Characterisation of Vegetation Response to Climate Change: A Review
Abstract
:1. Introduction
1.1. Global Vegetation Response to Climate Change Impacts
1.1.1. Climate-Related Vegetation Interactions
1.1.2. Socio-Economic Scenarios of Climate Change on Vegetation Dynamics
1.1.3. Terrestrial Vegetation Responses to Future Climate Change
2. Vegetation Biodiversity Vulnerability to Future Climate Change
Spatial Assessment of Local Climate
3. Linkage between Long-Term Vegetation Dynamics and Climate Change
4. Information-Based Model (IBM)
- Factors should state the influence that contributes to an episode and address a specific case study.
- Impact on biota may spread through these factors which can include climatic, socio-economic, environmental and physical changes.
- Solutions are outlined to address the type and extent of impacts of climate extremes on vegetation dynamics, its widespread, and forms of losses documented.
- Risk assessment and answers to climate-related impacts should be done and offer step by step solutions and techniques to deal with threats occasioned by extreme climate events and other related impacts on vegetation dynamics.
4.1. Enablers of Adaptive Indicators in Vegetation Assessments
4.1.1. Linkage between Spatial and Temporal Scales
4.1.2. Communication Network Management
4.1.3. Impact Assessment
4.1.4. Adaptive Management
5. Practice for Sustainable Management and Restoration
6. Summary
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Biggs, J.; Von Fumetti, S.; Kelly-Quinn, M. The importance of small waterbodies for biodiversity and ecosystem services: Implications for policy makers. Hydrobiologia 2017, 793, 3–39. [Google Scholar] [CrossRef]
- Callaghan, T.V.; Kulikova, O.; Rakhmanova, L.; Topp-Jørgensen, E.; Labba, N.; Kuhmanen, L.-A.; Kirpotin, S.; Shaduyko, O.; Burgess, H.; Rautio, A.; et al. Improving dialogue among researchers, local and indigenous peoples and decision-makers to address issues of climate change in the North. Ambio 2019, 49, 1161–1178. [Google Scholar] [CrossRef] [Green Version]
- Reichstein, M.; Bahn, M.; Ciais, P.; Frank, D.; Mahecha, M.; Seneviratne, S.I.; Zscheischler, J.; Beer, C.; Buchmann, N.; Frank, D.C.; et al. Climate extremes and the carbon cycle. Nat. Cell Biol. 2013, 500, 287–295. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Gang, C.; Zhou, L.; Chen, Y.; Li, J.; Ju, W.; Odeh, I. Dynamic of grassland vegetation degradation and its quantitative assessment in the northwest China. Acta Oecologica 2014, 55, 86–96. [Google Scholar] [CrossRef]
- Xu, K.; Wang, X.; Jiang, C.; Sun, O.J. Assessing the vulnerability of ecosystems to climate change based on climate exposure, vegetation stability and productivity. For. Ecosyst. 2020, 7, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Hochrainer-Stigler, S.; Mechler, R.; Pflug, G.; Williges, K. Funding public adaptation to climate-related disasters. Estimates for a global fund. Glob. Environ. Chang. 2014, 25, 87–96. [Google Scholar] [CrossRef]
- Singh, R.P.; Roy, S.; Kogan, F. Vegetation and temperature condition indices from NOAA AVHRR data for drought monitoring over India. Int. J. Remote Sens. 2003, 24, 4393–4402. [Google Scholar] [CrossRef]
- Orimoloye, I.R.; Mazinyo, S.P.; Nel, W.; Kalumba, A.M. Spatiotemporal monitoring of land surface temperature and estimated radiation using remote sensing: Human health implications for East London, South Africa. Environ. Earth Sci. 2018, 77, 77. [Google Scholar] [CrossRef]
- Germer, S.; Kaiser, K.; Bens, O.; Hüttl, R.F. Water balance changes and responses of ecosystems and society in the Berlin-Brandenburg region–a review. J. Geogr. Soc. Berl. 2011, 142, 65–95. [Google Scholar]
- Baldi, G.; Texeira, M.; Murray, F.; Jobbágy, E.G. Vegetation Productivity in Natural vs. Cultivated Systems along Water Availability Gradients in the Dry Subtropics. PLoS ONE 2016, 11, e0168168. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; He, B.; Yuan, W.; Guo, L.; Zhang, Y. Increasing interannual variability of global vegetation greenness. Environ. Res. Lett. 2019, 14, 124005. [Google Scholar] [CrossRef]
- Munang, R.; Thiaw, I.; Alverson, K.; Liu, J.; Han, Z. The role of ecosystem services in climate change adaptation and disaster risk reduction. Curr. Opin. Environ. Sustain. 2013, 5, 47–52. [Google Scholar] [CrossRef]
- Birkmann, J.; von Teichman, K. Integrating disaster risk reduction and climate change adaptation: Key challenges-scales, knowledge, and norms. Sustain. Sci. 2010, 5, 171–184. [Google Scholar] [CrossRef]
- Montz, B.E.; Tobin, G.A.; Hagelman, R.R. Natural Hazards: Explanation and Integration; The Guilford Press: New York, NY, USA, 2017; p. 445. [Google Scholar]
- Gu, Z.; Duan, X.; Shi, Y.; Li, Y.; Pan, X. Spatiotemporal variation in vegetation coverage and its response to climatic factors in the Red River Basin, China. Ecol. Indic. 2018, 93, 54–64. [Google Scholar] [CrossRef]
- Measho, S.; Chen, B.; Trisurat, Y.; Pellikka, P.; Guo, L.; Arunyawat, S.; Tuankrua, V.; Ogbazghi, W.; Yemane, T. Spatio-Temporal Analysis of Vegetation Dynamics as a Response to Climate Variability and Drought Patterns in the Semiarid Region, Eritrea. Remote Sens. 2019, 11, 724. [Google Scholar] [CrossRef] [Green Version]
- Wu, D.H.; Zhao, X.; Liang, S.L.; Zhou, T.; Huang, K.C.; Tang, B.J.; Zhao, W.Q. Time-lag effects of global vegetation responses to climate change. Glob. Chang. Biol. 2015, 21, 3520–3531. [Google Scholar] [CrossRef] [PubMed]
- De Jong, R.; Schaepman, M.; Furrer, R.; De Bruin, S.; Verburg, P. Spatial relationship between climatologies and changes in global vegetation activity. Glob. Chang. Biol. 2013, 19, 1953–1964. [Google Scholar] [CrossRef] [PubMed]
- Kong, D.; Zhang, Q.; Singh, V.P.; Shi, P. Seasonal vegetation response to climate change in the Northern Hemi-sphere (1982–2013). Glob. Planet. Chang. 2017, 148, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Wilhite, D.A.; Sivakumar, M.V.; Pulwarty, R. Managing drought risk in a changing climate: The role of national drought policy. Weather. Clim. Extrem. 2014, 3, 4–13. [Google Scholar] [CrossRef] [Green Version]
- Dong, T.; Wu, B.; Meng, J.; Du, X.; Shang, J. Sensitivity analysis of retrieving fraction of absorbed photosyntheti-cally active radiation (FPAR) using remote sensing data. Acta Ecol. Sin. 2016, 36, 1–7. [Google Scholar] [CrossRef]
- Seddon, A.W.R.; Macias-Fauria, M.; Long, P.R.; Benz, D.; Willis, K. Sensitivity of global terrestrial ecosystems to climate variability. Nat. Cell Biol. 2016, 531, 229–232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, Y.; Kimball, J.; Didan, K.; Henebry, G. Response of vegetation growth and productivity to spring climate indicators in the conterminous United States derived from satellite remote sensing data fusion. Agric. For. Meteorol. 2014, 194, 132–143. [Google Scholar] [CrossRef]
