Socio-Ecological Systems (SESs)—Identification and Spatial Mapping in the Central Himalaya
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection
2.3. Data Processing and Analysis
3. Results
3.1. Socio-Economic Units
3.2. Ecological Units
3.3. Socio-Ecological Systems
4. Discussion
4.1. Advancement in Methods
4.2. Relevance and Applicability of the Method
4.3. Outlook
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Type | Variable Name | Code | Data Source |
---|---|---|---|
Climatic | Climatic Annual Mean Temperature | BIO 1 | WorldClim |
Mean Diurnal Range | BIO 2 | WorldClim | |
Isothermality (BIO 2/BIO 7) (×100) | BIO 3 | WorldClim | |
Temperature Seasonality (Standard Deviation × 100) | BIO 4 | WorldClim | |
Max. Temperature of Warmest Month | BIO 5 | WorldClim | |
Min. Temperature of Coldest Month | BIO 6 | WorldClim | |
Temperature Annual Range (BIO 5-BIO 6) | BIO 7 | WorldClim | |
Mean Temperature of Wettest Quarter | BIO 8 | WorldClim | |
Mean Temperature of Driest Quarter | BIO 9 | WorldClim | |
Mean Temperature of Warmest Quarter | BIO 10 | WorldClim | |
Mean Temperature of Coldest Quarter | BIO 11 | WorldClim | |
Annual Precipitation | BIO 12 | WorldClim | |
Precipitation of Wettest Month | BIO 13 | WorldClim | |
Precipitation of Driest Month | BIO 14 | WorldClim | |
Precipitation Seasonality (Coefficient of Variation) | BIO 15 | WorldClim | |
Precipitation of Wettest Quarter | BIO 16 | WorldClim | |
Precipitation of Driest Quarter | BIO 17 | WorldClim | |
Precipitation of Warmest Quarter | BIO 18 | WorldClim | |
Precipitation of Coldest Quarter | BIO 19 | WorldClim | |
Geomorphologic | Elevation | Elv | ASTER-GDEM |
Aspect | Asp | ASTER-GDEM | |
Slope | Slp | ASTER-GDEM | |
Pedologic | Soil type | Soil | National Bureau of Soil Survey and Land Use Planning |
Land use/Land cover | LULC | LULC | National Remote Sensing Center |
Forest Cover | Forest Types | Frst | Forest Survey of India |
Biophysical | Normalized Difference Vegetation Index | NDVI | MODIS |
Enhanced Vegetation Index | EVI | MODIS | |
Normalized Difference Water Index | NDWI | MODIS |
Type | Variables | ||||
---|---|---|---|---|---|
Demographics | Total Geographical Area (in Hectares) | Total Households | Total Population of Village | ||
Primary Education (Numbers) | Govt. Preprimary School (Nursery/LKG/UKG) | Private Preprimary School (Nursery/LKG/UKG) | Govt. Primary School | Private Primary School | |
Secondary School (Numbers) | Govt. Middle School | Private Middle School | Govt. Secondary School | Private Secondary School | |
Govt. Senior Secondary School | Private Senior Secondary School | ||||
Higher Education (Numbers) | Govt. Arts and Science Degree College | Private Arts and Science Degree College | Govt. Engineering College | Private Engineering College | |
Govt. Medical College | Private Medical College | ||||
Healthcare (Numbers) | Community Health Center | Primary Health Center | Primary Health Subcenter | Maternity And Child Welfare Center | Family Welfare Center |
Hospital—Allopathic | Hospital—Alternative Medicine | Dispensary | Mobile Health Clinic | ||
Toilet | Toilet Complex (including Bath) | ||||
Tap Water | Tap Water—Treated | Tap Water—Untreated | |||
Well | Covered Well | Uncovered Well | |||
Hand Pump/Tube Wells | Hand Pump | Tube Wells/Borehole | |||
River/Canal/Tank/Pond/Lake | River/Canal | Tank/Pond/Lake | Spring | ||
Post Office | Post Office | Sub-Post Office | Post and Telegraph Office | ||
Communication | Public Call Office/Mobile (PCO) | Mobile Phone Coverage | Internet Cafes/Common Service Center (CSC) | Telephone | |
Transportation | Public Bus Service | Private Bus Service | Railway Station | Auto/Modified Autos | Taxi |
Road Connectivity | Black Topped (pakka) Road | Gravel (kuchha) Roads | Water-Bound Macadam | ||
All-Weather Road | State Highway | National Highway | |||
Bank Services | ATM | Commercial Bank | Cooperative Bank | ||
