.; Oppio, A.; Campolongo, S. Transforming the Built Environment Through Healthy-Design Strategies: A Multidimensional Framework for Urban Plans’ Evaluation. In Smart Innovation, Systems and Technologies; Calabrò, F., Della Spina, L., Bevilacqua, C., Eds.; Springer: Cham, Switzerland, 2020; Volume 177, pp. 187–196. [Google Scholar] [CrossRef]
- Cooper, I.; Lombardi, P.; Ciaffi, D. Intangibles-enhancing access to cities cultural heritage through interpretation. Int. J. Cult. Tour. Hosp. Res. 2020, 7, 68–77. [Google Scholar] [CrossRef] [Green Version]
- Lami, I.M. (Ed.) Abandoned Buildings in Contemporary Cities: Smart Conditions for Actions; Springer International Publishing: Heidelberg/Berlin, Germany, 2020; p. 162. [Google Scholar]
- Dell’Anna, F.; Bottero, M.; Becchio, C.; Corgnati, S.P.; Mondini, G. Designing a decision support system to evaluate the environmental and extra-economic performances of a nearly zero-energy building. Smart Sustain. Built Environ. 2020, 9, 413–442. [Google Scholar] [CrossRef]
- Gabrielli, L.; Ruggeri, A.G. Developing a model for energy retrofit in large building portfolios: Energy assessment, optimization and uncertainty. Eur. Real Estate Soc. 2019, 202, 109356. [Google Scholar] [CrossRef]
- Mangialardo, A.; Micelli, E. Reconstruction or Reuse? How Real Estate Values and Planning Choices Impact Urban Redevelopment. Sustainability 2020, 12, 4060. [Google Scholar] [CrossRef]
- Mangialardo, A.; Micelli, E. Innovation of Off-Site Constructions: Benefits for Developers and the Community in an Italian Case Study. Values Funct. Future Cities 2020, 217–228. [Google Scholar] [CrossRef]
- Manzan, M.; Lupato, G.; Pezzi, A.; Rosato, P.; Clarich, A. Reliability-based optimization for energy refurbishment of a social housing building. Energies 2020, 13, 2310. [Google Scholar] [CrossRef]
- Micelli, E.; Valier, A. Capturing the Public Value in the Public/Private Zoning Agreements: Evidence from Italian Municipalities. Apprais. Valuat. 2020, 19–28. [Google Scholar] [CrossRef]
- Moghadam, S.T.; Di Nicoli, M.V.; Manzo, S.; Lombardi, P. Mainstreaming energy communities in the transition to a low-carbon future: A methodological approach. Energies 2020, 13, 1597. [Google Scholar] [CrossRef] [Green Version]
- Morano, P.; Rosato, P.; Tajani, F.; Di Liddo, F. An Analysis of the Energy Efficiency Impacts on the Residential Property Prices in the City of Bari (Italy). In Values and Functions for Future Cities; Springer: Cham, Switzerland, 2020; pp. 73–88. [Google Scholar] [CrossRef]
- Napoli, G.; Bottero, M.; Ciulla, G.; Dell’Anna, F.; Rui Figueira, J.; Greco, S. Supporting public decision process in buildings energy retrofitting operations: The application of a Multiple Criteria Decision Aiding model to a case study in Southern Italy. Sustain. Cities Soc. 2020, 60, 102214. [Google Scholar] [CrossRef]
- Oppio, A.; Bottero, M.; Dell’Anna, F.; Dell’Ovo, M.; Gabrielli, L. Evaluating the Urban Quality Through a Hybrid Approach: Application in the Milan (Italy) City Area. Comput. Sci. Its Appl. ICCSA 2020, 12253, 300–315. [Google Scholar] [CrossRef]
- Rotondo, F.; Abastante, F.; Cotella, G.; Lami, I.M. Questioning Low-Carbon Transition Governance: A Comparative Analysis of European Case Studies. Sustainability 2020, 12, 10460. [Google Scholar] [CrossRef]
- Salvo, F.; Morano, P.; De Ruggiero, M.; Tajani, F. An Environmental Health Valuation Through Real Estate Prices. In Smart Innovation, Systems and Technologies; Calabrò, F., Della Spina, L., Bevilacqua, C., Eds.; Springer: Cham, Switzerland, 2020; Volume 178, pp. 768–778. [Google Scholar] [CrossRef]
- Sonetti, G.; Lombardi, P. Multi-criteria decision analysis of a building element integrating energy use, environmental, economic and aesthetic parameters in its life cycle. Values Funct. Future Cities 2020, 463–477. [Google Scholar] [CrossRef]
- Stival, C.A.; Berto, R.; Rosato, P. Reuse of Vernacular Architecture in Minor Alpine Settlements: A Multi-Attribute Model for Sustainability Appraisal. Sustainability 2020, 12, 6562. [Google Scholar] [CrossRef]
- Antoniucci, V.; Bisello, A.; Marella, G. Urban Density and Household-Electricity Consumption: An Analysis of the Italian Residential Building Stock. In Smart and Sustainable Planning for Cities and Regions; SSPCR 2019 Green Energy and Technology; Bisello, A., Vettorato, D., Ludlow, D., Baranzelli, C., Eds.; Springer: Cham, Switzerland, 2021; pp. 129–140. [Google Scholar] [CrossRef]