- Zheng, K.; Wei, J.-Z.; Pei, J.-Y.; Cheng, H.; Zhang, X.-L.; Huang, F.-Q.; Li, F.-M.; Ye, J.-S. Impacts of climate change and human activities on grassland vegetation variation in the Chinese Loess Plateau. Sci. Total Environ. 2019, 660, 236–244. [Google Scholar] [CrossRef]
- Wu, C.F.; Lin, Y.P.; Chiang, L.C.; Huang, T. Assessing highway’s impacts on landscape patterns and ecosystem services: A case study in Puli Township, Taiwan. Landsc. Urban Plan. 2014, 128, 60–71. [Google Scholar] [CrossRef]
- Jamieson, M.A.; Trowbridge, A.; Raffa, K.F.; Lindroth, R.L. Consequences of Climate Warming and Altered Precipitation Patterns for Plant-Insect and Multitrophic Interactions. Plant Physiol. 2012, 160, 1719–1727. [Google Scholar] [CrossRef] [Green Version]
- Friend, A.D.; Arneth, A.; Kiang, N.Y.; Lomas, M.; Ogee, J.; Rödenbeck, C.; Running, S.W.; Santaren, J.-D.; Sitch, S.; Viovy, N.; et al. FLUXNET and modelling the global carbon cycle. Glob. Chang. Biol. 2007, 13, 610–633. [Google Scholar] [CrossRef]
- Noranida, M. The Timeline of Forest Management in Malaysia towards Achieving Sustainable Development Goals/Noranida Mothsim. Doctoral Dissertation, University of Malaya, Kuala Lumpur, Malaysia, 2017. [Google Scholar]
- Nevitt, M. On Environmental, Climate Change and National Security Law. Harv. Environ. Law Rev. 2020, 44, 19–36. [Google Scholar]
- Kittel, T.G.; Howard, S.G.; Horn, H.; Kittel, G.M.; Fairbarns, M.; Iachetti, P. A vulnerability-based strategy to incorporate climate change in regional conservation planning: Framework and case study for the British Columbia Central Interior. J. Ecosyst. Manag. 2011, 12, 7–35. [Google Scholar]
- Azhoni, A.; Jude, S.; Holman, I. Adapting to climate change by water management organisations: Enablers and barriers. J. Hydrol. 2018, 559, 736–748. [Google Scholar] [CrossRef]
- Wang, Z.; Huang, Z.; Li, J.; Zhong, R.; Huang, W. Assessing impacts of meteorological drought on vegetation at catchment scale in China based on SPEI and NDVI. Trans. Chin. Soc. Agric. Eng. 2016, 32, 177–186. [Google Scholar]
- Li, D.; Wu, S.; Liu, L.; Zhang, Y.; Li, S. Vulnerability of the global terrestrial ecosystems to climate change. Glob. Chang. Biol. 2018, 24, 4095–4106. [Google Scholar] [CrossRef]
- Du, J.; Shu, J.; Yin, J.; Yuan, X.; Jiaerheng, A.; Xiong, S.; He, P.; Liu, W. Analysis on spatio-temporal trends and drivers in vegetation growth during recent decades in Xinjiang, China. Int. J. Appl. Earth Obs. Geoinf. 2015, 38, 216–228. [Google Scholar] [CrossRef]
- Bouwer, L.M. Observed and projected impacts from extreme weather events: Implications for loss and damage. In Loss and Damage from Climate Change; Springer: Cham, Switzerland, 2019; pp. 63–82. [Google Scholar]
- Lonnqvist, A.; Rauste, Y.; Molinier, M.; Hame, T. Polarimetric SAR Data in Land Cover Mapping in Boreal Zone. IEEE Trans. Geosci. Remote Sens. 2010, 48, 3652–3662. [Google Scholar] [CrossRef]
- Xie, B.; Jia, X.; Qin, Z.; Shen, J.; Chang, Q. Vegetation dynamics and climate change on the Loess Plateau, China: 1982–2011. Reg. Environ. Chang. 2016, 16, 1583–1594. [Google Scholar] [CrossRef]
- Ingram, J.C.; Franco, G.; Rumbaitis-del Rio, C.; Khazai, B. Post-disaster recovery dilemmas: Challenges in bal-ancing short-term and long-term needs for vulnerability reduction. Environ. Sci. Policy 2006, 9, 607–613. [Google Scholar] [CrossRef]
- Raj, K.B.G.; Remya, S.N.; Kumar, K.V. Remote sensing-based hazard assessment of glacial lakes in Sikkim Himalaya. Curr. Sci. 2013, 104, 359–364. [Google Scholar]
- Yang, X.; Wittig, V.; Jain, A.K.; Post, W. Integration of nitrogen cycle dynamics into the Integrated Science Assessment Model for the study of terrestrial ecosystem responses to global change. Glob. Biogeochem. Cycles 2009, 23, GB4028. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Notaro, M.; Kutzbach, J.; Liu, N. Assessing Global Vegetation–Climate Feedbacks from Observations. J. Clim. 2006, 19, 787–814. [Google Scholar] [CrossRef]
- Turner, M.G.; Calder, W.J.; Cumming, G.; Hughes, T.P.; Jentsch, A.; LaDeau, S.; Lenton, T.M.; Shuman, B.N.; Turetsky, M.R.; Ratajczak, Z.; et al. Climate change, ecosystems and abrupt change: Science priorities. Philos. Trans. R. Soc. B Biol. Sci. 2020, 375, 20190105. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Ye, A. Spatial and temporal variations in vegetation coverage observed using AVHRR GIMMS and Terra MODIS data in the mainland of China. Int. J. Remote Sens. 2020, 41, 4238–4268. [Google Scholar] [CrossRef]
- Mennis, J. Exploring the Influence of ENSO on African Vegetation Variability Using Multidimensional Map Algebra. Giscience Remote Sens. 2006, 43, 352–376. [Google Scholar] [CrossRef]
- Fensholt, R.; Proud, S.R. Evaluation of Earth Observation Based Global Long Term Vegetation Trends — Comparing GIMMS and MODIS Global NDVI Time Series. Remote. Sens. Environ. 2012, 119, 131–147. [Google Scholar] [CrossRef]
- Anyamba, A.; Tucker, C.J.; Mahoney, R. From El Niño to La Niña: Vegetation response patterns over east and southern Africa during the 1997–2000 period. J. Clim. 2002, 15, 3096–3103. [Google Scholar] [CrossRef]
- Fer, I.; Tietjen, B.; Jeltsch, F.; Wolff, C. The influence of El Niño–Southern Oscillation regimes on eastern African vegetation and its future implications under the RCP8.5 warming scenario. Biogeosciences 2017, 14, 4355–4374. [Google Scholar] [CrossRef] [Green Version]
- Kalisa, W.; Igbawua, T.; Henchiri, M.; Ali, S.; Zhang, S.; Bai, Y.; Zhang, J. Assessment of climate impact on vege-tation dynamics over East Africa from 1982 to 2015. Sci. Rep. 2019, 9, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Plisnier, P.D.; Serneels, S.; Lambin, E.F. Impact of ENSO on East African ecosystems: A multivariate analysis based on climate and remote sensing data. Glob. Ecol. Biogeogr. 2000, 9, 481–497. [Google Scholar] [CrossRef]
- Pettorelli, N.A.; Chauvenet, J.P. Duffy Tracking the effect of climate change on ecosystem functioning using protected areas: Africa as a case study. Ecol. Indic. 2012, 20, 269–276. [Google Scholar] [CrossRef]
- Pricope, N.G.; Husak, G.; Lopez-Carr, D.; Funk, C.; Michaelsen, J. The climate-population nexus in the East Af-rican Horn: Emerging degradation trends in rangeland and pastoral livelihood zones. Glob. Environ. Chang. 2013, 23, 1525–1541. [Google Scholar] [CrossRef]
- Wang, X.; Wu, C.; Peng, D.; Gonsamo, A.; Liu, Z. Snow cover phenology affects alpine vegetation growth dy-namics on the Tibetan Plateau: Satellite observed evidence, impacts of different biomes, and climate drivers. Agric. For. Meteorol. 2018, 256, 61–74. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge UK; New York, NY, USA, 2013; 1535p. [Google Scholar] [CrossRef] [Green Version]