Credit Societies | Agricultural Credit Societies | Self-Help Group (SHG) | |||
Market | Mandis/Regular Market | Weekly Haat | Public Distribution System (PDS) Shop | ||
Govt. Health Program | Nutritional Centers—Anganwadi Center | ASHA | |||
Waste Disposal | Waste Disposal System after House-to-House Collection | Bio-gas or Recycling of Waste for Production Use | |||
Media | Community Center with/without TV | Sports Club/Recreation Center | Cinema/Video Hall | ||
Information | Public Library | Public Reading Room | Daily Newspaper Supply | Assembly Polling Station | |
Agriculture Infrastructure | Agriculture Equipment | Tractors | Carts Driven by Animals | ||
Electricity | Power Supply for Domestic Use | Power Supply for Agriculture Use | Power Supply for Commercial Use | ||
Agricultural Land | Culturable Waste Land Area (in Hectares) | Fallows Land other than Current Fallows Area (in Hectares) | Current Fallows Area (in Hectares) | ||
Net Area Sown (in Hectares) | Total Unirrigated Land Area (in Hectares) | Area Irrigated by Source (in Hectares) | |||
Land | Forest Area (in Hectares) | Area under Non-Agricultural Uses (in Hectares) | Barren and Un-cultivable Land Area (in Hectares) | ||
Permanent Pastures and Other Grazing Land Area (in Hectares) | Land under Miscellaneous Tree Crops, etc., Area (in Hectares) |
Component | Eigenvalue | Percentage of Variance | Cumulative Percentage of Variance |
---|---|---|---|
1 | 5.0205182 | 16.19522 | 16.19522 |
2 | 2.4833644 | 8.010853 | 24.20607 |
3 | 1.5594366 | 5.030441 | 29.23651 |
4 | 1.4401137 | 4.645528 | 33.88204 |
5 | 1.1921083 | 3.845511 | 37.72755 |
6 | 1.1492132 | 3.707139 | 41.43469 |
7 | 1.1019871 | 3.554797 | 44.98949 |
8 | 1.0516104 | 3.392292 | 48.38178 |
9 | 1.0066872 | 3.247378 | 51.62916 |
10 | 0.9893615 | 3.191489 | 54.82065 |
11 | 0.9703779 | 3.130251 | 57.9509 |
12 | 0.9557607 | 3.083099 | 61.034 |
13 | 0.9076826 | 2.928008 | 63.96201 |
14 | 0.8888257 | 2.86718 | 66.82919 |
15 | 0.8738607 | 2.818906 | 69.64809 |
16 | 0.8603775 | 2.775411 | 72.4235 |
17 | 0.8536764 | 2.753795 | 75.1773 |
18 | 0.8078302 | 2.605904 | 77.7832 |
19 | 0.7867955 | 2.53805 | 80.32125 |
20 | 0.7492632 | 2.416978 | 82.73823 |
21 | 0.699398 | 2.256123 | 84.99435 |
22 | 0.6863401 | 2.214 | 87.20835 |
23 | 0.6332295 | 2.042676 | 89.25103 |
24 | 0.5855329 | 1.888816 | 91.13984 |
25 | 0.556595 | 1.795468 | 92.93531 |
26 | 0.5209481 | 1.680478 | 94.61579 |
27 | 0.4585095 | 1.479063 | 96.09485 |
28 | 0.4205302 | 1.356549 | 97.4514 |
29 | 0.4058192 | 1.309094 | 98.7605 |
30 | 0.2451117 | 0.790683 | 99.55118 |
31 | 0.1391345 | 0.448821 | 100 |
Socio-Economic Unit | Number of Villages | Mean Area per Village (in Hectares) | Large/Medium/Small | Mean Households per Village | High/Medium/Low |
---|---|---|---|---|---|
Irrigated agrarian (large)–populated (high) community | 278 | 452.3 | L | 646 | H |
Irrigated agrarian (large)–populated (medium) community | 1357 | 165.19 | L | 188 | M |
Irrigated agrarian (small)–populated (low) community | 78 | 85.23 | S | 13 | L |
Unirrigated agrarian (medium)–populated (medium) community | 4849 | 104.79 | M | 74 | M |
Unirrigated agrarian (small)–populated (medium) community | 611 | 79.6 | S | 51 | M |
Unirrigated agrarian (small)–populated (low) community | 8112 | 57.35 | S | 27 | L |
Component | Eigenvalue | Percentage of Variance | Cumulative Percentage of Variance |
---|---|---|---|
1 | 4.8433 | 34.595 | 34.595 |
2 | 3.37687 | 24.1205 | 58.7155 |
3 | 1.59367 | 11.3834 | 70.0989 |
4 | 1.00264 | 7.16174 | 77.2607 |
5 | 0.83842 | 5.9887 | 83.2494 |
6 | 0.7459 | 5.32784 | 88.5772 |
7 | 0.57257 | 4.08978 | 92.667 |
8 | 0.47321 | 3.38008 | 96.0471 |
9 | 0.32444 | 2.31741 | 98.3645 |
10 | 0.13174 | 0.94098 | 99.3054 |
11 | 0.05924 | 0.42316 | 99.7286 |
12 | 0.02881 | 0.20579 | 99.9344 |
13 | 0.00758 | 0.05415 | 99.9886 |
14 | 0.0016 | 0.01145 | 100 |
References