- Barreca, A.; Fregonara, E.; Rolando, D. EPC Labels and Building Features: Spatial Implications over Housing Prices. Sustainability 2021, 13, 2838. [Google Scholar] [CrossRef]
- Barrile, V.; Malerba, A.; Fotia, A.; Calabrò, F.; Bernardo, C.; Musarella, C. Quarries Renaturation by Planting Cork Oaks and Survey with UAV. In Smart Innovation, Systems and Technologies; New Metropolitan Perspectives. NMP 2020; Calabrò, F., Della Spina, L., Bevilacqua, C., Eds.; Springer: Cham, Switzerland, 2021; Volume 178, pp. 1310–1320. [Google Scholar] [CrossRef]
- Becchio, C.; Bottero, M.; Corgnati, S.; Dell’Anna, F.; Pederiva, G.; Vergerio, G. Proposal for an Integrated Approach to Support Urban Sustainability: The COSIMA Method Applied to Eco-Districts. In Smart and Sustainable Planning for Cities and Regions; Bisello, A., Vettorato, D., Ludlow, D., Baranzelli, C., Eds.; Springer: Cham, Switzerland, 2021. [Google Scholar] [CrossRef]
- Bottero, M.; Dell’Anna, F.; Morgese, V. Evaluating the Transition Towards Post-Carbon Cities: A Literature Review. Sustainability 2021, 13, 567. [Google Scholar] [CrossRef]
- Calabrò, F.; Cassalia, G.; Lorè, I. The Economic Feasibility for Valorization of Cultural Heritage. The Restoration Project of the Reformed Fathers’ Convent in Francavilla Angitola: The Zibìb Territorial Wine Cellar. In Smart Innovation, Systems and Technologies; New Metropolitan Perspectives. NMP 2020; Calabrò, F., Della Spina, L., Bevilacqua, C., Eds.; Springer: Cham, Switzerland, 2021; Volume 178, pp. 1105–1115. [Google Scholar] [CrossRef]
- Calabrò, F.; Iannone, L.; Pellicanò, R. The Historical and Environmental Heritage for the Attractiveness of Cities, the Case of the Umbertine Forts of Pentimele in Reggio Calabria, Italy. In Smart Innovation, Systems and Technologies; New Metropolitan Perspectives. NMP 2020; Calabrò, F., Della Spina, L., Bevilacqua, C., Eds.; Springer: Cham, Switzerland, 2021; Volume 178, pp. 1990–2004. [Google Scholar] [CrossRef]
- Calabrò, F.; Mafrici, F.; Meduri, T. The Valuation of Unused Public Buildings in Support of Policies for the Inner Areas. The Application of SostEc Model in a Case Study in Condofuri (Reggio Calabria, Italy). In Smart Innovation, Systems and Technologies; New Metropolitan Perspectives. NMP 2020; Calabrò, F., Della Spina, L., Bevilacqua, C., Eds.; Springer: Cham, Switzerland, 2021; Volume 178, pp. 566–579. [Google Scholar] [CrossRef]
- Dell’Anna, F.; Bottero, M. Green premium in buildings: Evidence from the real estate market of Singapore. J. Clean. Prod. 2021, 286, 125327. [Google Scholar] [CrossRef]
- Fregonara, E.; Ferrando, D.G.; Chiesa, G. Economic Valuation of Buildings Sustainability with Uncertainty in Costs and in Different Climate Conditions. In Smart Innovation, Systems and Technologies; New Metropolitan Perspectives. NMP 2020; Calabrò, F., Della Spina, L., Bevilacqua, C., Eds.; Springer: Cham, Switzerland, 2021; Volume 178, pp. 1217–1226. [Google Scholar] [CrossRef]
- Gabrielli, L.; Ruggeri, A.G.; Scarpa, M. Improving the Energy Efficiency in Historic Building Stocks: Assessment of a Restoration Compatibility Score. In Smart Innovation, Systems and Technologies; New Metropolitan Perspectives. NMP 2020; Calabrò, F., Della Spina, L., Bevilacqua, C., Eds.; Springer: Cham, Switzerland, 2021; Volume 178, pp. 1143–1154. [Google Scholar] [CrossRef]
- Gabrielli, L.; Ruggeri, A.G. Optimal Design in Energy Retrofit Interventions on Building Stocks: A Decision Support System. In Appraisal and Valuation; Morano, P., Oppio, A., Rosato, P., Sdino, L., Tajani, F., Eds.; Springer: Cham, Switzerland, 2021; pp. 231–248. [Google Scholar] [CrossRef]
- Spampinato, G.V.; Malerba, A.; Calabrò, F.; Bernardo, C.; Musarella, C. Cork Oak Forest Spatial Valuation Toward Post Carbon City by CO2 Sequestration. In Smart Innovation, Systems and Technologies; New Metropolitan Perspectives. NMP 2020; Calabrò, F., Della Spina, L., Bevilacqua, C., Eds.; Springer: Cham, Switzerland, 2021; Volume 178, pp. 1321–1331. [Google Scholar] [CrossRef]
- Heritage Energy Living Lab Onsite (Hello). 2018. Available online: https://hellomscaproject.eu/category/publications/ (accessed on 25 May 2021).