- Wu, Z.; Wu, J.; Liu, J.; He, B.; Lei, T.; Wang, Q. Increasing terrestrial vegetation activity of ecological restoration program in the Beijing–Tianjin Sand Source Region of China. Ecol. Eng. 2013, 52, 37–50. [Google Scholar] [CrossRef]
- Hua, L.; Wang, H.; Sui, H.; Wardlow, B.; Hayes, M.J.; Wang, J. Mapping the spatial-temporal dynamics of vege-tation response lag to drought in a semi-arid region. Remote Sens. 2019, 11, 1873. [Google Scholar] [CrossRef] [Green Version]
- Turner, M.G. Disturbance and landscape dynamics in a changing world. Ecology 2010, 91, 2833–2849. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.; Piao, S.; Ciais, P.; Li, J.; Friedlingstein, P.; Koven, C.; Chen, A. Spring temperature change and its implication in the change of vegetation growth in North America from 1982 to 2006. Proc. Natl. Acad. Sci. USA 2011, 108, 1240–1245. [Google Scholar] [CrossRef] [Green Version]
- Frederiksen, J.S.; Frederiksen, C.S.; Osbrough, S.L.; Sisson, J.M. Changes in Southern Hemisphere rainfall, circulation and weather systems. In Proceedings of the 19th International Congress on Modelling and Simulation, Perth, Australia, 12–16 December 2011; pp. 2712–2718. [Google Scholar]
- Cai, W.; Cowan, T.; Thatcher, M. Rainfall reductions over Southern Hemisphere semi-arid regions: The role of subtropical dry zone expansion. Sci. Rep. 2012, 2, 702. [Google Scholar] [CrossRef] [Green Version]
- Friend, A.D.; Lucht, W.; Rademacher, T.T.; Keribin, R.; Betts, R.; Cadule, P.; Ciais, P.; Clark, D.B.; Dankers, R.; Falloon, P.D.; et al. Carbon residence time dominates uncertainty in terrestrial vegetation responses to future climate and atmospheric CO2. Proc. Natl. Acad. Sci. USA 2014, 111, 3280–3285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Qi, W.; Zhou, C.; Ding, M.; Liu, L.; Gao, J.; Bai, W.; Wang, Z.; Zheng, D. Spatial and temporal variability in the net primary production of alpine grassland on the Tibetan Plateau since 1982. J. Geogr. Sci. 2014, 24, 269–287. [Google Scholar] [CrossRef]
- Zeng, Z.; Li, Y.; Wu, W.; Zhou, Y.; Wang, X.; Huang, H.; Li, Z. Spatio-Temporal Variation of Drought within the Vegetation Growing Season in North Hemisphere (1982–2015). Water 2020, 12, 2146. [Google Scholar] [CrossRef]
- Zhao, X.; Zhu, H.; Dong, K.; Li, D. Plant Community and Succession in Lowland Grasslands under Saline-Alkali Conditions with Grazing Exclusion. Agron. J. 2017, 109, 2428–2437. [Google Scholar] [CrossRef]
- Vijith, H.; Hurmain, A.; Dodge-Wan, D. Impacts of land use changes and land cover alteration on soil erosion rates and vulnerability of tropical mountain ranges in Borneo. Remote Sens. Appl. Soc. Environ. 2018, 12, 57–69. [Google Scholar] [CrossRef]
- Pearson, R.G.; Phillips, S.J.; Loranty, M.; Beck, P.S.A.; Damoulas, T.; Knight, S.J.; Goetz, S. Shifts in Arctic vegetation and associated feedbacks under climate change. Nat. Clim. Chang. 2013, 3, 673–677. [Google Scholar] [CrossRef]
- Kogan, F.; Salazar, L.; Roytman, L. Forecasting crop production using satellite-based vegetation health indices in Kansas, USA. Int. J. Remote Sens. 2011, 33, 2798–2814. [Google Scholar] [CrossRef]
- Afuye, G.A.; Ojeh, V.N.; Okunlola, B.A.; Adejokun, V.F. Heat-Sum Calculation in Forecasting Maize Phenological Stages and Harvesting Date in Lagos South West, Nigeria. J. Geogr. Environ. Earth Sci. Int. 2018, 1, 1–12. [Google Scholar] [CrossRef]
- Afuye, G.A.; Ojeh, V.N. Temporal Variations in Ambient Carbon Monoxide Concentrations between Weekdays and Weekends in Akure Central Business District, South West Nigeria. Phys. Sci. Int. J. 2017, 1, 1–2. [Google Scholar] [CrossRef]
- Wu, M.; Schurgers, G.; Rummukainen, M.; Smith, B.; Samuelsson, P.; Jansson, C.; Siltberg, J.; May, W. Vegetation–climate feedbacks modulate rainfall patterns in Africa under future climate change. Earth Syst. Dyn. 2016, 7, 627–647. [Google Scholar] [CrossRef] [Green Version]
- Klein, C.; Bliefernicht, J.; Heinzeller, D.; Gessner, U.; Klein, I.; Kunstmann, H. Feedback of observed interannual vegetation change: A regional climate model analysis for the West African monsoon. Clim. Dyn. 2017, 48, 2837–2858. [Google Scholar] [CrossRef] [Green Version]
- Marston, R.A. Geomorphology and vegetation on hill slopes: Interactions, dependencies, and feedback loops. Geomorphology 2010, 116, 206–217. [Google Scholar] [CrossRef]
- Nagy, L.; Artaxo, P.; Forsberg, B.R. Interactions between Biosphere, Atmosphere, and Human Land Use in the Amazon Basin: An Introduction. In Interactions between Biosphere, Atmosphere and Human Land Use in the Amazon Basin; Springer: Berlin/Heidelberg, Germany, 2016; pp. 3–15. [Google Scholar]
- Jiang, L.; Bao, A.; Guo, H.; Ndayisaba, F. Vegetation dynamics and responses to climate change and human ac-tivities in Central Asia. Sci. Total Environ. 2017, 599, 967–980. [Google Scholar] [CrossRef]
- Djebou, D.C.S.; Singh, V.P.; Frauenfeld, O.W. Vegetation response to precipitation across the aridity gradient of the Southwestern United States. J. Arid. Environ. 2015, 115, 35–43. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, C.; Wang, Z.; Chen, Y.; Gang, C.; An, R.; Li, J. Vegetation dynamics and its driving forces from climate change and human activities in the Three-River Source Region, China from 1982 to 2012. Sci. Total Environ. 2016, 563-564, 210–220. [Google Scholar] [CrossRef]
- Penuelas, J.; Poulter, B.; Sardans, J.; Ciais, P.; Van Der Velde, M.; Bopp, L.; Janssens, I.A. Human-induced ni-trogen–phosphorus imbalances alter natural and managed ecosystems across the globe. Nat. Commun. 2013, 4, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiao, J.; Moody, A. Geographical distribution of global greening trends and their climatic correlates: 1982–1998. Int. J. Remote Sens. 2005, 26, 2371–2390. [Google Scholar] [CrossRef]
- Forster, S.; Kuhlmann, B.; Lindenschmidt, K.E.; Bronstert, A. Assessing flood risk for a rural detention area. Nat. Hazards Earth Syst. Sci. 2008, 8, 311–322. [Google Scholar] [CrossRef]
- Adepoju, K.; Adelabu, S.; Fashae, O. Vegetation Response to Recent Trends in Climate and Landuse Dynamics in a Typical Humid and Dry Tropical Region under Global Change. Adv. Meteorol. 2019, 2019, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Peng, S.; Chen, A.; Xu, L.; Cao, C.; Fang, J.; Myneni, R.; Pinzon, J.E.; Tucker, C.J.; Piao, S. Recent change of vegetation growth trend in China. Environ. Res. Lett. 2011, 6, 044027. [Google Scholar] [CrossRef]
- Hadramout and Al-Mahara. Damage, Losses and Needs Assessment October, Tropical Storm and Floods; Republic of Yemen, Government of the People’s Democratic Republic of Yemen, International Federation of Red Cross and Red Crescent Socie-ties (IFRC), World Bank, United Nations International Strategy for Disaster Reduction (UNISDR) 2009, 217, 1–187. Available online: https://www.gfdrr.org/sites/default/files/GFDRR_Yemen_DLNA_2009_EN.pdf (accessed on 6 October 2009).
