Spatio-Temporal Patterns of Global Population Exposure Risk of PM2.5 from 2000–2016
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Source
2.2. Research Methodology
2.2.1. Accuracy Test of Remote Sensing Data
2.2.2. Calculation of Global Population Exposure Risk of PM2.5
2.2.3. Trend Analysis
3. Results
3.1. Spatial Distribution Pattern of Global PM2.5 and Population
3.1.1. Spatial Distribution Pattern of Global PM2.5
3.1.2. Spatial Distribution Pattern of Global Population
3.2. Distribution Pattern of Global Population Exposure Risk of PM2.5
3.2.1. Interannual Change of PM2.5 Population Exposure Risk
3.2.2. Distribution Pattern of Population Exposure Risk of PM2.5 in Various Continents
3.3. Temporal and Spatial Changing Characteristics of Global Population Exposure Risk of PM2.5
3.3.1. Temporal Changing Characteristics of Global Population Exposure Risk of PM2.5
3.3.2. Linear Change Trend of Global Population Exposure Risk of PM2.5
3.3.3. Stability of Global Population Exposure Risk of PM2.5
3.4. Population Distribution Characteristics under High Exposure Risk of PM2.5
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, J.; Han, X.; Jin, M.; Zhang, X.; Wang, S. Globally analysing spatiotemporal trends of anthropogenic PM2.5 concentration and population’s PM2.5 exposure from 1998 to 2016. Environ. Int. 2019, 128, 46–62. [Google Scholar] [CrossRef]
- Gakidou, E.; Afshin, A.; Abajobir, A.A.; Abate, K.H.; Abbafati, C.; Abbas, K.M.; Abd-Allah, F.; Abdulle, A.M.; Abera, S.F.; Aboyans, V. Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet 2017, 390, 1345–1422. [Google Scholar] [CrossRef] [Green Version]
- Ott, W.R. Concepts of human exposure to air pollution. Environ. Int. 1982, 7, 179–196. [Google Scholar] [CrossRef]
- Lu, D.; Mao, W.; Zheng, L.; Xiao, W.; Zhang, L.; Wei, J. Ambient PM2.5 Estimates and Variations during COVID-19 Pandemic in the Yangtze River Delta Using Machine Learning and Big Data. Remote. Sens. 2021, 13, 1423. [Google Scholar] [CrossRef]
- Marangon, D.; Traversi, D.; D’Agostino, A.M.; Gea, M.; Fontana, M.; Schilirò, T. The North-western Italy air quality moni-toring network: Improving experience of PM2.5 assessment with mutagenicity assay. Environ. Res. 2021, 195, 174–185. [Google Scholar] [CrossRef]
- WHO. Air Quality Guidelines for Particulate Matter, Ozone, Nitrogen Dioxide and Sulphur Dioxide; Global Update 2005; Sum Risk Assess 2006; WHO: Geneva, Switzerland, 2006. [Google Scholar]
- Hamra, G.B.; Guha, N.; Loomis, D.; Cohen, A.; Laden, F.; Raaschou-Nielsen, O.; Samet, J.M.; Vineis, P.; Forastiere, F.; Saldiva, P.; et al. Outdoor Particulate Matter Exposure and Lung Cancer: A Systematic Review and Meta-Analysis. Environ. Health Perspect. 2014, 122, 906–911. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pope, C.A.; Brook, R.D.; Burnett, R.T.; Dockery, D.W. How is cardiovascular disease mortality risk affected by duration and intensity of fine particulate matter exposure? An integration of the epidemiologic evidence. Air Qual. Atmos. Health 2011, 4, 5–14. [Google Scholar] [CrossRef]
- Stafoggia, M.; Cesaroni, G.; Peters, A.; Andersen, Z.J.; Badaloni, C.; Beelen, R.; Caracciolo, B.; Cyrys, J.; De Faire, U.; De Hoogh, K.; et al. Long-Term Exposure to Ambient Air Pollution and Incidence of Cerebrovascular Events: Results from 11 European Cohorts within the ESCAPE Project. Environ. Health Perspect. 2014, 122, 919–925. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.-C.T.; Rappold, A.G.; Graff, D.W.; Ghio, A.J.; Devlin, R.B. Synergistic effects of exposure to concentrated ambient fine pollution particles and nitrogen dioxide in humans. Inhal. Toxicol. 2012, 24, 790–797. [Google Scholar] [CrossRef] [PubMed]
- Hoek, G.; Krishnan, R.M.; Beelen, R.; Peters, A.; Ostro, B.; Brunekreef, B.; Kaufman, J.D. Long-term air pollution exposure and cardio- respiratory mortality: A review. Environ. Health 2013, 12, 43. [Google Scholar] [CrossRef] [Green Version]