- Martín-López, B.L.; Palomo, I.; García-Llorente, M.; Iniesta-Arandia, I.; Castro, A.J.; del Amo, D.G.; Gómez-Baggethun, E.; Montes, C. Delineating boundaries of social-ecological systems for landscape planning: A comprehensive spatial approach. Land Use Policy 2017, 66, 90–104. [Google Scholar] [CrossRef]
- Gallopín, G.C.; Gutman, P. and Maletta, H. Global impoverishment, sustainable development and the environment: A conceptual approach. Int. Soc. Sci. J. 1989, 121, 375–397. [Google Scholar]
- Berkes, F.; Folke, C. Linking Social and Ecological Systems: Management Practices and Social Mechanisms for Building Resilience; Cambridge University Press: Cambridge, UK, 1998. [Google Scholar]
- Turner, B.L.; Matson, P.A.; McCarthy, J.J.; Corell, R.W.; Christensen, L.; Eckley, N.; Hovelsrud-Broda, G.K.; Kasperson, J.X.; Kasperson, R.E.; Luers, A.; et al. Illustrating the coupled human–environment system for vulnerability analysis: Three case studies. Proc. Natl. Acad. Sci. USA 2003, 100, 8080–8085. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Dietz, T.; Carpenter, S.R.; Alberti, M.; Folke, C.; Moran, E.; Pell, A.N.; Deadman, P.; Kratz, T.; Lubchenco, J.; et al. Complexity of Coupled Human and Natural Systems. Science 2007, 317, 1513–1516. [Google Scholar] [CrossRef] [Green Version]
- Ostrom, E. A General Framework for Analyzing Sustainability of Social-Ecological Systems. Science 2009, 325, 419–422. [Google Scholar] [CrossRef]
- Turner, B.; Kasperson, R.E.; Meyer, W.B.; Dow, K.M.; Golding, D.; Kasperson, J.X.; Mitchell, R.C.; Ratick, S.J. Two types of global environmental change: Definitional and spatial-scale issues in their human dimensions. Glob. Environ. Chang. 1990, 1, 14–22. [Google Scholar] [CrossRef]
- Vitousek, P.M.; Mooney, H.A.; Lubchenco, J.; Melillo, J.M. Human Domination of Earth’s Ecosystems. Science 1997, 277, 494–499. [Google Scholar] [CrossRef] [Green Version]
- Kates, R.W.; Clark, W.C. Our Common Journey: A Transition toward Sustainability; National Research Council: Washington, DC, USA, 1999. [Google Scholar]
- Fairweather, J. Farmer models of socio-ecologic systems: Application of causal mapping across multiple locations. Ecol. Model. 2010, 221, 555–562. [Google Scholar] [CrossRef]
- Abson, D.J.; Dougill, A.J.; Stringer, L. Using Principal Component Analysis for information-rich socio-ecological vulnerability mapping in Southern Africa. Appl. Geogr. 2012, 35, 515–524. [Google Scholar] [CrossRef]
- Gupta, K.A.; Negi, M.; Nandy, S.; Kumar, M.; Singh, V.; Donatella, V.; Petrosillo, I.; Pandey, R. Mapping socio-environmental vulnerability to climate change in different altitude zones in the Indian Himalayas. Ecol. Indic. 2019, 109, 105787. [Google Scholar] [CrossRef]
- Schneider, S.H.; Londer, R. The Coevolution of Climate and Life; Sierra Club Books: San Francisco, CA, USA, 1984. [Google Scholar]
- Berkes, F.; Colding, J.; Folke, C. Navigating Social-Ecological Systems: Building Resilience for Complexity and Change; Cambridge University Press: Cambridge, UK, 2003; Volume 9. [Google Scholar]
- Rosa, E.A.; Dietz, T. Climate Change and Society: Speculation, Construction and Scientific Investigation. Int. Sociol. 1998, 13, 421–455. [Google Scholar] [CrossRef]
- Folke, C.; Hahn, T.; Olsson, P.; Norberg, J. Adaptive governance of social-ecological systems. Annu. Rev. Environ. Resour. 2005, 30, 441–473. [Google Scholar] [CrossRef] [Green Version]
- Folke, C.; Pritchard, J.L.; Berkes, F.; Colding, J.; Svedin, U. The Problem of Fit between Ecosystems and Institutions: Ten Years Later. Ecol. Soc. 2007, 12. [Google Scholar] [CrossRef] [Green Version]
- Glaser, M.; Krause, G.; Ratter, B.; Welp, M. Human/Nature Interaction in the Anthropocene Potential of Social-Ecological Systems Analysis. GAIA Ecol. Perspect. Sci. Soc. 2008, 17, 77–80. [Google Scholar] [CrossRef]
- Gunderson, L.H.; Holling, C.S. (Eds.) Panarchy: Uderstanding Transformations in Human and Natural Systems; Island Press: Washington, DC, USA, 1998. [Google Scholar]