- Gratani, L. Plant Phenotypic Plasticity in Response to Environmental Factors. Adv. Bot. 2014, 2014, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Tessema, Z.; de Boer, W.; Baars, R.; Prins, H. Changes in soil nutrients, vegetation structure and herbaceous biomass in response to grazing in a semi-arid savanna of Ethiopia. J. Arid. Environ. 2011, 75, 662–670. [Google Scholar] [CrossRef]
- Eldridge, D.J.; Poore, A.G.; Ruiz-Colmenero, M.; Letnic, M.; Soliveres, S. Ecosystem structure, function, and composition in rangelands are negatively affected by livestock grazing. Ecol. Appl. 2016, 26, 1273–1283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- IPCC. Climate Change 2014–Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects; Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Barros, V.R., Field, C.B., Dokken, D.J., Mastrandrea, M.D., Mach, K.J., Bilir, T.E., Chatterjee, M., Ebi, K.L., Estrada, Y.O., Genova, R.C., et al., Eds.; Cambridge University Press: Cambridge UK; New York, NY, USA, 2014; p. 688. [Google Scholar]
- Dube, T.; Moyo, P.; Ncube, M.; Nyathi, D. The Impact of Climate Change on Agro-Ecological Based Livelihoods in Africa: A Review. J. Sustain. Dev. 2016, 9, 256. [Google Scholar] [CrossRef]
- Olsson, L.; Opondo, M.; Tschakert, P.; Agrawal, A.; Eriksen, S.; Ma, S. Livelihoods and Poverty: Climate change 2014: Impacts, adaptation, and vulnerability. Part A: Global and sectoral aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. In Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects; Field, C.B., Barros, V.R., Dokken, D.J., Mach, K.J., Mastrandrea, M.D., Bilir, T.E., Chatterjee, M., Ebi, K.L., Estrada, Y.O., Genova, R.C., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014; pp. 793–832. [Google Scholar]
- Eckstein, D.; Künzel, V.; Schäfer, L.; Winges, M. Global Climate Risk Index 2020; Germanwatch: Bonn, Germany, 2019; Available online: https://germanwatch.org/sites/germanwatch.org/files/20-2-01e%20Global%20Climate%20Risk%20Index%202020_13.pdf (accessed on 12 December 2019).
- Handmer, J.; Honda, Y.; Kundzewicz, Z.W.; Arnell, N.; Benito, G.; Hatfield, J.; Mohamed, I.F.; Peduzzi, P.; Wu, S.; Sherstyukov, B.; et al. Changes in impacts of climate extremes: Human systems and ecosystems. In Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation: Special Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge UK; New York, NY, USA, 2012; pp. 231–290. [Google Scholar] [CrossRef]
- Cramer, W.; Yohe, G.; Auffhammer, M.; Huggel, C. Detection and Attribution of Observed Impacts. In Climate Change 2014 Impacts, Adaptation, and Vulnerability Part A: Global and Sectoral Aspects. Working Group II Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Field, C.B., Barros, V.R., Dokken, D.J., Mach, K.J., Mastrandrea, M.D., Bilir, T.E., Chatterjee, M., Ebi, K.L., Estrada, Y.O., Genova, R.C., et al., Eds.; Cambridge University Press: Cambridge UK; New York, NY, USA, 2014; pp. 979–1037. [Google Scholar] [CrossRef] [Green Version]
- Piya, L.; Maharjan, K.L.; Joshi, N.P. Socioeconomic Issues of Climate Change: A Livelihood Analysis from Nepal; Socioeconomic Issues of Climate Change; Springer: Singapore, 2019; pp. 153–160. [Google Scholar] [CrossRef]
- Hulme, P.E. Addressing the threat to biodiversity from botanic gardens. Trends Ecol. Evol. 2011, 26, 168–174. [Google Scholar] [CrossRef] [PubMed]
- McMichael, A.J.; Lindgren, E. Climate change: Present and future risks to health, and necessary responses. J. Intern. Med. 2011, 270, 401–413. [Google Scholar] [CrossRef]
- Qian, W.; Zhu, Y. Climate Change in China from 1880 to 1998 and its Impact on the Environmental Condition. Clim. Chang. 2001, 50, 419–444. [Google Scholar] [CrossRef]
- Kurukulasuriya, P.; Rosenthal, S. Climate Change and Agriculture: A Review of Impacts and Adaptations; 2013; pp. 3–106. Available online: https://openknowledge.worldbank.org/bitstream/handle/10986/16616/787390WP0Clima0ure0377348B00PUBLIC0.pdf?sequence=1&isAllowed=y (accessed on 6 June 2012).
