Mitigating Greenhouse Gas Emissions from Beef Cattle Production in Brazil through Animal Management
Abstract
:1. Introduction
2. Materials and Methods
2.1. Functional Unit and Allocation
2.2. System Boundaries
2.3. Emissions Inventory
2.4. Impact Assessment
2.5. Data Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ruggieri, A.C.; Cardoso, A.S.; Ongaratto, F.; Casagrande, D.R.; Barbero, R.P.; Brito, L.D.F.; Azenha, M.V.; Oliveira, A.A.; Koscheck, J.F.W.; Reis, R.A. Grazing Intensity Impacts on Herbage Mass, Sward Structure, Greenhouse Gas Emissions, and Animal Performance: Analysis of Brachiaria Pastureland. Agronomy 2020, 10, 1750. [Google Scholar] [CrossRef]
- Tedeschi, L.O.; Muir, J.P.; Riley, D.G.; Fox, D.G. The role of ruminant animals in sustainable livestock intensification programs. Int. J. Sustain. Dev. World Ecol. 2015, 22, 452–465. [Google Scholar] [CrossRef]
- McAuliffe, G.A.; Takahashi, T.; Orr, R.J.; Harris, P.; Lee, M.R.F. Distributions of emissions intensity for individual beef cattle reared on pasture-based production systems. J. Clean. Prod. 2018, 171, 1672–1680. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, A.S.; Berndt, A.; Leytem, A.; Alves, B.J.; de Carvalho, I.D.N.; de Barros Soares, L.H.; Urquiaga, S.; Boddey, R.M. Impact of the intensification of beef production in Brazil on greenhouse gas emissions and land use. Agric. Syst. 2016, 143, 86–96. [Google Scholar] [CrossRef] [Green Version]
- Cardoso, A.S.; Barbero, R.P.; Romanzini, E.P.; Teobaldo, R.W.; Ongaratto, F.; Fernandes, M.H.M.D.R.; Ruggieri, A.C.; Reis, R.A. Intensification: A key strategy to achieve great animal and environmental beef cattle production sustainability in Brachiaria grasslands. Sustainability 2020, 12, 6656. [Google Scholar] [CrossRef]
- Hoffmann, A.; Cardoso, A.S.; Fonseca, N.V.B.; Romanzini, E.P.; Siniscalchi, D.; Berndt, A.; Ruggieri, A.C.; Reis, R.A. Effects of supplementation with corn distillers’ dried grains on animal performance, nitrogen balance, and enteric CH4 emissions of young Nellore bulls fed a high-tropical forage diet. Animal 2021, 15, 100155. [Google Scholar] [CrossRef] [PubMed]
- Berça, A.S.; Cardoso, A.S.; Longhini, V.Z.; Tedeschi, L.O.; Boddey, R.M.; Berndt, A.; Reis, R.A.; Ruggieri, A.C. Methane production and nitrogen balance of dairy heifers grazing palisade grass cv. Marandu alone or with forage peanut. J. Anim. Sci. 2019, 97, 4625–4634. [Google Scholar] [CrossRef]
- Cardoso, A.S.; Oliveira, S.C.; Janusckiewicz, E.R.; Brito, L.F.; Morgado, E.S.; Reis, R.A.; Ruggieri, A.C. Seasonal effects on ammonia, nitrous oxide, and methane emissions for beef cattle excreta and urea fertilizer applied to a tropical pasture. Soil Tillage Res. 2019, 194, 104341. [Google Scholar] [CrossRef]
- de Klein, C.A.; van der Weerden, T.J.; Luo, J.; Cameron, K.C.; Di, H.J. A review of plant options for mitigating nitrous oxide emissions from pasture-based systems. N. Z. J. Agri. Res. 2020, 63, 29–43. [Google Scholar] [CrossRef]
- Buratti, C.; Fantozzi, F.; Barbanera, M.; Lascaro, E.; Chiorri, M.; Cecchini, L. Carbon footprint of conventional and organic beef production systems: An Italian case study. Sci. Total Environ. 2017, 576, 129–137. [Google Scholar] [CrossRef]
- do Nascimento, A.F.; de Oliveira, C.M.; Pedreira, B.C.; Pereira, D.H.; Rodrigues, R.R.D.A. Nitrous oxide emissions and forage accumulation in the Brazilian Amazon forage-livestock systems submitted to N input strategies. Grassl. Sci. 2021, 67, 63–72. [Google Scholar] [CrossRef]
- BSI. British Standards Institution. PAS 2050:2011. Specification for the Assessment of the Life Cycle Greenhouse Gas Emissions of Goods and Services 2011. Available online: https://shop.bsigroup.com/upload/shop/download/pas/pas2050.pdf (accessed on 30 March 2021).