- Levin, S.; Xepapadeas, T.; Crépin, A.-S.; Norberg, J.; de Zeeuw, A.; Folke, C.; Hughes, T.; Arrow, K.; Barrett, S.; Daily, G.; et al. Social-ecological systems as complex adaptive systems: Modeling and policy implications. Environ. Dev. Econ. 2012, 18, 111–132. [Google Scholar] [CrossRef] [Green Version]
- Preiser, R.; Biggs, R.; de Vos, A.; Folke, C. Social-ecological systems as complex adaptive systems: Organizing principles for advancing research methods and approaches. Ecol. Soc. 2018, 23, 46. [Google Scholar] [CrossRef] [Green Version]
- Dressel, S.; Ericsson, G.; Sandström, C. Mapping social-ecological systems to understand the challenges underlying wildlife management. Environ. Sci. Policy 2018, 84, 105–112. [Google Scholar] [CrossRef]
- Dechazal, J.; Quétier, F.; Lavorel, S.; VanDoorn, A. Including multiple differing stakeholder values into vulnerability assessments of socio-ecological systems. Glob. Environ. Chang. 2008, 18, 508–520. [Google Scholar] [CrossRef]
- McClanahan, T.R.; Castilla, J.C.; White, A.T.; Defeo, O. Healing small-scale fisheries by facilitating complex socio-ecological systems. Rev. Fish Biol. Fish. 2009, 19, 33–47. [Google Scholar] [CrossRef]
- Castellarini, F.; Siebe, C.; Lazos, E.; de la Tejera, B.; Cotler, H.; Pacheco, C.; Boege, E.; Moreno, A.R.; Saldívar, A.; Larrazabal, A.; et al. A social-ecological spatial framework for policy design towards sustainability: Mexico as a study case. Investig. Ambient. Cienc. Política Pública 2014, 6, 45–59. [Google Scholar]
- Auty, R.M. Resource Abundance and Economic Development; Oxford University Press: Oxford, UK, 2001. [Google Scholar]
- Omernik, J.M. Ecoregions of the Conterminous United States. Ann. Assoc. Am. Geogr. 1987, 77, 118–125. [Google Scholar] [CrossRef]
- Olson, D.M.; Dinerstein, E. The Global 200: A Representation Approach to Conserving the Earth’s Most Biologically Valuable Ecoregions. Conserv. Biol. 1998, 12, 502–515. [Google Scholar] [CrossRef] [Green Version]
- Cockburn, J.; Cundill, G.; Shackleton, S.; Rouget, M. Towards Place-Based Research to Support Social–Ecological Stewardship. Sustainability 2018, 10, 1434. [Google Scholar] [CrossRef] [Green Version]
- Barreteau, O.; Giband, D.; Schoon, M.; Cerceau, J.; DeClerck, F.; Ghiotti, S.; James, T.; Masterson, V.A.; Mathevet, R.; Rode, S.; et al. Bringing together social-ecological system and territoire concepts to explore nature-society dynamics. Ecol. Soc. 2016, 21, 42. [Google Scholar] [CrossRef] [Green Version]
- Hamann, M.; Biggs, R.; Reyers, B. Mapping social-ecological systems: Identifying ‘green-loop’ and ‘red-loop’ dynamics based on characteristic bundles of ecosystem service use. Glob. Environ. Chang. 2015, 34, 218–226. [Google Scholar] [CrossRef]
- Wymann, S.; Ott, C.; Andreas, K.; Stillhardt, B. Will International Pursuit of the Millennium Development Goals Alleviate Poverty in Mountains? Mt. Res. Dev. 2006, 26, 4–8. [Google Scholar]
- Ning, W.; Rawat, G.S.; Joshi, S.; Ismail, M.; Sharma, E. High-Altitude Rangelands and Their Interfaces in the Hindu Kush Himalayas; ICIMOD: Kathmandu, Nepal, 2013. [Google Scholar]
- Singh, S.P.; Thadani, R. Complexities and Controversies in Himalayan Research: A Call for Collaboration and Rigor for Better Data. Mt. Res. Dev. 2015, 35, 401–409. [Google Scholar] [CrossRef]
- Gerlitz, J.Y.; Macchi, M.; Brooks, N.; Pandey, R.; Banerjee, S.; Jha, S.K. The Multidimensional Livelihood Vulnerabil-ity Index—An instrument to measure livelihood vulnerability to change in the Hindu Kush Himalayas. Clim. Dev. 2017, 9, 124–140. [Google Scholar] [CrossRef]
- Kohler, T.; Maselli, D. (Eds.) Mountains and Climate Change—From Understanding to Action; Geographica Bernensia with the support of the Swiss Agency for Development and Cooperation (SDC), and an international team of contributors: Bern, Switzerland, 2009.