- Debortoli, N.S.; Camarinha, P.I.M.; Marengo, J.A.; Rodrigues, R.R. An index of Brazil’s vulnerability to expected increases in natural flash flooding and landslide disasters in the context of climate change. Nat. Hazards 2017, 86, 557–582. [Google Scholar] [CrossRef]
- Knowlton, J.L.; Graham, C.H. Using behavioural landscape ecology to predict species’ responses to land-use and climate change. Biol. Conserv. 2010, 143, 1342–1354. [Google Scholar] [CrossRef]
- Marengo, J.A.; Espinoza, J.C. Extreme seasonal droughts and floods in Amazonia: Causes, trends and impacts. Int. J. Clim.. 2016, 36, 1033–1050. [Google Scholar] [CrossRef]
- Wamsler, C.; Niven, L.; Beery, T.; Bramryd, T.; Ekelund, N.; Jönsson, K.I.; Osmani, A.; Palo, T. St Operationalizing ecosystem-based adaptation: Harnessing ecosystem services to buffer communities against climate change. Ecol. Soc. 2016, 21. [Google Scholar] [CrossRef] [Green Version]
- Kittel, T.G. The Vulnerability of Biodiversity to Rapid Climate Change. Vulnerability of Ecosystems to Climate; Seastedt, T.R., Suding, K., Eds.; Elsevier Inc., Academic Press: Oxford, UK, 2013; pp. 185–201. [Google Scholar] [CrossRef]
- Nath, P.K.; Behera, B. A critical review of impact of and adaptation to climate change in developed and developing economies. Environ. Dev. Sustain. 2011, 13, 141–162. [Google Scholar] [CrossRef]
- Mugambiwa, S.S.; Tirivangasi, H.M. Climate change: A threat towards achieving Sustainable Development Goal number two’ (end hunger, achieve food security and improved nutrition and promote sustainable agriculture) in South Africa. J. Disaster Risk Stud. 2017, 9, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sintayehu, D.W. Impact of climate change on biodiversity and associated key ecosystem services in Africa: A sys-tematic review. Ecosyst. Health Sustain. 2018, 4, 225–239. [Google Scholar] [CrossRef] [Green Version]
- Wessels, K.J.; van den Bergh, F.; Scholes, R.J. Limits to detectability of land degradation by trend analysis of veg-etation index data. Remote Sens. Environ. 2012, 125, 10–22. [Google Scholar] [CrossRef]
- Thornton, P.K.; Ericksen, P.J.; Herrero, M.; Challinor, A.J. Climate variability and vulnerability to climate change: A review. Glob. Chang. Biol. 2014, 20, 3313–3328. [Google Scholar] [CrossRef]
- Mantyka-pringle, C.S.; Martin, T.G.; Rhodes, J.R. Interactions between climate and habitat loss effects on bio-diversity: A systematic review and meta-analysis. Glob. Chang. Biol. 2012, 18, 1239–1252. [Google Scholar] [CrossRef] [Green Version]
- Chapin Iii, F.S.; Zavaleta, E.S.; Eviner, V.T.; Naylor, R.L.; Vitousek, P.M.; Reynolds, H.L.; Hooper, D.U.; Lavorel, S.; Sala, O.E.; Hobbie, S.E.; et al. Consequences of changing biodiversity. Nat. Cell Biol. 2000, 405, 234–242. [Google Scholar] [CrossRef] [PubMed]
- Oliver, T.H.; Heard, M.S.; Isaac, N.J.; Roy, D.B.; Procter, D.; Eigenbrod, F.; Bullock, J.M. Biodiversity and re-silience of ecosystem functions. Trends Ecol. Evol. 2015, 30, 673–684. [Google Scholar] [CrossRef] [Green Version]
- Seidl, R.; Thom, D.; Kautz, M.; Martin-Benito, D.; Peltoniemi, M.; Vacchiano, G.; Wild, J.; Ascoli, D.; Petr, M.; Honkaniemi, J.; et al. Forest disturbances under climate change. Nat. Clim. Chang. 2017, 7, 395–402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cunha, A.P.M.A.; Alvalá, R.C.S.; Kubota, P.Y.; Vieira, R.M.S.P. Impacts of land use and land cover changes on the climate over Northeast Brazil. Atmos. Sci. Lett. 2015, 16, 219–227. [Google Scholar] [CrossRef]
- De Groot, R.S.; Fisher, B.; Christie, M.; Aronson, J.; Braat, L.; Haines-Young, R.; Gowdy, J.; Maltby, E.; Neuville, A.; Polasky, S.; et al. Integrating the ecological and economic dimensions in biodiversity and ecosystem service valuation. In The Economics of Ecosystems and Biodiversity (TEEB): Ecological and Economic Foundations; Earthscan, Routledge: Oxfordshire, UK, 2010; pp. 9–40. [Google Scholar]
- Kehinde, T.; Amusan, B.; Ayansola, A.; Oyelade, S.; Adu, W. Status of insect diversity conservation in Nigeria: A review. J. Sci. 2014, 16, 319–330. [Google Scholar]
- Morelli, T.L.; Barrows, C.W.; Ramirez, A.R.; Cartwright, J.M.; Ackerly, D.D.; Eaves, T.D.; Ebersole, J.L.; Krawchuk, M.A.; Letcher, B.H.; Mahalovich, M.F.; et al. Climate-change refugia: Biodiversity in the slow lane. Front. Ecol. Environ. 2020, 18, 228–234. [Google Scholar] [CrossRef]
- Coad, L.; Leverington, F.; Knights, K.; Geldmann, J.; Eassom, A.; Kapos, V.; Kingston, N.; de Lima, M.; Zamora, C.; Cuardros, I.; et al. Measuring impact of protected area management interventions: Current and future use of the Global Database of Protected Area Management Effectiveness. Philos. Trans. R. Soc. B Biol. Sci. 2015, 370, 20140281. [Google Scholar] [CrossRef] [PubMed]
- Walz, Y.; Min, A.; Dall, K.; Duguru, M.; de Leon, J.-C.V.; Graw, V.; Dubovyk, O.; Sebesvari, Z.; Jordaan, A.; Post, J. Monitoring progress of the Sendai Framework using a geospatial model: The example of people affected by agricultural droughts in Eastern Cape, South Africa. Prog. Disaster Sci. 2020, 5, 100062. [Google Scholar] [CrossRef]
- Skarbit, N.; Stewart, I.D.; Unger, J.; Gál, T. Employing an urban meteorological network to monitor air temperature conditions in the ‘local climate zones’ of Szeged, Hungary. Int. J. Clim. 2017, 37, 582–596. [Google Scholar] [CrossRef]
- Pan, Y.; Birdsey, R.A.; Phillips, O.L.; Jackson, R.B. The structure, distribution, and biomass of the world’s forests. Annu. Rev. Ecol. Evol. Syst. 2013, 44, 593–622. [Google Scholar] [CrossRef] [Green Version]
- Loranty, M.M.; Abbott, B.W.; Blok, D.; Douglas, T.A.; Epstein, H.E.; Forbes, B.C.; Jones, B.M.; Kholodov, A.L.; Kropp, H.; Malhotra, A.; et al. Reviews and syntheses: Changing ecosystem influences on soil thermal regimes in northern high-latitude permafrost regions. Biogeosciences 2018, 15, 5287–5313. [Google Scholar] [CrossRef] [Green Version]