- Zhou, L.; Zhou, C.; Yang, F.; Yang, B.; Sun, D. Analysis of the characteristics and driving factors of China’s PM2.5 spatiotemporal evolution from 2000 to 2011. Acta Geogr. Sinica 2017, 72, 2079–2092. [Google Scholar]
- Franklin, M.; Zeka, A.; Schwartz, J. Association between PM2.5 and all-cause and specific-cause mortality in 27 US communities. J. Expo. Sci. Environ. Epidemiol. 2006, 17, 279–287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kourtchev, I.; Warnke, J.; Maenhaut, W.; Hoffmann, T.; Claeys, M. Polar organic marker compounds in PM2.5 aerosol from a mixed forest site in western Germany. Chemosphere 2008, 73, 1308–1314. [Google Scholar] [CrossRef]
- Fu, K.; Zhuang, R.; Liang, L.; Duan, Y.; Gao, J. The evolution and characteristics of the spatiotemporal pattern of PM2.5 in the Yangtze River Delta——Based on real-time monitoring data from 2013 to 2016. Geogr. Res. 2018, 37, 1641–1654. [Google Scholar]
- Huang, X.; Zhao, J.; Cao, J.; Xin, W. Evolution of PM2.5 distribution pattern and its influencing factors in the Yangtze River Economic Zone. Environ. Sci. Technol. 2020, 41, 1013–1024. [Google Scholar]
- Cao, C.; Jiang, W.; Wang, B.; Fang, J.; Lang, J.; Tian, G.; Jiang, J.; Zhu, T.F. Inhalable Microorganisms in Beijing’s PM2.5and PM10Pollutants during a Severe Smog Event. Environ. Sci. Technol. 2014, 48, 1499–1507. [Google Scholar] [CrossRef]
- Wang, Z.-B.; Fang, C.-L. Spatial-temporal characteristics and determinants of PM2.5 in the Bohai Rim Urban Agglomeration. Chemosphere 2016, 148, 148–162. [Google Scholar] [CrossRef]
- Kang, Y.; Chen, J.; Cao, Y.; Xu, Z. A Higher-Order Graph Convolutional Network for Location Recommendation of an Air-Quality-Monitoring Station. Remote. Sens. 2021, 13, 1600. [Google Scholar] [CrossRef]
- Li, J.; Zhai, L.; Sang, H.; Zhang, Y.; Yuan, J. Comparison of different spatial interpolation methods in PM2.5 concentration interpolation. Survey Map Sci. 2016, 41, 50–54, 101. [Google Scholar]
- Strandgren, J.; Mei, L.; Vountas, M. Study of satellite retrieved aerosol optical depth spatial resolution effect on particulate matter concentration prediction. Atmos. Chem. Phys. 2014, 14, 25869–25899. [Google Scholar]
- Kloog, I.; Nordio, F.; Coull, B.A.; Schwartz, J. Incorporating Local Land Use Regression and Satellite Aerosol Optical Depth in A Hybrid Model Of Spatiotemporal PM2.5Exposures In The Mid-Atlantic States. Environ. Sci. Technol. 2012, 46, 11913–11921. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tian, J.; Chen, D. A semi-empirical model for predicting hourly ground-level fine particulate matter (PM2.5) concentration in southern Ontario from satellite remote sensing and ground-based meteorological measurements. Remote. Sens. Environ. 2010, 114, 221–229. [Google Scholar] [CrossRef]
- Van Donkelaar, A.; Martin, R.V.; Brauer, M.; Kahn, R.; Levy, R.; Verduzco, C.; Villeneuve, P.J. Global Estimates of Ambient Fine Particulate Matter Concentrations from Satellite-Based Aerosol Optical Depth: Development and Application. Environ. Health Perspect 2020, 118, 847–855. [Google Scholar] [CrossRef] [Green Version]
- Vlachogianni, A.; Kassomenos, P.; Karppinen, A.; Karakitsios, S.; Kukkonen, J. Evaluation of a multiple regression model for the forecasting of the concentrations of NOx and PM10 in Athens and Helsinki. Sci. Total. Environ. 2011, 409, 1559–1571. [Google Scholar] [CrossRef] [PubMed]
- Yeganeh, B.; Pour Motlagh, M.S.; Rashidi, Y.; Kamalan, H. Prediction of CO concentrations based on a hybrid Partial Least Square and Support Vector Machine model. Atmos. Environ. 2012, 55, 357–365. [Google Scholar] [CrossRef]
- Liu, X.; Yu, X.; Zhang, Z. PM2.5 Concentration Differences between Various Forest Types and Its Correlation with Forest Structure. Atmosphere 2015, 6, 1801–1815. [Google Scholar] [CrossRef] [Green Version]