- Egan, P.; Price, M. Mountain Ecosystem Services and Climate Change: A Global Overview of Potential Threats and Strategies for Adaptation; UNESCO: Paris, France, 2017. [Google Scholar]
- Beniston, M. Climatic Change in Mountain Regions: A Review of Possible Impacts. Clim. Chang. 2003, 59, 5–31. [Google Scholar] [CrossRef]
- Binder, C.R.; Hinkel, J.; Bots, P.W.G.; Pahl-Wostl, C. Comparison of Frameworks for Analyzing Social-ecological Systems. Ecol. Soc. 2013, 18, 26. [Google Scholar] [CrossRef] [Green Version]
- Rissman, A.R.; Gillon, S. Where Are Ecology and Biodiversity in Social–Ecological Systems Research? A Review of Research Methods and Applied Recommendations. Conserv. Lett. 2016, 10, 86–93. [Google Scholar] [CrossRef]
- ICIMOD. Mountain, Green Economy for Sustainable Development: A Concept Paper for Rio+20 and Beyond. In International Conference on Green Economy and Sustainable Mountain Development Opportunities and Challenges in View of Rio+20; ICIMOD: Kathmandu, Nepal, 2011. [Google Scholar]
- Gerlitz, J.-Y.; Hunzai, K.; Hoermann, B. Mountain poverty in the Hindu-Kush Himalayas. Can. J. Dev. Stud. 2012, 33, 250–265. [Google Scholar] [CrossRef]
- Pathak, D.; Gajurel, A.P.; Mool, P.K. Climate Change Impacts on Hazards in the Eastern Himalayas; ICIMOD: Kathmandu, Nepal, 2010. [Google Scholar]
- ICIMOD. The Changing Himalayas: Impact of Climate Change on Water Resources and Livelihoods in the Greater Himalayas; ICIMOD: Kathmandu, Nepal, 2009. [Google Scholar]
- Ray, M.; Doshi, N.; Alag, N.; Sreedhar, R. Climate Vulnerability in North Western Himalayas; Indian Network on Ethics and Climate Change (INECC): Visakhapatnam, India, 2011. [Google Scholar]
- UAPCC. Uttarakhand Action Plan on Climate Change; Government of Uttarakhand: Dehradun, India, 2014.
- Xu, J.; Grumbine, R.E.; Shrestha, A.; Eriksson, M.; Yang, X.; Wang, Y.U.N.; Wikes, A. The melting Himalayas: Cascading effects of climate change on water, biodiversity, and livelihoods. Conserv. Biol. 2009, 23, 520–530. [Google Scholar] [CrossRef]
- Negi, G.C.S.; Samal, P.K.; Kuniyal, J.C.; Kothyari, B.P.; Sharma, R.K.; Dhyani, P.P. Impact of climate change on the western Himalayan mountain ecosystems: An overview. Trop. Ecol. 2012, 53, 345–356. [Google Scholar]
- Madhura, R.K.; Krishnan, R.; Revadekar, J.; Mujumdar, M.; Goswami, B.N. Changes in western disturbances over the Western Himalayas in a warming environment. Clim. Dyn. 2015, 44, 1157–1168. [Google Scholar] [CrossRef]
- Jing, F.; Leduc, B. Potential Threats from Climate Change to Human Wellbeing in the Eastern Himalayan Region; Climate Change Impact and Vulnerability in the Eastern Himalayas: Technical Report 6; ICIMOD: Kathmandu, Nepal, 2010. [Google Scholar]
- Sarkar, S.; Kanungo, D.P.; Sharma, S. Landslide hazard assessment in the upper Alaknanda valley of Indian Himalayas. Geomat. Nat. Hazards Risk 2015, 6, 308–325. [Google Scholar] [CrossRef] [Green Version]
- Chaudhary, P.; Bawa, K.S. Local perceptions of climate change validated by scientific evidence in the Himalayas. Biol. Lett. 2011, 7, 767–770. [Google Scholar] [CrossRef] [Green Version]
- Tiwari, P.C.; Joshi, B. Environmental Changes and their Impact on Rural Water, Food, Livelihood and Health Security in Kumaon Himalayas. J. Urban Reg. Stud. Contemp. India 2014, 1, 1–12. [Google Scholar]
- INCCA. 2010. Climate Change and India: A 4 × 4 Assessment. A Sectoral and Regional Analysis for 2030S; Ministry of Environment, Forests and Climate Change, Government of India: New Delhi, India, 2010.
- Olsson, L.; Jerneck, A. Social fields and natural systems: Integrating knowledge about society and nature. Ecol. Soc. 2018, 23. [Google Scholar] [CrossRef] [Green Version]
- ISFR. India State of Forest Report; Forest Survey of India, Ministry of Environment, Forests and Climate Change: Dehradun, India, 2019.