- MCTI. Fourth National Communication of Brazil to the UNFCCC. 2021. Available online: https://sirene.mctic.gov.br/portal/export/sites/sirene/backend/galeria/arquivos/2020/12/2020_12_22_4CN_v5_Ingles.pdf (accessed on 15 April 2021).
- Congio, G.F.; Chiavegato, M.B.; Batalha, C.D.; Oliveira, P.P.; Maxwell, T.M.; Gregorini, P.; Da Silva, S.C. Strategic grazing management and nitrous oxide fluxes from pasture soils in tropical dairy systems. Sci. Total Environ. 2019, 676, 493–500. [Google Scholar] [CrossRef]
- Delevatti, L.M.; Cardoso, A.S.; Barbero, R.P.; Leite, R.G.; Romanzini, E.P.; Ruggieri, A.C.; Reis, R.A. Effect of nitrogen application rate on yield, forage quality, and animal performance in a tropical pasture. Sci. Rep. 2019, 9, 7596. [Google Scholar] [CrossRef]
- Domiciano, L.F.; Pedreira, B.C.; da Silva, N.M.; Mombach, M.A.; Chizzotti, F.H.; Batista, E.D.; do Nascimento, H.L. Agroforestry systems: An alternative to intensify forage-based livestock in the Brazilian Amazon. Agrofor. Syst. 2020, 94, 1839–1849. [Google Scholar] [CrossRef]
- Cezimbra, I.M.; de Albuquerque Nunes, P.A.; de Souza Filho, W.; Tischler, M.R.; Genro, T.C.M.; Bayer, C.; de Faccio Carvalho, P.C. Potential of grazing management to improve beef cattle production and mitigate methane emissions in native grasslands of the Pampa biome. Sci. Total Environ. 2021, 780, 146582. [Google Scholar] [CrossRef]
- Florindo, T.J.; Florindo, G.D.M.; Talamini, E.; da Costa, J.S.; de Léis, C.M.; Tang, W.Z.; Ruviaro, C.F. Application of the multiple criteria decision-making (MCDM) approach in the identification of Carbon Footprint reduction actions in the Brazilian beef production chain. J. Clean. Prod. 2018, 196, 1379–1389. [Google Scholar] [CrossRef]
- Bilotto, F.; Recavarren, P.; Vibart, R.; Machado, C.F. Backgrounding strategy effects on farm productivity, profitability and greenhouse gas emissions of cow-calf systems in the Flooding Pampas of Argentina. Agri. Syst. 2019, 176, 102688. [Google Scholar] [CrossRef]
- EPE. Balanço Energético Nacional: Relatório Síntese, ano Base 2019. Rio de Janeiro: Ministério de Minas e Energia; 2020. Available online: https://www.epe.gov.br/pt/publicacoes-dados-abertos/publicacoes/balanco-energetico-nacional-2019 (accessed on 24 June 2021).
- IPCC. Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories. 2019. Available online: https://www.ipcc.ch/report/2019-refinement-to-the-2006-ipcc-guidelines-for-national-greenhouse-gas-inventories/ (accessed on 30 March 2021).
- Lessa, A.C.R.; Madari, B.E.; Paredes, D.S.; Boddey, R.M.; Urquiaga, S.; Jantalia, C.P.; Alves, B.J. Bovine urine and dung deposited on Brazilian savannah pastures contribute differently to direct and indirect soil nitrous oxide emissions. Agric. Ecosyst. Environ. 2014, 190, 104–111. [Google Scholar] [CrossRef]
- Bretas, I.L.; Paciullo, D.S.; Alves, B.J.; Martins, M.R.; Cardoso, A.S.; Lima, M.A.; Chizzotti, F.H. Nitrous oxide, methane, and ammonia emissions from cattle excreta on Brachiaria decumbens growing in monoculture or silvopasture with Acacia mangium and Eucalyptus grandis. Agric. Ecosyst. Environ. 2020, 295, 106896. [Google Scholar] [CrossRef]
- Longhini, V.Z.; Cardoso, A.S.; Berça, A.S.; Boddey, R.M.; Reis, R.A.; Dubeux Junior, J.C.B.; Ruggieri, A.C. Nitrogen supply and Rainfall affect Ammonia emissions from Dairy Cattle excreta and Urea applied on warm-climate pastures. J. Environ. Qual. 2020, 49, 1453–1466. [Google Scholar] [CrossRef]
- Valadares Filho, S.C.; Costa E Silva, L.F.; Lopes, S.A. BR-CORTE 3.0. Cálculo de Exigências Nutricionais, Formulação de Dietas e Predição de Desempenho de Zebuínos puros e Cruzados. 2016. Available online: https://brcorte.com.br/assets/book2016/br/c0.pdf (accessed on 24 June 2021).