- Dong, S.X.; Davies, S.J.; Ashton, P.S.; Bunyavejchewin, S.; Supardi, M.N.; Kassim, A.R.; Moorcroft, P.R. Var-iability in solar radiation and temperature explains observed patterns and trends in tree growth rates across four tropical forests. Proc. R. Soc. B Biol. Sci. 2012, 279, 3923–3931. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Zhang, F.; Xu, Y.; Gao, Y.; Zhao, X. Relationship Between Vegetation Coverage and Rural Settlements and Anti-desertification Strategies in Horqin Left Back Banner, Inner Mongolia, China. In International Conference on Computer and Computing Technologies in Agriculture; Springer: Cham, Switzerland, 2016; Volume 478, pp. 125–142. [Google Scholar]
- MacLean, I.M.D.; Suggitt, A.J.; Wilson, R.; Duffy, J.P.; Bennie, J.J. Fine-scale climate change: Modelling spatial variation in biologically meaningful rates of warming. Glob. Chang. Biol. 2016, 23, 256–268. [Google Scholar] [CrossRef] [PubMed]
- Kumar, M.A.N.O.J. Analysing Impacts of Climate Change on Forests of Uttarakhand Using Dynamic Vegetation Model. Ph.D. Thesis, Forest Research Institute Deemed to be University, Dehradun, Uttarakhand, India, 2018. [Google Scholar]
- IPCC. Climate Change IPCC, WGI Fourth Assessment Report, Summary for Policy Makers; IPCC: Geneva, Switzerland, 2007; pp. 104–116. [Google Scholar]
- Hou, W.; Gao, J.; Wu, S.; Dai, E. Interannual variations in growing-season NDVI and its correlation with climate variables in the southwestern karst region of China. Remote Sens. 2015, 7, 11105–11124. [Google Scholar] [CrossRef] [Green Version]
- Du, J.; Quan, Z.; Fang, S.; Liu, C.; Wu, J.; Fu, Q. Spatiotemporal changes in vegetation coverage and its causes in China since the Chinese economic reform. Environ. Sci. Pollut. Res. 2020, 27, 1144–1159. [Google Scholar] [CrossRef]
- Mahowald, N.; Albani, S.; Kok, J.; Engelstaeder, S.; Scanza, R.; Ward, D.S.; Flanner, M.G. The size distribution of desert dust aerosols and its impact on the Earth system. Aeolian Res. 2014, 15, 53–71. [Google Scholar] [CrossRef] [Green Version]
- Buyantuyev, A.; Wu, J. Urbanization alters spatiotemporal patterns of ecosystem primary production: A case study of the Phoenix metropolitan region, USA. J. Arid. Environ. 2009, 73, 512–520. [Google Scholar] [CrossRef]
- Li, Z.; Chen, Y.; Li, W.; Deng, H.; Fang, G. Potential impacts of climate change on vegetation dynamics in Central Asia. J. Geophys. Res. Atmos. 2015, 120, 12345–12356. [Google Scholar] [CrossRef]
- Propastin, P.; Kappas, M.; Muratova, N.; Propastin, P.; Kappas, M.; Muratova, N. A remote sensing based monitoring system for discrimination between climate and human-induced vegetation change in Central Asia. Manag. Environ. Qual. Int. J. 2008, 19, 579–596. [Google Scholar] [CrossRef] [Green Version]
- Wisner, B.; Blaikie, P.; Blaikie, P.M.; Cannon, T.; Davis, I. At Risk: Natural Hazards, People’s Vulnerability and Disasters; Psychology Press: London, UK, 2004. [Google Scholar]
- Forsius, M.; Anttila, S.; Arvola, L.; Bergström, I.; Hakola, H.; Heikkinen, H.I.; Keskinen, T. Impacts and adaptation options of climate change on ecosystem services in Finland: A model based study. Curr. Opin. Environ. Sustain. 2013, 5, 26–40. [Google Scholar] [CrossRef]
- Piao, S.; Liu, Q.; Chen, A.; Janssens, I.A.; Fu, Y.; Dai, J.; Liu, L.; Lian, X.; Shen, M.; Zhu, X. Plant phenology and global climate change: Current progresses and challenges. Glob. Chang. Biol. 2019, 25, 1922–1940. [Google Scholar] [CrossRef]
- Lovejoy, S. Return periods of global climate fluctuations and the pause. Geophys. Res. Lett. 2014, 41, 4704–4710. [Google Scholar] [CrossRef]
- Nyingi, W.; Oguge, N.; Dziba, L.; Chandipo, R.; Didier, T.A.; Gandiwa, E.; Von Maltitz, G.P. Direct and Indirect Drivers of Change in Biodiversity and Nature’s Contributions to People; The IPBES regional assessment report on biodiversity and ecosystem services for Africa; Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES): Bonn, Germany, 2018; pp. 207–296. Available online: https://www.ipbes.net/sites/default/files/spm_africa_2018_digital.pdf (accessed on 18 March 2018).
- Zhao, P.; Yang, S.; Yu, R. Long-Term Changes in Rainfall over Eastern China and Large-Scale Atmospheric Circulation Associated with Recent Global Warming. J. Clim. 2010, 23, 1544–1562. [Google Scholar] [CrossRef]
- Ali, S.; Henchiri, M.; Yao, F.; Zhang, J. Analysis of vegetation dynamics, drought in relation with climate over South Asia from 1990 to 2011. Environ. Sci. Pollut. Res. 2019, 26, 11470–11481. [Google Scholar] [CrossRef]
- Dyosi, M.; Kalumba, A.M.; Magagula, H.; Zhou, L.; Orimoloye, I.R. Drought conditions appraisal using geoinformatics and multi-influencing factors. Environ. Monit. Assess. 2021, 193, 1–19. [Google Scholar] [CrossRef]
- Pinzon, J.E.; Tucker, C.J. A non-stationary 1981–2012 AVHRR NDVI3g time series. Remote Sens. 2014, 6, 6929–6960. [Google Scholar] [CrossRef] [Green Version]
- Nzabarinda, V.; Bao, A.; Xu, W.; Uwamahoro, S.; Jiang, L.; Duan, Y.; Nahayo, L.; Yu, T.; Wang, T.; Long, G. Assessment and Evaluation of the Response of Vegetation Dynamics to Climate Variability in Africa. Sustainability 2021, 13, 1234. [Google Scholar] [CrossRef]
- Anazawa, M.; Saito, G.; Sawada, Y.; Sawada, H. In Proceedings of the Vegetation Monitoring Study using Leaf Water Content Index (LWCI) and NDVI. Presented at the 22nd Asian Conference on Remote Sensing. Singapore, 5–9 November 2001; Volume 5, p. 9. [Google Scholar]
- Liang, S.; Yi, Q.; Liu, J. Vegetation dynamics and responses to recent climate change in Xinjiang using leaf area index as an indicator. Ecol. Indic. 2015, 58, 64–76. [Google Scholar]
- Peng, D.; Zhang, H.; Yu, L.; Wu, M.; Wang, F.; Huang, W.; Liu, L.; Sun, R.; Li, C.; Wang, D.; et al. Assessing spectral indices to estimate the fraction of photosynthetically active radiation absorbed by the vegetation canopy. Int. J. Remote Sens. 2018, 39, 8022–8040. [Google Scholar] [CrossRef]
- Pei, F.; Wu, C.; Liu, X.; Li, X.; Yang, K.; Zhou, Y.; Xia, G. Monitoring the vegetation activity in China using veg-etation health indices. Agric. For. Meteorol. 2018, 248, 215–227. [Google Scholar] [CrossRef]