- CAADence in Architecture. Available online: https://doi.org/10.3311/CAADENCE.1640 (accessed on 25 May 2021).
- The “Cost Optimality” Approach for the Internal Insulation of Historic Buildings. Available online: https://doi.org/10.1016/j.egypro.2017.09.372 (accessed on 25 May 2021).
Termus | Blumatica Energy | Energy Plus | ||||
---|---|---|---|---|---|---|
Scenarios | EPgl kW/m2 y | CO2 kg/m2 y | EPgl kW/m2 y | CO2 kg/m2 y | EPgl kW/m2 y | CO2 kg/m2 y |
01. Common (BAS) | 114 | 24 | 116 | 11 | 129 | 15 |
02. Sustainable | 69 | 15 | 71 | 8 | 73 | 9 |
∆ | −45 | −9 | −45 | −3 | −56 | −6 |
Termus ∆ (%) | Blumatica Energy ∆ (%) | Energy Plus ∆ (%) | |
---|---|---|---|
EPgl kWh/m2 y | −40% | −39% | −44% |
CO2 kg/m2 y | −36% | −26% | −43% |
Scenarios | Area m2 | EPgl kW/m2 y | Total Annual EPgl: kWh | CO2 kg/m2 y | Total Annual CO2: kg |
---|---|---|---|---|---|
01. Common (BAS) | 25.50 | 129 | 3313 | 15 | 382 |
02. Sustainable | 26.21 | 73 | 1913 | 9 | 235 |
∆ = differential (saving; mitigation) | −1400 | −147 |
Prototype | Common | Sustainable | Δ = Differential | % |
---|---|---|---|---|
Tot € | 37,156 | 40,378 | +3221 | 8.66 |
Tot €\m2 | 1456 | 1540 | +83 | |
Tot €\m3 | 364 | 385 | +20 |
Year | Annual Saving | Anticipation Coeficient | Financial Amount | Saving Net Value |
---|---|---|---|---|
n. | € | 1/qn | € | € |
1 | 590 | 0.96 | 567 | 567 |
2 | 590 | 0.92 | 545 | 1112 |
3 | 590 | 0.89 | 524 | 1637 |
4 | 590 | 0.85 | 504 | 2141 |
5 | 590 | 0.82 | 484 | 2626 |
6 | 590 | 0.79 | 466 | 3092 |
7 | 590 | 0.76 | 448 | 3541 |
Built Area | Built Perimeter | Roofing Area | Flat Roofing Area | Average Height | Total Built Volume | External Façade Area | Internal Courtyard Area |
---|---|---|---|---|---|---|---|
(mq) | (m) | (mq) | (mq) | (m) | (mc) | (mq) | (mq) |
815 | 154 | 309 | 498 | 14 | 10,568 | 2018 | 501 |
Built Area | Built Perimeter | Roofing Area | Flat Roofing Area | Average Height | Total Built Volume | External Façade Area | Internal Courtyard Area |
---|---|---|---|---|---|---|---|
(mq) | (m) | (mq) | (mq) | (m) | (mc) | (mq) | (mq) |
738 | 152 | 382 | 296 | 12 | 9175 | 1783 | 501 |
Built Area | Built Perimeter | Roofing Area | Flat Roofing Area | Average Height | Total Built Volume | External Façade Area | Internal Courtyard Area |
---|---|---|---|---|---|---|---|
(mq) | (m) | (mq) | (mq) | media(m) | (mc) | (mq) | (mq) |
1553 | 307 | 691 | 794 | 13 | 19,743 | 3800 | 501 |
Energy Assessment per Year | Consumption | CO2 Assessment per Year | |||
---|---|---|---|---|---|
Common Scenario | (kWh) | 379,753 | CO2 Common Scenario | (kWh) | 74,393 |
Sustainable Scenario | (kWh) | 199,443 | CO2 Sust.Scenario | (kWh) | 32,374 |
Energy Saving ∆ | (kWh) | 180,310 | CO2 Avoided Emission ∆ | (kWh) | 42,017 |
Energy Saving | (%) | 47% | CO2 Saving Pollution | (%) | 57% |
No | Cod | Parcel#236, Indivisible Operations/Processing (“Lavorazioni”) | U.M. | Quantity |
---|---|---|---|---|
PROSPETTI. FRONTS\ELEVATIONS | ||||
01 | L1 | Ponteggi prefabbricati Prefabricated scaffolding | mq | 2335.23 |
02 | L2 | Rimozione pluviali e canali di gronda Removal of roof rainwater gutters and downspout pipes | ml | 218.49 |
03 | L3 | Pluviali e canali di gronda nuovi New roof rainwater gutters and downspout pipes | ml | 218.49 |
04 | L4 | Rimozione unità esterne condizionatori e parabole Removal of external air conditioning Condenser units and satellite dishes | cad | 25.00 |
05 | L5 | Condizionatori Olimpia Splendid. Boiler Unico New special (single unit) Air Conditioner “Olimpia Splendid” | cad | 22. 00 |