- Barua, A.; Katyaini, S.; Mili, B.; Gooch, P. Climate change and poverty: Building resilience of rural mountain com-munities in South Sikkim, Eastern Himalaya, India. Reg. Environ. Chang. 2014, 14, 267–280. [Google Scholar] [CrossRef]
- Pandey, R.; Bardsley, D.K. Social-ecological vulnerability to climate change in the Nepali Himalaya. Appl. Geogr. 2015, 64, 74–86. [Google Scholar] [CrossRef] [Green Version]
- Hunzai, K.; Gerlitz, J.-Y.; Hoermann, B. Understanding Mountain Poverty in the Hindu Kush-Himalayas—Regional Report for Afghanistan, Bangladesh, Bhutan, China, India, Myanmar, Nepal, and Pakistan; International Centre for Integrated Mountain Development (ICIMOD): Kathmandu, Nepal, 2011. [Google Scholar]
- Chakraborty, A.; Joshi, P.; Sachdeva, K. Predicting distribution of major forest tree species to potential impacts of climate change in the central Himalayan region. Ecol. Eng. 2016, 97, 593–609. [Google Scholar] [CrossRef]
- Kaiser, H.F.; Rice, J. Little Jiffy, Mark IV. Educ. Psychol. Meas. 1974, 34, 111–117. [Google Scholar] [CrossRef]
- Bartlett, M.S. The effect of standardization on a Chi-square approximation in factor analysis. Biometrika 1951, 38, 337–344. [Google Scholar]
- Ward, J.H., Jr. Hierarchical Grouping to Optimize an Objective Function. J. Am. Stat. Assoc. 1963, 58, 236–244. [Google Scholar] [CrossRef]
- Bateman, I.J.; Jones, A.P.; Lovett, A.A.; Lake, I.; Day, B.H. Applying Geographical Information Systems (GIS) to Environmental and Resource Economics. Environ. Resour. Econ. 2002, 22, 219–269. [Google Scholar] [CrossRef]
- Maes, J.; Egoh, B.; Willemen, L.; Liquete, C.; Vihervaara, P.; Schägner, J.P.; Grizzetti, B.; Drakou, E.; La Notte, A.; Zulian, G.; et al. Mapping ecosystem services for policy support and decision making in the European Union. Ecosyst. Serv. 2012, 1, 31–39. [Google Scholar] [CrossRef]
- Roy, P.; Joshi, P.K.; Shavindar, S.; Agarwal, S.; Drswapanil, Y.; Jeganathan, C. Biome mapping in India using vegetation type map derived using temporal satellite data and environmental parameters. Ecol. Model. 2006, 197, 148–158. [Google Scholar] [CrossRef]
- Ellis, R.; Ramankutty, N. Putting people in the map: Anthropogenic biomes of the world. Front. Ecol. 2008, 6, 439–447. [Google Scholar] [CrossRef] [Green Version]
- Ellis, E.C.; Klein Goldewijk, K.; Siebert, S.; Lightman, D.; Ramankutty, N. Anthropogenic transformation of the biomes, 1700 to 2000. Glob. Ecol. Biogeogr. 2010, 19, 589–606. [Google Scholar] [CrossRef]
- Singh, J.S.; Singh, S.P. Forests of Himalaya: Structure, Functioning and Impact of Man; Gyanodaya Prakashan: Nainital, India, 1992. [Google Scholar]
- Singh, J.S. Man and Forest Interactions in Central Himalaya. In Himalayan Environment and Development: Problems and Perspectives; Gyanodaya Prakashan: Almora, India, 1992. [Google Scholar]
- Joshi, A.K.; Joshi, P.K. Forest Ecosystem Services in the Central Himalaya: Local Benefits and Global Relevance. In Proceedings of the National Academy of Sciences, India Section B: Biological Sciences; Springer: Berlin/Heidelberg, Germany, 2018; Volume 89, pp. 785–792. [Google Scholar]
- Leslie, H.M.; Basurto, X.; Nenadovic, M.; Sievanen, L.; Cavanaugh, K.C.; Cota-Nieto, J.J.; Erisman, B.E.; Finkbeiner, E.; Hi-nojosa-Arango, G.; Moreno-Baez, M.; et al. Operationalizing the social-ecological systems framework to assess sustainability. Proc. Natl. Acad. Sci. USA 2015, 112, 5979–5984. [Google Scholar] [CrossRef] [Green Version]
- Hinkel, J.; Bots, P.W.G.; Schlüter, M. Enhancing the Ostrom social-ecological system framework through formalization. Ecol. Soc. 2014, 19, 51. [Google Scholar] [CrossRef]
- Jolliffe, I.T.; Cadima, J. Principal component analysis: A review and recent developments. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2016, 374, 20150202. [Google Scholar] [CrossRef] [PubMed]
- Bailey, R.G. Ecosystem Geography: From Ecoregions to Sites; Springer: New York, NY, USA, 2009. [Google Scholar]
- Balvanera, P.; Calderón-Contreras, R.; Castro, A.J.; Felipe-Lucia, M.R.; Geijzendorffer, I.R.; Jacobs, S.; Martín-López, B.; Arbieu, U.; Speranza, C.I.; Locatelli, B.; et al. Interconnected place-based social-ecological research can inform global sustainability. Current Opin. Environ. Sustain. 2017, 29, 1–7. [Google Scholar] [CrossRef]
- Fasona, M.; Adeonipekun, P.A.; Agboola, O.; Akintuyi, A.; Bello, A.; Ogundipe, O.; Soneye, A.; Omojola, A. Incentives for collaborative governance of natural resources: A case study of forest management in southwest Nigeria. Environ. Dev. 2019, 30, 76–88. [Google Scholar] [CrossRef]
- Liehr, S.; Röhrig, J.; Mehring, M.; Kluge, T. How the Social-Ecological Systems Concept Can Guide Transdisciplinary Research and Implementation: Addressing Water Challenges in Central Northern Namibia. Sustainability 2017, 9, 1109. [Google Scholar] [CrossRef] [Green Version]
- Pandey, R.; Kumar, P.; Archie, K.M.; Gupta, A.K.; Joshi, P.; Valente, D.; Petrosillo, I. Climate change adaptation in the western-Himalayas: Household level perspectives on impacts and barriers. Ecol. Indic. 2018, 84, 27–37. [Google Scholar] [CrossRef]
- Berrouet, L.M.; Machado, J.; Villegas-Palacio, C. Vulnerability of socio—ecological systems: A conceptual Framework. Ecol. Indic. 2018, 84, 632–647. [Google Scholar] [CrossRef]
- Schoon, M.; van der Leeuw, S. The shift toward social-ecological systems perspectives: Insights into the human-nature relationship. Nat. Sci. Soc. 2015, 23, 166–174. [Google Scholar] [CrossRef] [Green Version]
- Rodgers, W.A.; Panwar, H.S.; Mathur, V.B. Wildlife Protected Area Network in India: A Review (Executive Summary); Report; Wildlife Institute of India: Dehradun, India, 2000.