- Tsiros, E.; Domenikiotis, C.; Spiliotopoulos, M.; Dalezios, N.R. Use of NOAA/AVHRR-based vegetation condition index (VCI) and temperature condition index (TCI) for drought monitoring in Thessaly, Greece. In Proceedings of the EWRA Symposium on Water Resources Management: Risks and Challenges for the 21st Century, Izmir, Turkey, 2–4 September 2004; pp. 2–4. [Google Scholar]
- Karnieli, A.; Bayasgalan, M.; Bayarjargal, Y.; Agam, N.; Khudulmur, S.; Tucker, C.J. Comments on the use of the Vegetation Health Index over Mongolia. Int. J. Remote Sens. 2006, 27, 2017–2024. [Google Scholar] [CrossRef]
- Rhyma, P.P.; Norizah, K.; Hamdan, O.; Faridah-Hanum, I.; Zulfa, A.W. Integration of normalised different vegetation index and Soil-Adjusted Vegetation Index for mangrove vegetation delineation. Remote Sens. Appl. Soc. Environ. 2020, 17, 100280. [Google Scholar] [CrossRef]
- Iizuka, A. Developing capacity for disaster risk reduction: Lessons learned from a case of Sri Lanka. Prog. Disaster Sci. 2020, 6, 100073. [Google Scholar] [CrossRef]
- Rivera, J.D.; Ceesay, A.A.; Sillah, A. Challenges to disaster risk management in The Gambia: A preliminary investigation of the disaster management system’s structure. Prog. Disaster Sci. 2020, 6, 100075. [Google Scholar] [CrossRef]
- Popoola, O.O.; Monde, N.; Yusuf, S.F.G. Perception and Adaptation Responses to Climate Change: An Assessment of Smallholder Livestock Farmers in Amathole District Municipality, Eastern Cape Province. S. Afr. J. Agric. Ext. 2019, 47, 46–57. [Google Scholar] [CrossRef]
- Thompson, R.R.; Garfin, D.R.; Silver, R.C. Evacuation from Natural Disasters: A Systematic Review of the Literature. Risk Anal. 2016, 37, 812–839. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Orimoloye, I.; Ololade, O.; Mazinyo, S.; Kalumba, A.; Ekundayo, O.; Busayo, E.T.; Akinsanola, A.A.; Nel, W. Spatial assessment of drought severity in Cape Town area, South Africa. Heliyon 2019, 5, e02148. [Google Scholar] [CrossRef] [Green Version]
- Busayo, E.; Kalumba, A. Coastal Climate Change Adaptation and Disaster Risk Reduction: A Review of Policy, Programme and Practice for Sustainable Planning Outcomes. Sustainability 2020, 12, 6450. [Google Scholar] [CrossRef]
- Santoro, S.; Pluchinotta, I.; Pagano, A.; Pengal, P.; Cokan, B.; Giordano, R. Assessing stakeholders’ risk perception to promote Nature Based Solutions as flood protection strategies: The case of the Glinščica river (Slovenia). Sci. Total Environ. 2019, 655, 188–201. [Google Scholar] [CrossRef] [PubMed]
- Lohr, V.I.; Pearson-Mims, C.H.; Tarnai, J.; Dillman, D.A. How urban residents rate and rank the benefits and problems associated with trees in cities. J. Arboric. 2004, 30, 28–35. [Google Scholar]
- Rocchini, D.; Bacaro, G.; Chirici, G.; Da Re, D.; Feilhauer, H.; Foody, G.; Galluzzi, M.; Garzon-Lopez, C.X.; Gillespie, T.W.; He, K.S.; et al. Remotely sensed spatial heterogeneity as an exploratory tool for taxonomic and functional diversity study. Ecol. Indic. 2018, 85, 983–990. [Google Scholar] [CrossRef] [Green Version]
- Rejichi, S.; Chaabane, F.; Tupin, F. Expert Knowledge-Based Method for Satellite Image Time Series Analysis and Interpretation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 2138–2150. [Google Scholar] [CrossRef]
- Yacov, Y.; Haimes, P.E.; Wre, D.; Asce, F. Systems-Based Approach to Preparedness for, Response to, and Recovery from Natural and Human-Made Disasters. Leadersh. Manag. Eng. 2012, 12, 288–298. [Google Scholar]
- Krauze, K.; Wagner, I. From classical water-ecosystem theories to nature-based solutions- Contextualizing na-ture-based solutions for sustainable city. Sci. Total Environ. 2019, 655, 697–706. [Google Scholar] [CrossRef]
- West, S.; Beilin, R.; Wagenaar, H. Introducing a practice perspective on monitoring for adaptive management. People Nat. 2019, 1, 387–405. [Google Scholar] [CrossRef] [Green Version]
- Busayo, E.T.; Kalumba, A.M.; Afuye, G.A.; Ekundayo, O.Y.; Oriomoloye, I.R. Assessment of the Sendai framework for disaster risk reduction studies since 2015. Int. J. Disaster Risk Reduct. 2020, 50, 101906. [Google Scholar] [CrossRef]
- Redford, K.H.; Hulvey, K.B.; Williamson, M.A.; Schwartz, M.W. Assessment of the Conservation Measures Partnership’s effort to improve conservation outcomes through adaptive management. Conserv. Biol. 2018, 32, 926–937. [Google Scholar] [CrossRef] [PubMed]
- Jones, G. The Adaptive Management System for the Tasmanian Wilderness World Heritage Area—Linking Management Planning with Effectiveness Evaluation. In Adaptive Environmental Management; Springer: Dordrecht, The Netherlands, 2009; pp. 227–258. [Google Scholar]
- Raadgever, G.; Mostert, E.; Kranz, N.; Interwies, E.; Timmerman, J. Assessing Management Regimes in Transboundary River Basins: Do They Support Adaptive Management? Ecol. Soc. 2008, 13. [Google Scholar] [CrossRef]
- Moldavska, A.; Welo, T. A Holistic approach to corporate sustainability assessment: Incorporating sustainable development goals into sustainable manufacturing performance evaluation. J. Manuf. Syst. 2019, 50, 53–68. [Google Scholar] [CrossRef]
- Satterthwaite, D.; Archer, D.; Colenbrander, S.; Dodman, D.; Hardoy, J.; Mitlin, D.; Patel, S. Building Resilience to Climate Change in Informal Settlements. One Earth 2020, 2, 143–156. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Wang, K.; Zhang, M.; Zhang, C. Impacts of climate change and human activities on vegetation cover in hilly southern China. Ecol. Eng. 2015, 81, 451–461. [Google Scholar] [CrossRef]
- Legaard, K.R.; Sader, S.A.; Simons-Legaard, E. Evaluating the Impact of Abrupt Changes in Forest Policy and Management Practices on Landscape Dynamics: Analysis of a Landsat Image Time Series in the Atlantic Northern Forest. PLoS ONE 2015, 10, e0130428. [Google Scholar] [CrossRef] [Green Version]
- United Nations. Resolution Adopted by the General Assembly on 6 July 2017, Work of the Statistical Commission Pertaining to the 2030 Agenda for Sustainable Development (A/RES/71/313 Archived 28 November 2020 at the Wayback Machine); General Assembly: New York, NY, USA, 2017; Available online: https://undocs.org/A/RES/71/313 (accessed on 10 July 2017).