06 | L6 | Demolizione intonaco (tranne tutti i decori) Existing plaster demolition | mq | 1135.43 |
07 | L7 | Trasporto macerie presso discarica autorizzata The transport of rubble, and its disposal in authorized landfills | mc | 45.43 |
08 | L8 | Pulitura superfici con acqua a bassa pressione Low pressure wall washing | mq | 1703.87 |
BAS, Business As Usual. INTONACO COMUNE. BAS PLASTER | ||||
09 | L10 | Completo ponte di aderenza. Plaster: bridge of adhesion; render; primer; basecoat (layer 01) | mq | 1135.43 |
10 | L11 | Completo spiano Plaster floating coat (layer 02) | mq | 1135.43 |
11 | L12 | Completa rasatura Plaster setting (layer 03) | mq | 1135.43 |
12 | L14 | Completa finitura Plaster finishing (layer 04) | mq | 1135.43 |
13 | L16 | Completo fissativo Plaster: prepaint; paint primer (layer 05) | mq | 1135.43 |
18 | L18 | Completa tinteggiatura Plaster paint (layer 06) | mq | 1135.43 |
INFISSI [#236. Mq 296.06]. FIXTURES | ||||
19 | L19 | Smontaggio infissi lignei e di alluminio Removal of existing wooden and metal fixtures | mq | 296.06 |
21 | L21 | Infissi in alluminio taglio freddo. Vetro camera 4-12-4 Aluminum fixtures. No insulating. Double glazing | mq | 296.06 |
ELEMENTI. ELEMENTS | ||||
22 | L22 | Scartavetratura, verniciatura e protettivo su metallo Metal sanding (sandpaper), polishing, restoration and painting | mq | 57.72 |
23 | L23 | Scartavetratura, stuccatura e vernice su legno Wood sanding (sandpaper), polishing, restoration and painting | mq | 47.80 |
DECORI. DECORATIONS | ||||
24 | L24 | Pulitura manuale con spazzola di saggina (decori) Cleaning of decorations with broomcorn brush | mq | 568.84 |
25 | L25 | Integrazione di parti mancanti nei decori Integration of the gap in decorations | mq | 5.90 |
RIMOZIONI. DEMOLITIONS | ||||
26 | L26 | Rimozione parti non conformi Demolition of unauthorized elements and parts | mq | 85.39 |
27 | L27 | Rimozione superfetazioni Demolition of unauthorized constructions | mc | 72.19 |
STRUTTURE. STRUCTURES | ||||
28 | L28 | Trattamento antiruggine acciaio strutturale FE b 38K Rust-proof treatment of structural steel | ml | 1468.10 |
30 | L30 | Completa malta rinforzata TCA-MI per lesione Special reinforced structural mortar for structural damage repair | ml | 9.28 |
COPERTURE, TERRAZZI. ROOFS FLAT ROOFS\TERRACES | ||||
31 | L31 | Demolizione pavimentazione Demolition of flat roof pavement | mq | 423.98 |
32 | L32 | Rimozione guaina Removal of existing deteriorate waterproofing asphalt | mq | 423.98 |
33 | L33 | Demolizione massetto Demolition of screed | mc | 42.39 |
34 | L34 | Massetto delle pendenze Sloping floor screed | mq | 423.98 |
35 | L35 | Completa nuova guaina bituminosa New waterproofing bituminous membrane | mq | 423.98 |
36 | L36 | Nuova pavimentazione in piastrelle di gres New gres tile pavement | mq | 423.98 |
#236 | ||||
No | Cod | Parcel#144, Indivisible Operations/Processing (“Lavorazioni”) | U.M. | Quantity |
PROSPETTI. FRONTS\ELEVATIONS | ||||
01 | L1 | Ponteggi prefabbricati Prebabricated scaffolding | mq | 1819.13 |
02 | L2 | Rimozione pluviali e canali di gronda Removal of roof rainwater gutters and downspout pipes | ml | 188.52 |
03 | L3 | Pluviali e canali di gronda nuovi New roof rainwater gutters and downspout pipes | ml | 188.52 |
04 | L4 | Rimozione unità esterne condizionatori e parabole Removal of external air conditioning Condenser units and satellite dishes | cad | 10.00 |
05 | L5 | Condizionatori Olimpia Splendid. Boiler Unico New special (single unit) Air Conditioner “Olimpia Splendid” | cad | 10.00 |