- Kam, W.; Cheung, K.; Daher, N.; Sioutas, C. Particulate matter (PM) concentrations in underground and ground-level rail systems of the Los Angeles Metro. Atmos. Environ. 2011, 45, 1506–1516. [Google Scholar] [CrossRef]
- Cheng, Y.-H.; Chang, H.-P.; Yan, J.-W. Temporal Variations in Airborne Particulate Matter Levels at an Indoor Bus Terminal and Exposure Implications for Terminal Workers. Aerosol Air Qual. Res. 2012, 12, 30–38. [Google Scholar] [CrossRef] [Green Version]
- Zheng, G.J.; Duan, F.K.; Su, H.; Ma, Y.L.; Cheng, Y.F.; Zheng, B.; Zhang, Q.; Huang, T.; Kimoto, T.; Chang, D.; et al. Exploring the severe winter haze in Beijing: The impact of synoptic weather, regional transport and heterogeneous reactions. Atmospheric Chem. Phys. Discuss. 2015, 15, 2969–2983. [Google Scholar] [CrossRef] [Green Version]
- Zhu, C.; Przybysz, A.; Chen, Y.; Guo, H.; Chen, Y.; Zeng, Y. Effect of spatial heterogeneity of plant communities on air PM10 and PM2.5 in an urban forest park in Wuhan, China. Urban For. Urban Green. 2019, 46, 126487. [Google Scholar] [CrossRef]
- Zhang, X.; Lyu, J.; Han, Y.; Sun, N.; Sun, W.; Li, J.; Liu, C.; Yin, S. Effects of the leaf functional traits of coniferous and broad-leaved trees in subtropical monsoon regions on PM2. 5 dry deposition velocities. Environ. Pollut. 2020, 265, 114845. [Google Scholar] [CrossRef] [PubMed]
- Han, L.; Zhou, W.; Li, W. City as a major source area of fine particulate (PM2.5) in China. Environ. Pollut. 2015, 206, 183–187. [Google Scholar] [CrossRef]
- Sordillo, J.E.; Cardenas, A.; Qi, C.; Rifas-Shiman, S.L.; Coull, B.; Luttmann-Gibson, H.; Schwartz, J.; Kloog, I.; Hivert, M.-F.; DeMeo, D.L.; et al. Residential PM2.5 exposure and the nasal methylome in children. Environ. Int. 2021, 153, 106505. [Google Scholar] [CrossRef]
- Xiao, Q.; Wang, Y.; Chang, H.H.; Meng, X.; Geng, G.; Lyapustin, A.; Liu, Y. Full-coverage high-resolution daily PM2.5 esti-mation using MAIAC AOD in the Yangtze River Delta of China. Remote Sens. Environ. 2017, 199, 437–446. [Google Scholar] [CrossRef]
- Zhang, L.; Pan, J. Temporal and spatial patterns of China’s PM2.5 population exposure risk. China Environ. Sci. 2020, 40, 1–12. [Google Scholar]
- Abtahi, M.; Dobaradaran, S.; Torabbeigi, M.; Jorfi, S.; Gholamnia, R.; Koolivand, A.; Darabi, H.; Kavousi, A.; Saeedi, R. Health risk of phthalates in water environment: Occurrence in water resources, bottled water, and tap water, and burden of disease from exposure through drinking water in tehran, Iran. Environ. Res. 2019, 173, 469–479. [Google Scholar] [CrossRef] [PubMed]
- Hixson, M.; Mahmud, A.; Hu, J.; Kleeman, M.J. Resolving the interactions between population density and air pollution emissions controls in the San Joaquin Valley, USA. J. Air Waste Manag. Assoc. 2012, 62, 566–575. [Google Scholar] [CrossRef]
- Mohanty, M.P.; Simonovic, S.P. Understanding dynamics of population flood exposure in Canada with multiple high-resolution population datasets. Sci. Total. Environ. 2021, 759, 143559. [Google Scholar] [CrossRef]
- Jaber, S.M. Is there a relationship between human population distribution and land surface temperature? Global perspective in areas with different climatic classifications. Remote. Sens. Appl. Soc. Environ. 2020, 20, 100435. [Google Scholar] [CrossRef]
- Kousa, A.; Oglesby, L.; Koistinen, K.; Künzli, N.; Jantunen, M. Exposure chain of urban air PM2.5—associations between ambient fixed site, residential outdoor, indoor, workplace and personal exposures in four European cities in the EXPOLIS-study. Atmospheric Environ. 2002, 36, 3031–3039. [Google Scholar] [CrossRef]
- Zou, B.; Peng, F.; Peng, L.; Weng, M. Research on GIS Spatial Zoning of High-resolution Population Air Pollution Exposure. J. Wuhan Univ. 2013, 38, 334–338. [Google Scholar]
- Sen, P.K. Estimates of the regression coefficient based on Kendall’s tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank correlation methods. Br. J. Psychol. 1955, 25, 86–91. [Google Scholar] [CrossRef]