- Vaai Hatier, L.A. Localising indicators for the Sustainable Development Goals: A Case Study in Samoa on SDG Indicator 4.3.1 (Participation Rate of Youth and Adults in Formal and Non-Formal Education): A Research Report Presented in Partial Fulfilment of the Requirements for the Degree of Master in International Development at Massey University; Massey University: Palmerston North, New Zealand, 2020. [Google Scholar]
S/N | Vegetation Indices | Algorithms | Remote Sensing (RS) Imagery | Findings/Gaps | References |
---|---|---|---|---|---|
1. | Normalized Difference Vegetation Index NDVI3g derived from (GIMMS) | NDVI = | Advanced Very High-Resolution Radiometer NOAA (AVHRR) | Findings show that NDVI significantly increased in most seasons at the regional scale. AVHRR NDVI3g show good quality and the correlation between growing season NVDI and low precipitation was significantly positive. | [34] |
2. | Enhanced Vegetation Index (EVI) | EVI = G ∗ | Moderate Resolution Imaging Spectrometer (MODIS) | The model performance improved using lags of up to one year and found that a one-month lag provided the best explanatory power for vegetation responses to variability on different timescales. | [22] |
3. | Leaf Water Content Index (LWCI) | LWCI = G x | Landsat TM | Findings reveal that the model could apply not only to the forest area but also to the agricultural area indicating that the time lag comparison between LWCI and NDVI was significantly observed about a month in the tropical forest while it was barely observed in the temperate deciduous forest. | [140] |
4. | Leaf Area Index (LAI) | LAĪ(τ) = | Moderate Resolution Imaging Spectrometer (MODIS) | The model shows that the vegetation status is positively sustainable and there limited accuracy of LAI for sparsely vegetated arid areas which indicates that the findings require support from detailed fieldwork at a local scale. | [141] |
5. | Fraction of Photosynthetically Active Radiation (fAPAR) | FPAR = | Moderate Resolution Imaging Spectrometer (MODIS) | The model showed higher assessment accuracy up to 16% when compared with FPAR assessment models based on a single vegetation index. Findings show that vegetation productivity is significantly affected by environmental factors; hence, the effect of FPAR cannot be neglected in the satellite-derived FPAR algorithms. | [142] |
6. | Vegetation Condition Index (VCI) | VCIijk = ∗ 100 | Moderate Resolution Imaging Spectrometer (MODIS) | Findings show that the VCI widely distributed vegetation stress for a long period and enhanced the trend of vegetation activity. Hence, the VCI should be cautiously used in the context of climate warming but may vary with different topography and climatic condition for different vegetation distributions. | [143] |
7. | Temperature Condition Index (TCI) | TCI = 100 ∗ | Advanced Very High-Resolution Radiometer (AVHRR) sensor of the NOAA satellite | Findings show that the model has the advantage of being independent of the surface type and is available for all regions where a sparse weather-observing network exists. TCI should be jointly used with VCI to reflect the meteorological conditions and drought monitoring. | [144] |
8. | Vegetation Health Index (VHI) | VHI = αVCI + TCI (1 − α) TCI | Advanced Very High-Resolution Radiometer (AVHRR) sensor of the NOAA satellite | Findings show that the northern ecosystems are characterised by positive correlations, indicating that increasing temperature favourably influence vegetation activity. Hence, the VHI should be undertaken with caution, especially in high-latitude regions where vegetation growth is primarily limited by lower temperatures which are opposite to the low-latitudes, mainly in arid, semi-arid and sub-humid climatic regions. | [145] |
9. | Soil-adjusted Vegetation Index (SAVI) | SAVI = ∗ (1 + L) | Satellite Pour l’Observation de la Terre (SPOT-6 and SPOT-7) satellite | The model was found to be an important step toward the development of global models that can describe dynamic soil-vegetation systems from remotely sensed data using the most sensitive L-factor value for SAVI. Findings indicate that the SAVI is suitable for distinguishing between the vegetation and non-vegetation areas of mangrove forest. | [146] |
S/N | Forms of Extreme Climate Events | Continent | Country | Duration | Author | Data Source (Models and Climate Variables) | Data |
---|---|---|---|---|---|---|---|
1. | Agricultural drought hazard and drastic decline of vegetation | Asia | China | 1982–2012 (30 years) | [32] | SPEI from AVHRR, seasonal NDVI and Mann-Kendall (MK) Test, Climate data | Meteorological air temperature, precipitation, and evaporation |
2. | Severe flash flooding and intense storm | Asia | China | August 2015 | [124] | Climate data (nearest rain gauge), hydrodynamic model, Digital Elevation Model downstream from LiDAR | Field survey numerical hydrodynamic simulation and rainfall |
3. | Flood damage to croplands and grassland | Europe | Germany and France | 2002–2007 (5 years) | [78] | Evaluation of direct and indirect flood losses and the State of Saxony in Germany | Interviews, review of flood loss estimation, water depth, inundation duration for cropland, magnitude and flow velocities |
4. | Flooding and Agricultural drought | North America | USA | (1985–2005) (20 years) | [66] | Vegetation Condition Index (VCI), Temperature Condition Index (TCI) and NDVI from NOAA AVHRR dataset, Global Vegetation Index (GVI) from global area coverage (GAC) data, and Climate data | Soil moisture, snow cover, precipitation, solar radiation, and air temperature |
5. | Drought and floods | Asia | China | 1880–1998 (18 years) | [94] | The long-term observational study, National Natural Foundation of China, dust storm from Beijing Weather Station, and Climate data | Drought index, inter-decadal changes, surface temperature anomalies, and precipitation based on a documented record |
6. | Floods, agricultural damage, uprooted vegetation, and landslide/earthquake | Western Asia | Yemen | 1973–2008 (35 years) | [81] | Global Facility for Disaster Risk Reduction (GFDRR), Wadi Flood protection system and Emergency Events Database | Desk reviews of the data including triangulation and field visits and surveys in the affected areas |
7. | Floods, drought, and landslides | South Asia | Colombo, Sri Lanka | 2004–2017 (13 years) | [147] | Sri Lanka and Civic Force, Disaster Management Centre, and Ministry of Foreign Affairs of Japan | Questionnaire survey involving quantitative and qualitative questions |
8. | Agricultural drought hazard | Africa | South Africa | 2015–2017 (2 years) | [115] | Department of Water and Sanitation, Department of Environmental Affairs, MOD13Q1 data from MODIS, Climate data and census data | Vegetation Condition Index (VCI), Standard Precipitation Evapotranspiration Index (SPEI), precipitation and temperature |
9. | Torrential rainfall, heat waves, and agricultural drought | Arica | Gambia | 2017–2018 (1-year) | [148] | Ministry of Finance and Economic Affairs and Gambian Disaster Management Agency | A multi-modal cross-sectional survey comprising online/electronic survey software and a face-to-face interview |
10. | The drastic decline of vegetation and narrow grazing, and shortage of water resources | Africa | South Africa | 2019 | [149] | Multistage sampling procedure, snowball sampling approach statistical program | A cross-sectional household survey, Simple descriptive statistical tools |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Afuye, G.A.; Kalumba, A.M.; Orimoloye, I.R. Characterisation of Vegetation Response to Climate Change: A Review. Sustainability 2021, 13, 7265. https://doi.org/10.3390/su13137265
Afuye GA, Kalumba AM, Orimoloye IR. Characterisation of Vegetation Response to Climate Change: A Review. Sustainability. 2021; 13(13):7265. https://doi.org/10.3390/su13137265
Chicago/Turabian StyleAfuye, Gbenga Abayomi, Ahmed Mukalazi Kalumba, and Israel Ropo Orimoloye. 2021. "Characterisation of Vegetation Response to Climate Change: A Review" Sustainability 13, no. 13: 7265. https://doi.org/10.3390/su13137265
APA StyleAfuye, G. A., Kalumba, A. M., & Orimoloye, I. R. (2021). Characterisation of Vegetation Response to Climate Change: A Review. Sustainability, 13(13), 7265. https://doi.org/10.3390/su13137265