06 | L6 | Demolizione intonaco (tranne tutti i decori) Existing plaster demolition | mq | 1246.40 |
07 | L7 | Trasporto macerie presso discarica autorizzata The transport of rubble, and its disposal in authorized landfills | mc | 62.88 |
08 | L8 | Pulitura superfici con acqua a bassa pressione Low pressure wall washing | mq | 1246.40 |
BAS, Business as Usual. INTONACO COMUNE. BAS PLASTER | ||||
10 | L10 | Completo ponte di aderenza Plaster: bridge of adhesion; render; primer; basecoat (layer 01) | mq | 1246.40 |
11 | L11 | Completo spiano Plaster floating coat (layer 02) | mq | 1246.40 |
12 | L12 | Completa rasatura Plaster setting (layer 03) | mq | 1246.40 |
14 | L14 | Completa finitura Plaster finishing (layer 04) | mq | 1246.40 |
16 | L16 | Completo fissativo Plaster: prepaint; paint primer (layer 05) | mq | 1246.40 |
18 | L18 | Completa tinteggiatura Plaster paint (layer 06) | mq | 1246.40 |
INFISSI [ mq in #144 parcel. 106.05 + 131.77 = 237.82]. FIXTURES | ||||
19 | L19 | Smontaggio infissi lignei Removal of existing metal fixtures | mq | 106.05 |
20 | L20 | Smontaggio infissi in metallo Removal of existing metal fixtures | mq | 131.77 |
21 | L21 | Infissi in alluminio taglio freddo. Vetro camera 4-12-4 Aluminum fixtures. Uninsulated. Double glazing | mq | 237.82 |
ELEMENTI. ELEMENTS | ||||
22 | L22 | Scartavetratura, verniciatura e protettivo su metallo Metal sanding (sandpaper), polishing, restoration and painting | mq | 37.72 |
23 | L23 | Scartavetratura, stuccatura e vernice su legno Wood sanding (sandpaper), polishing, restoration and painting | mq | 91.81 |
DECORI. DECORATIONS | ||||
24 | L24 | Pulitura manuale con spazzola di saggina (decori) Cleaning of decorations with broomcorn brush | mq | 259.55 |
25 | L25 | Integrazione di parti mancanti nei decori in eps Integration of the gap in decorations | mq | 1.06 |
RIMOZIONI. DEMOLITIONS | ||||
26 | L26 | Rimozione parti non conformi Demolition of unauthorized elements and parts | mq | 42.58 |
27 | L27 | Rimozione superfetazioni Demolition of unauthorized constructions | mc | 16.76 |
STRUTTURE. STRUCTURES | ||||
28 | L28 | Trattamento antiruggine acciaio strutturale FE b 38 K Rust-proof treatment of structural steel | ml | 220.07 |
30 | L30 | Completa malta rinforzata TCA-MI per lesione Special reinforced structural mortar for structural damage repair | ml | 1.00 |
COPERTURE, TERRAZZI. ROOFS, FLAT ROOFS\TERRACES | ||||
31 | L31 | Demolizione pavimentazione Demolition of flat roof pavement | mq | 218.73 |
32 | L32 | Rimozione guainaRemoval of existing deteriorate waterproofing asphalt | mq | 218. 73 |
33 | L33 | Demolizione massetto Demolition of screed | mc | 17.50 |
34 | L34 | Massetto delle pendenze Sloping floor screed | mq | 218.73 |
35 | L35 | Completa nuova guaina bituminosa New waterproofing bituminous membrane | mq | 218.73 |
36 | L36 | Nuova pavimentazione in piastrelle di gres New gres tile pavement | mq | 218.73 |
#144 |
No | Cod | Parcel#236, Indivisible Operations/Processing | U.M. | Quantity |
---|---|---|---|---|
PROSPETTI. FRONTS\ELEVATIONS | ||||
01 | L1 | Ponteggi prefabbricati Prefabricated scaffolding | mq | 2335.23 |
02 | L2 | Rimozione pluviali e canali di gronda Removal of roof rainwater gutters and downspout pipes | ml | 218.49 |
03 | L3 | Pluviali e canali di gronda nuovi New roof rainwater gutters and downspout pipes | ml | 218.49 |
04 | L4 | Rimozione unità esterne condizionatori e parabole Removal of external air conditioning Condenser units and satellite dishes | cad | 25.00 |