- Xu, J. Mathematical Methods in Modern Geography; Higher Education Press: Beijing, China, 2016. [Google Scholar]
- Zhang, L.; Wilson, J.P.; MacDonald, B.; Zhang, W.; Yu, T. The changing PM2.5 dynamics of global megacities based on long-term remotely sensed observations. Environ. Int. 2020, 142, 105862. [Google Scholar] [CrossRef]
- He, C.Y.; Gao, B.; Huang, Q.X.; Ma, Q.; Dou, Y.Y. Environmental degradation in the urban areas of China: Evidence from multi-source remote sensing data. Remote. Sens. Environ. 2017, 193, 65–75. [Google Scholar] [CrossRef]
- Akyuz, E.; Samavati, M.; Kaynak, B. Spatial distribution of health risks associated with PM2.5 in Turkey and Iran using satellite and ground observations. Atmospheric Pollut. Res. 2020, 11, 2350–2360. [Google Scholar] [CrossRef]
- Peng, J.; Chen, S.; Lü, H.; Liu, Y.; Wu, J. Spatiotemporal patterns of remotely sensed PM 2.5 concentration in China from 1999 to 2011. Remote. Sens. Environ. 2016, 174, 109–121. [Google Scholar] [CrossRef]
- Vieno, M.; Heal, M.R.; Williams, M.L.; Carnell, E.J.; Nemitz, E.; Stedman, J.R.; Reis, S. The sensitivities of emissions re-ductions for the mitigation of UK PM2.5. Atmos. Chem. Phys. 2016, 16, 265–276. [Google Scholar] [CrossRef] [Green Version]
- Giani, P.; Castruccio, S.; Anav, A.; Howard, D.; Hu, W.; Crippa, P. Short-term and long-term health impacts of air pollution reductions from COVID-19 lockdowns in China and Europe: A modelling study. Lancet Planet. Health 2020, 4, e474–e482. [Google Scholar] [CrossRef]
- Karagöz, M.; Demirel, B.; Bozdağ, E.G. Pass-through Effect from Exchange Rates to the Prices in the Framework of Inflation Targeting Policy: A Comparison of Asia-Pacific, South American and Turkish Economies. Procedia Econ. Finance 2016, 38, 438–445. [Google Scholar] [CrossRef] [Green Version]
- Harding, S. State of the field: Latin American decolonial philosophies of science. Stud. Hist. Philos. Sci. Part A 2019, 78, 48–63. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Zeng, H.; Zheng, R.; Li, S.; Barnett, A.; Zhang, S.; Zou, X.; Huxley, R.; Chen, W.; Williams, G. The association between lung cancer incidence and ambient air pollution in China: A spatiotemporal analysis. Environ. Res. 2016, 144, 60–65. [Google Scholar] [CrossRef]
- Deng, S.; Ma, J.; Zhang, L.; Jia, Z.; Ma, L. Microclimate simulation and model optimization of the effect of roadway green space on atmospheric particulate matter. Environ. Pollut. 2019, 246, 932–944. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Yang, C.; Chen, J.; Yang, S.; Lu, T.; Lin, X. Effects of Green space landscape patterns on particulate matter in Zhejiang Province, China. Atmos. Pollut. Res. 2018, 9, 923–933. [Google Scholar] [CrossRef]
Population Exposure Risk Value | Population Exposure Risk Levels |
---|---|
Ri = 0 | extremely low risk |
0 ˂ Ri ≤ 1 | low risk |
1 < Ri ≤ 2 | relatively low risk |
2 < Ri ≤ 3 | general risk |
3 < Ri ≤ 4 | relatively high risk |
4 < Ri ≤ 5 | high risk |
Ri > 5 | extremely high risk |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, C.; Pan, J.; Zhang, L. Spatio-Temporal Patterns of Global Population Exposure Risk of PM2.5 from 2000–2016. Sustainability 2021, 13, 7427. https://doi.org/10.3390/su13137427
Zhao C, Pan J, Zhang L. Spatio-Temporal Patterns of Global Population Exposure Risk of PM2.5 from 2000–2016. Sustainability. 2021; 13(13):7427. https://doi.org/10.3390/su13137427
Chicago/Turabian StyleZhao, Chengcheng, Jinghu Pan, and Lianglin Zhang. 2021. "Spatio-Temporal Patterns of Global Population Exposure Risk of PM2.5 from 2000–2016" Sustainability 13, no. 13: 7427. https://doi.org/10.3390/su13137427
APA StyleZhao, C., Pan, J., & Zhang, L. (2021). Spatio-Temporal Patterns of Global Population Exposure Risk of PM2.5 from 2000–2016. Sustainability, 13(13), 7427. https://doi.org/10.3390/su13137427