- Galaz, V.; Olsson, P.; Hahn, T.; Folke, C.; Svedin, U. The Problem of Fit among Biophysical Systems, Environmental and Resource Regimes, and Broader Governance Systems: Insights and Emerging Challenges. In Institutions and Environmental Change; The MIT Press: Cambridge, MA, USA, 2008; pp. 147–186. [Google Scholar]
Type | Variable Name | Code | Numeric/ Categorical (N/C) | Mean | Standard Deviation |
---|---|---|---|---|---|
Demographic | Total Geographical Area (in Hectares) | G_area | N | 200.30 | 31.77 |
Total Households | Hshld | N | 84.82 | 19.60 | |
Total Population of Village | Vil_pop | N | 418.82 | 10.80 | |
Education | Primary Education | Prm__edu | N | 0.85 | 0.85 |
Secondary Eduction | Sec_edu | N | 0.56 | 1.15 | |
Higher Education | Hgh_edu | N | 0.01 | 0.12 | |
Health | HealthCare | Hlth_cr | N | 0.32 | 0.78 |
Govt. Health Program | Hlth_prg | C | 1.40 | 0.49 | |
Water | Tap Water | Tp_wtr | C | 1.11 | 0.31 |
Well | Well | C | 1.97 | 0.18 | |
Hand Pump/Tube wells | Hnd_pmp | C | 1.69 | 0.46 | |
Spring | Sprng | C | 1.96 | 0.18 | |
River/Canal/Tank/Pond/Lake | Rvr_cnl_tk | C | 1.78 | 0.41 | |
Post Office | Post Office | Pst_offc | C | 1.84 | 0.37 |
Communication | Communication | Comm | C | 1.11 | 0.31 |
Transportation | Transportation | Trnsprt | C | 1.56 | 0.50 |
Road | Road Connectivity | Road | C | 1.59 | 0.49 |
Bank Services | Bank Services | Bnk_srvc | C | 1.96 | 0.20 |
Credit Societies | Crdt_soc | C | 1.71 | 0.45 | |
Market | Market | Mrkt | C | 1.96 | 0.19 |
Public Distribution System (PDS) Shop | Pblc_dst | C | 1.67 | 0.47 | |
Information | Media | Media | C | 1.96 | 0.20 |
Information | Info | C | 1.79 | 0.41 | |
Electricity | Power Supply for Domestic Use | Pwr_dom | C | 1.08 | 0.27 |
Power Supply for Agriculture Use | Pwr_agri | C | 1.86 | 0.34 | |
Agriculture | Total Unirrigated Land Area (in Hectares) | Unirrgt | N | 30.06 | 2.78 |
Area Irrigated by Source (in Hectares) | Irrigt | N | 18.63 | 6.00 | |
Culturable Waste Land Area (in Hectares) | Cltr_wst | N | 18.05 | 4.18 | |
Fallows Land Other Than Current Fallows Area (in Hectares) | Fllw_lnd | N | 2.92 | 0.74 | |
Current Fallows Area (in Hectares) | Fllw_crnt | N | 2.47 | 1.60 | |
Net Area Sown (in Hectares) | Nt_swn | N | 46.61 | 8.22 | |
Agriculture Equipment | Agri_eqp | C | 1.93 | 0.26 |
Type | Variable Name | Code | Source | Resolution |
---|---|---|---|---|
Climatic | Climatic Annual Mean Temperature | B1 | WorldClim | 1 km |
Mean Diurnal Range | B2 | WorldClim | 1 km | |
Isothermality (BIO 2/BIO 7) (×100) | B3 | WorldClim | 1 km | |
Temperature Seasonality (Standard Deviation × 100) | B4 | WorldClim | 1 km | |
Temperature Annual Range (BIO 5–BIO 6) | B7 | WorldClim | 1 km | |
Annual Precipitation | B12 | WorldClim | 1 km | |
Precipitation of Driest Month | B14 | WorldClim | 1 km | |
Precipitation Seasonality (Coefficient of Variation) | B15 | WorldClim | 1 km | |
Precipitation of Driest Quarter | B17 | WorldClim | 1 km | |
Geomorphologic | Aspect | Asp | ASTER-GDEM | 30 m |
Slope | Slp | ASTER-GDEM | 30 m | |
Pedologic | Soil type | Soil | National Bureau of Soil Survey and Land Use Planning | 1:50,000 |
Land Use/ Land Cover | LULC | LULC | National Remote Sensing Center | 1:50,000 |
Forest Cover | Forest Types | Frst | Forest Survey of India | 1:50,000 |
Type | Unit | Major Variable Contributor | Variable Loading |
---|---|---|---|
1 | Total geographical area (G_area); Net area sown (Nt_swn); Area irrigated by source (Irrigt) | >12 | |
2 | Area irrigated by source (Irrigt); Net area sown (Nt_swn) | ≥14 | |
3 | Net area sown (Nt_swn); Total households (Hshld) | >12 | |
Socio-economic units | 4 | Total geographical area (G_area); Total households (Hshld); Total unirrigated land area (Unirrgt); Net area sown (Nt_swn) | ≥10 |
5 | Total geographical area (G_area); Total households (Hshld); Net area sown (Nt_swn) | >10 | |