- Meister, N.C.; Cardoso, A.S.; Alari, F.O.; Lemos, N.L.S.; Frighetto, R.T.S.; Malheiros, E.B.; Reis, R.A.; Ruggieri, A.C. Effect of pasture management on enteric methane emissions from goats. Trop. Anim. Health Prod. 2021, 53, 1–7. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2013: The Physical Science Basis, Contribution of Working Groupe I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. 2013. Available online: https://www.ipcc.ch/site/assets/uploads/2018/03/WG1AR5_SummaryVolume_FINAL.pdf (accessed on 15 April 2021).
- Boddey, R.M.; Casagrande, D.R.; Homem, B.G.; Alves, B.J. Forage legumes in grass pastures in tropical Brazil and likely impacts on greenhouse gas emissions: A review. Grass Forage Sci. 2020, 75, 357–371. [Google Scholar] [CrossRef]
- ABIEC—Associação Brasileira das Indústrias Exportadoras de Carne. Beef Report: Perfil da Pecuária no Brasil. 2020. Available online: http://abiec.com.br/publicacoes/beef-report-2020/ (accessed on 15 April 2021).
- Cooke, R.F.; Cardoso, R.C.; Cerri, R.L.; Lamb, G.C.; Pohler, K.G.; Riley, D.G.; Vasconcelos, J.L. Cattle adapted to tropical and subtropical environments: Genetic and reproductive considerations. J. Anim. Sci. 2020, 98, skaa015. [Google Scholar] [CrossRef] [PubMed]
- Vogel, E.; Martinelli, G.; Artuzo, F.D. Environmental and economic performance of paddy field-based crop-livestock systems in Southern Brazil. Agric. Syst. 2021, 190, 103109. [Google Scholar] [CrossRef]
- de Freitas, I.C.; Ribeiro, J.M.; Araújo, N.C.A.; Santos, M.V.; Sampaio, R.A.; Fernandes, L.A.; Frazão, L.A. Agrosilvopastoral systems and well-managed pastures increase soil carbon stocks in the Brazilian Cerrado. Rangel. Ecol. Manag. 2020, 73, 776–785. [Google Scholar] [CrossRef]
- Mota, V.A.; Fernandes, R.M.; Prados, L.F.; Neto, J.A.A.; Berti, G.F.; Resende, F.D.; Siqueira, G.R. Relationship between gain rate during the growing phase and forage allowance in the finishing phase in Nellore cattle. Trop. Anim. Health Prod. 2020, 52, 1–11. [Google Scholar] [CrossRef]
- dos Santos, C.A.; Rezende, C.D.P.; Pinheiro, É.F.M.; Pereira, J.M.; Alves, B.J.; Urquiaga, S.; Boddey, R.M. Changes in soil carbon stocks after land-use change from native vegetation to pastures in the Atlantic forest region of Brazil. Geoderma 2019, 337, 394–401. [Google Scholar] [CrossRef]
Farm No. | Municipality | State | Operation | Area (ha) | Head |
---|---|---|---|---|---|
1 | Prata | MG | Cow–Calf | 1500 | 2000 |
2 | Santa Vitória | MG | Full Cycle | 800 | 667 |
3 | Nanuque | ES | Backgrounding/Finishing | 14,407 | 12,296 |
4 | Barra Do Garça | MT | Backgrounding/Finishing | 1524 | 2449 |
5 | Redenção | PA | Backgrounding/Finishing | 8811 | 9085 |
6 | Palmas | TO | Backgrounding | 13,558 | 16,134 |
7 | Jundiai Do Sul | PR | Backgrounding/Finishing | 2033 | 3291 |
9 | Carneirinho | MG | Full Cycle | 1700 | 6610 |
10 | Araguaína | TO | Backgrounding/Finishing | 20,000 | 22,000 |