05 | L5 | Condizionatori Olimpia Splendid. Boiler Unico New special (single unit) Air Conditioner “Olimpia Splendid” | cad | 22.00 |
06 | L6 | Demolizione intonaco (tranne tutti i decori) Existing plaster demolition | mq | 1135.43 |
07 | L7 | Trasporto macerie presso discarica autorizzata The transport of rubble, and its disposal in authorized landfills | mc | 45.42 |
08 | L8 | Pulitura superfici muri con acqua a bassa pressione Low pressure wall washing | mq | 1703.87 |
10 | L10 | Completo ponte di aderenza Plaster: bridge of adhesion; render; primer; basecoat (layer 01) | mq | 232.98 |
11 | L11 | Completo spiano Plaster floating coat (layer 02) | mq | 239.98 |
12 | L12 | Completa rasatura Plaster setting (layer 03) | mq | 232.98 |
14 | L14 | Completa finitura Plaster finishing (layer 04) | mq | 232.98 |
16 | L16 | Completo fissativo Plaster pre-paint (layer 05) | mq | 232.98 |
18 | L18 | Completa tinteggiatura Plaster paint (layer 06) | mq | 232.98 |
INFISSI. FIXTURES | ||||
19 | L19 | Smontaggio infissi lignei e di alluminio Removal of existing wooden and metal fixtures | mq | 296.06 |
21 | L21 | Infissi a taglio termico Insulating fixture. Triple glazing | mq | 296.06 |
ELEMENTI. ELEMENTS | ||||
22 | L22 | Scartavetratura, verniciatura e protettivo sui metalli Metal sanding (sandpaper), polishing, restoration and painting | mq | 57.72 |
23 | L23 | Scartavetratura, stuccatura e vernice su legno Wood sanding (sandpaper), polishing, restoration and painting | mq | 47.80 |
DECORI. DECORATIONS | ||||
24 | L24 | Pulitura manuale con spazzola di saggina (decori) Cleaning of decorations with broomcorn brush | mq | 568.84 |
25 | L25 | Integrazione di parti mancanti nei decori Integration of the gap in decorations | mq | 5.90 |
RIMOZIONI. DEMOLITIONS | ||||
26 | L26 | Rimozione parti non conformi Demolition of unauthorized elements and parts | mq | 85.39 |
27 | L27 | Rimozione superfetazioni Demolition of unauthorized constructions | mc | 72.19 |
STRUTTURE. STRUCTURES | ||||
28 | L28 | Trattamento antiruggine acciaio strutturale FE b 38K Rust-proof treatment of structural steel | ml | 1430.86 |
30 | L30 | Completa malta rinforzata TCA-MI per lesione Special reinforced structural mortar for structural damage repair | mq | 9.28 |
COPERTURE, TERRAZZI. ROOFS, FLAT ROOFS\TERRACES | ||||
31 | L31 | Demolizione pavimentazione Demolition of flat roof pavement | mq | 423. 98 |
32 | L32 | Rimozione guaina Removal of existing deteriorate waterproofing asphalt | mq | 423.98 |
33 | L33 | Demolizione massetto Demolition of screed | mc | 423.39 |
37 | L37 | Pannello in sughero Slim 4 cm Eco bio insulating cork panel 4 cm | mq | 423.98 |
38 | L38 | Pannello in sughero Genius (3 + 2.5) cm Eco bio insulating cork panel 5.5 cm | mq | 423.98 |
39 | L39 | Posa in opera tavelloni 100 × 25 cm Hollow flat brick blocks | mq | 423.98 |
34 | L34 | Massetto delle pendenze Sloping floor insulating screed | mq | 423.98 |
40 | L40 | Guaina traspirante Tyvek Eco wicking\breathable waterproof fabric | mq | 423.98 |
41 | L41 | Pavimento flottante gres Floating gres tile pavement | mq | 423.98 |
INTONACO BIO ECO SOSTENIBILE ISOLANTE. BIO ECO SUSTAINABLE INSULATING PLASTER | ||||
44 | L44 | Completo ponte di aderenza Hd System Td13pa Bio natural lime-based basecoat\bridge of adhesion (layer 01) | mq | 903.34 |
46 | L46 | Completo intonaco termocoibente Hd System Volcalite Bio natural lime-based floating coat (layer 02) | mq | 903.34 |