6 | Area irrigated by source (Irrigt); Communication (Comm); Transportation (Trnsprt) | >10 | |
A | Forest types (Frst); Land use/Land cover (LULC); Soil type (Soil); Isothermality (B3) | >10 | |
Ecological units | B | Forest types (Frst); Land use/Land cover (LULC); Isothermality (B3) | >10 |
C | Forest types (Frst); Land use/Land cover (LULC); Precipitation of driest month (B14); Precipitation of driest quarter (B17) | ≥9 |
Cluster | No. of Villages/Grids | Area (%) | Unit Description | Code | |
---|---|---|---|---|---|
1 | 278 | 1.82 | Irrigated agrarian (large)–populated (high) community | 1 | |
2 | 1357 | 8.88 | Irrigated agrarian (large)–populated (medium) community | 2 | |
3 | 78 | 0.51 | Irrigated agrarian (small)–populated (low) community | 3 | |
Socio-economic units | 4 | 4849 | 31.72 | Unirrigated agrarian (medium)–populated (medium) community | 4 |
5 | 611 | 4.00 | Unirrigated agrarian (small)–populated (medium) community | 5 | |
6 | 8112 | 53.07 | Unirrigated agrarian (small)–populated (low) community | 6 | |
1 | 173,244 | 20.95 | Alpine | A | |
Ecological units | 2 | 437,384 | 52.89 | Himalayan moist temperate | B |
3 | 216,397 | 26.16 | Tropical deciduous and subtropical pine | C |
S. No. | Socio-Ecological System Description | Code | Area (%) |
---|---|---|---|
1 | Alpine/Unirrigated agrarian (medium)–populated (medium) community | A4 | 0.63 |
2 | Alpine/Unirrigated agrarian (small)–populated (low) community | A6 | 0.22 |
3 | Alpine/Irrigated agrarian (large)–populated (high) community | A2 | 0.2 |
4 | Alpine/No village community | A0 | 20.66 |
5 | Himalayan moist temperate/Unirrigated agrarian (medium)–populated (medium) community | B4 | 11.55 |
6 | Himalayan moist temperate/Unirrigated agrarian (small)–populated (low) community | B6 | 13.38 |
7 | Himalayan moist temperate/Irrigated agrarian (large)–populated (medium) community | B2 | 0.6 |
8 | Himalayan moist temperate/Irrigated agrarian (large)–populated (high) community | B1 | 0.08 |
9 | Himalayan moist temperate/Irrigated agrarian (small)–populated (low) community | B3 | 0.1 |
10 | Himalayan moist temperate/No village community | B0 | 25.46 |
11 | Himalayan moist temperate/Unirrigated agrarian (small)–populated (medium) community | B5 | 1.13 |
12 | Tropical deciduous and subtropical pine/Unirrigated agrarian (medium)–populated (medium) community | C4 | 1.91 |
13 | Tropical deciduous and subtropical pine/Unirrigated agrarian (small)–populated (low) community | C6 | 3.71 |
14 | Tropical deciduous and subtropical pine/Irrigated agrarian (large)–populated (medium) community | C2 | 4.51 |
15 | Tropical deciduous and subtropical pine/Irrigated agrarian (large)–populated (high) community | C1 | 1.99 |
16 | Tropical deciduous and subtropical pine/Irrigated agrarian (small)–populated (low) community | C3 | 0.14 |
17 | Tropical deciduous and subtropical pine/No village community | C0 | 13.40 |
18 | Tropical deciduous and subtropical pine/Unirrigated agrarian (small)–populated (medium) community | C5 | 0.34 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumar, P.; Fürst, C.; Joshi, P.K. Socio-Ecological Systems (SESs)—Identification and Spatial Mapping in the Central Himalaya. Sustainability 2021, 13, 7525. https://doi.org/10.3390/su13147525
Kumar P, Fürst C, Joshi PK. Socio-Ecological Systems (SESs)—Identification and Spatial Mapping in the Central Himalaya. Sustainability. 2021; 13(14):7525. https://doi.org/10.3390/su13147525
Chicago/Turabian StyleKumar, Praveen, Christine Fürst, and P. K. Joshi. 2021. "Socio-Ecological Systems (SESs)—Identification and Spatial Mapping in the Central Himalaya" Sustainability 13, no. 14: 7525. https://doi.org/10.3390/su13147525
APA StyleKumar, P., Fürst, C., & Joshi, P. K. (2021). Socio-Ecological Systems (SESs)—Identification and Spatial Mapping in the Central Himalaya. Sustainability, 13(14), 7525. https://doi.org/10.3390/su13147525