11 | Cássia | MG | Backgrounding | 250 | 450 |
12 | Cássia | MG | Backgrounding | 600 | 1100 |
13 | Campinápolis | MT | Backgrounding | 2323 | 934 |
14 | Figueiropólis D’oeste | MT | Full Cycle | 16,000 | 35,000 |
15 | Figueiropólis D’oeste | MT | Full Cycle | 100,000 | 80,000 |
16 | Alta Floresta | MT | Backgrounding | 10,000 | 30,000 |
17 | Jussara | GO | Backgrounding/Finishing | 12,000 | 70,000 |
Pollutant | Calculation | Emissions Factor |
---|---|---|
CH4 Feces | Kilogram Per Head | 0.4 kg CH4 Head−1 Y−1 |
N2O Direct | N2O From Fertilizer = N Applied X EF X 44/28 N2O From Excreta = N Excreted By The Animals X EF X 44/28 | EF = 0.01 kg N2O-N EF = 0.0063 kg N2O-N |
N2O Indirect | N2O Indirect Volatilization From Fertilizer = N Applied X EF X 44/28 FRACfert = 15% N2O Indirect Volatilization From Animal Excreta = Nexc X EF X 44/28 FRACexc = 12% | EF = 0.01 kg N Volatilized |
Farm | Average Daily Gain | Stocking Rate | Productivity | Slaughtering Age | Emission Intensity |
---|---|---|---|---|---|
(kg Animal−1 D−1) | (AU Ha−1) | (kg Ha−1) | (Months) | (kg CO2 Kg−1 LW−1) | |
1 | 0.160 | 1.26 | 102 | 51 | 50.9 |
2 | 0.247 | 0.68 | 80 | 40 | 35.2 |
3 | 0.348 | 0.68 | 113 | 38 | 21.4 |
4 | 0.414 | 0.86 | 243 | 32 | 14.6 |
5 | 0.291 | 1.09 | 128 | 45 | 35 |
6 | 0.558 | 0.83 | 218 | 24 | 15.7 |
7 | 0.521 | 0.70 | 226 | 22 | 12.8 |
8 | 0.284 | 1.19 | 168 | 46 | 29.2 |
9 | 0.521 | 3.70 | 799 | 24 | 19 |
10 | 0.510 | 0.84 | 213 | 26 | 16.1 |
11 | 0.273 | 0.92 | 179 | 42 | 21 |
12 | 0.601 | 1.26 | 418 | 19 | 12.4 |
13 | 0.410 | 0.49 | 120 | 28 | 16.8 |
14 | 0.375 | 1.56 | 311 | 26 | 20.6 |
15 | 0.241 | 0.53 | 73 | 41 | 30.1 |
16 | 0.839 | 2.50 | 1195 | 14 | 8.6 |
17 | 0.820 | 5.83 | 1937 | 16 | 12.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
D’Aurea, A.P.; da Silva Cardoso, A.; Guimarães, Y.S.R.; Fernandes, L.B.; Ferreira, L.E.; Reis, R.A. Mitigating Greenhouse Gas Emissions from Beef Cattle Production in Brazil through Animal Management. Sustainability 2021, 13, 7207. https://doi.org/10.3390/su13137207
D’Aurea AP, da Silva Cardoso A, Guimarães YSR, Fernandes LB, Ferreira LE, Reis RA. Mitigating Greenhouse Gas Emissions from Beef Cattle Production in Brazil through Animal Management. Sustainability. 2021; 13(13):7207. https://doi.org/10.3390/su13137207
Chicago/Turabian StyleD’Aurea, André Pastori, Abmael da Silva Cardoso, Yuri Santa Rosa Guimarães, Lauriston Bertelli Fernandes, Luis Eduardo Ferreira, and Ricardo Andrade Reis. 2021. "Mitigating Greenhouse Gas Emissions from Beef Cattle Production in Brazil through Animal Management" Sustainability 13, no. 13: 7207. https://doi.org/10.3390/su13137207
APA StyleD’Aurea, A. P., da Silva Cardoso, A., Guimarães, Y. S. R., Fernandes, L. B., Ferreira, L. E., & Reis, R. A. (2021). Mitigating Greenhouse Gas Emissions from Beef Cattle Production in Brazil through Animal Management. Sustainability, 13(13), 7207. https://doi.org/10.3390/su13137207