48 | L48 | Completa rasatura Hd System Td13p1 Bio natural lime-based setting (layer 03) | mq | 903.34 |
50 | L50 | Completa finitura colorata Hd System Arenino Ar20 Bio natural lime-based colored finishing (layer 04) | mq | 903.34 |
#236 | ||||
No | Cod | Parcel#144. Indivisible Operations/Processing | U.M. | Quantity |
PROSPETTI. FRONTS\ELEVATIONS | ||||
1 | L1 | Ponteggi prefabbricati Prefabricated scaffolding | mq | 1819.13 |
2 | L2 | Rimozione pluviali e canali di gronda Removal of roof rainwater gutters and downspout pipes | ml | 188.52 |
3 | L3 | Pluviali e canali di gronda–First plast New roof rainwater gutters and downspout pipes | ml | 188.52 |
4 | L4 | Rimozione unità esterne condizionatori e parabole Removal of external air conditioning Condenser units and satellite dishes | cad | 10.00 |
5 | L5 | Condizionatori Olimpia Splendid–Boiler Unico New special (single unit) Air Conditioner “Olimpia Splendid” | cad | 10.00 |
6 | L6 | Demolizione intonaco (tranne tutti i decori) Existing plaster demolition | mq | 1246.40 |
7 | L7 | Trasporto macerie presso discarica autorizzata The transport of rubble, and its disposal in authorized landfills | mc | 62.88 |
8 | L8 | Pulitura con acqua a bassa pressione Low pressure wall washing | mq | 1246.40 |
INFISSI [mq in #144 parcel:. 106.05 + 131.77 = 237.82]. FIXTURES | ||||
19 | L19 | Smontaggio infissi lignei Removal of existing wooden fixtures | mq | 106.05 |
20 | L20 | Smontaggio infissi metallici Removal of existing metal fixtures | mq | 131.77 |
21 | L21 | Infissi a taglio termico Insulating fixtures. Triple glazing | mq | 237.82 |
ELEMENTI. ELEMENTS | E | |||
22 | L22 | Scartavetratura, verniciatura e applicazione protettivo su metalli Metal sanding (sandpaper), polishing, restoration and painting | mq | 37.72 |
23 | L23 | Scartavetratura, stuccatura e applicazione vernice su legno Wood sanding (sandpaper), polishing, restoration and painting | mq | 91.81 |
DECORI. DECORATIONS | ||||
24 | L24 | Pulitura manuale con spazzola di saggina Cleaning of decorations with broomcorn brush | mq | 259.55 |
25 | L25 | Protettivo ad emulsioni art shield1 Art shield protective emulsions | mq | 1.06 |
RIMOZIONI. DEMOLITIONS | ||||
26 | L26 | Rimozione parti non conformi Demolition of unauthorized elements and parts | mq | 42.58 |
27 | L27 | Rimozione superfetazioni Demolition of unauthorized constructions | mc | 16.76 |
STRUTTURE. STRUCTURES | ||||
29 | L28 | Trattamento antiruggine acciaio strutturale FE b 38K Rust-proof treatment of structural steel | ml | 220.07 |
30 | L30 | Completa malta rinforzata TCA-MI per lesione Special reinforced structural mortar for structural damage repair | mq | 1.00 |
COPERTURE, TERRAZZI. ROOFS, FLAT ROOFS\TERRACES | ||||
31 | L31 | Demolizione pavimentazione Demolition of flat roof pavement | mq | 218.73 |
32 | L32 | Rimozione guaina Removal of existing deteriorate waterproofing asphalt | mq | 218.73 |
33 | L33 | Demolizione massetto Demolition of screed | mc | 21.87 |
37 | L37 | Pannello in bio sughero Slim 4 cm Eco bio insulating cork panel 4 cm | mq | 218.73 |
38 | L38 | Pannello in bio sughero Genius (3 + 2.5) cm Eco bio insulating cork panel (3 + 2.5) cm | mq | 218.73 |
39 | L39 | Posa in opera tavelloni 100 × 25 cm Hollow flat brick blocks | mq | 218.73 |
34 | L34 | Massetto delle pendenze Sloping floor insulating screed | mq | 218.73 |
40 | L40 | Nuova guaina traspirante Tyvek Ecological wicking waterproof fabric | mq | 218.73 |
41 | L41 | Pavimento flottante in gres Floating gres tile pavement | mq | 218.73 |
INTONACO BIO ECO SOSTENIBILE ISOLANTE BIO ECO SUSTAINABLE INSULATING PLASTER | ||||
44 | L44 | Completo ponte di aderenza Hd System Td13pa Bio natural lime-based basecoat\bridge of adhesion (layer 01) | mq | 1246.40 |
46 | L46 | Completo intonaco termocoibente Hd System Volcalite Bio natural lime-based floating coat (layer 02) | mq | 1246.40 |
48 | L48 | Completa rasatura Hd System Td13p1 Bio natural lime-based setting (layer 03) | mq | 1246.40 |
50 | L50 | Completa finitura colorata Hd System Arenino Ar20 Bio natural lime-based colored finishing (layer 04) | mq | 1246.40 |
#144 |
#236 | Total Amount. Common Scenario | € | 283,670 | |
#144 | Total Amount. Common Scenario | € | 249,943 | |
block | #102 | Total Amount. Common Scenario | € | 533,614 |
#236 | Total Amount. Sustainable Scenario | € | 337,225 | |
#144 | Total Amount. Sustainable Scenario | € | 281,797 | |
block | #102 | Total Amount. Sustainable Scenario | € | 619,023 |
Termus (Acca) | Energy Consumption | Energy U.C. | Energy Management Cost | CO2 Emissions | CO2 E.C. | CO2 Annual Cost |
---|---|---|---|---|---|---|
Scenarios | kWh | €/kWh | € | kg | €/kg | € |
Common | 379,753 | 0.35 | 132,913 | 74,393 | 0.25 | 18,598 |
Sustainable | 199,443 | 0.35 | 69,805 | 32,374 | 0.25 | 8094 |
∆ | −180,310 | −63,108 | 42,019 | −10,505 |
Total Amount. Common Scenario | € | 533,614 |
Total Amount. Sustainable Scenario | € | 619,023 |
Common Scenario/Sustainable Scenario Differential | ∆ | 85,409 |
% Increase in the cost of implementation | % | 16% |
Monetary Annual Saving | Anticipation Coefficient | Annual Present Value | Sum Up | |
---|---|---|---|---|
€ | 1/qn | € | € | |
1 | 63,108 | 0.96 | 60,584 | 60,584 |
2 | 63,108 | 0.92 | 58,060 | 118,643 |
3 | 63,108 | 0.89 | 56,166 | 174,810 |
4 | 63,108 | 0.85 | 53,642 | 228,452 |
5 | 63,108 | 0.82 | 51,749 | 280,200 |
6 | 63,108 | 0.79 | 49,855 | 330,056 |
7 | 63,108 | 0.76 | 47,962 | 378,018 |
8 | 63,108 | 0.73 | 46,069 | 424,087 |
9 | 63,108 | 0.70 | 44,176 | 468,263 |
10 | 63,108 | 0.68 | 42,914 | 511,177 |
11 | 63,108 | 0.65 | 41,020 | 552,197 |
12 | 63,108 | 0.62 | 39,127 | 591,324 |
13 | 63,108 | 0.60 | 37,865 | 629,189 |
14 | 63,108 | 0.58 | 36,603 | 665,792 |
15 | 63,108 | 0.56 | 35,341 | 701,132 |
16 | 63,108 | 0.53 | 33,447 | 734,580 |
17 | 63,108 | 0.51 | 32,185 | 766,765 |
18 | 63,108 | 0.49 | 30,923 | 797,688 |
19 | 63,108 | 0.47 | 29,661 | 827,349 |
20 | 63,108 | 0.46 | 29,030 | 856,378 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Massimo, D.E.; Del Giudice, V.; Malerba, A.; Bernardo, C.; Musolino, M.; De Paola, P. Valuation of Ecological Retrofitting Technology in Existing Buildings: A Real-World Case Study. Sustainability 2021, 13, 7001. https://doi.org/10.3390/su13137001
Massimo DE, Del Giudice V, Malerba A, Bernardo C, Musolino M, De Paola P. Valuation of Ecological Retrofitting Technology in Existing Buildings: A Real-World Case Study. Sustainability. 2021; 13(13):7001. https://doi.org/10.3390/su13137001
Chicago/Turabian StyleMassimo, Domenico Enrico, Vincenzo Del Giudice, Alessandro Malerba, Carlo Bernardo, Mariangela Musolino, and Pierfrancesco De Paola. 2021. "Valuation of Ecological Retrofitting Technology in Existing Buildings: A Real-World Case Study" Sustainability 13, no. 13: 7001. https://doi.org/10.3390/su13137001
APA StyleMassimo, D. E., Del Giudice, V., Malerba, A., Bernardo, C., Musolino, M., & De Paola, P. (2021). Valuation of Ecological Retrofitting Technology in Existing Buildings: A Real-World Case Study. Sustainability, 13(13), 7001. https://doi.org/10.3390/su13137001