Impact of Industry 4.0 and Digitization on Labor Market for 2030-Verification of Keynes’ Prediction
Abstract
:1. Introduction
2. Industry 4.0: Concept and Solutions
2.1. Industry 4.0: Concept
2.2. Industry 4.0. Smart Solutions
3. Method
3.1. Research Questions
- RQ1:
- Why has Keynes’s vision of three-hour working days not been fulfilled so far, and why do we presume that, based on the current processes of Industry 4.0, it will be—at least partially—fulfilled by 2030?
- RQ2:
- What are the possible positive and negative future scenarios related to Industry 4.0?
3.2. Information Retrieval and Selection Strategy
3.3. Bibliometric Analysis
4. Results and Discussion
4.1. Theoretical Aspects of the Labor Market Situation in the 2020s
4.1.1. Theoretical Contexts of the Necessity of a Reduction in Working Time
4.1.2. The Theoretical Relationship between Industry 4.0 and Unemployment
Authors | Negative Effects |
---|---|
Frey and Osborne (2017) [55] | Increasing structural unemployment and inequality |
Manyika (2017) [9] Nedelkoska and Quintini (2018) [10] | Decreasing job opportunities |
Bokrantz et al. (2017) [60] | Lack of skilled people for the changing labor market |
Gordon (2012) [61] | A slowdown in global economic growth |
Manyika et al. (2017) [62] | The disappearance of 800 million jobs by 2030 |
Weldon (2018) [55] | Short-term job losses |
Jäger et al. (2016) [63] Krykavskyy et al. (2019) [64] | New skills and training requirements Changes in the professional profile |
Authors | Positive Effects |
---|---|
Keynes (1930, 2010) [15,51] | An increase in free time |
Danaher (2017) [57] | Replacing human work with technology does not necessarily lead to a decrease in employment opportunities. |
IFR (2017) [11] | Rising productivity, increasing competitiveness The creation of new jobs |
Ghislieri et al. (2018) [58] Bányai et al. (2019) [65] | Economic and environmental aspects: higher quality, better safety, environmentally friendly solutions replacing hazardous or dangerous jobs |
Oxford Economics (2019) [66] | Cost reduction |
Manyika et al. (2017) [62] | Labor market restructuring towards the tertiary sectors, with a possible increase in overall number of jobs. |
Albers et al. (2016) [67] Moeuf et al. (2018) [68] | Improving product quality and competitiveness |
4.2. Labor Market Implications Linked to the Digital Revolution
4.2.1. The Practical Impact of Industry 4.0 on the Labor Market
4.2.2. Labor Market Vision and Challenges
5. Conclusions
5.1. Evaluation of Keynes’s Theory
5.2. Assessing the Impact of Industry 4.0
5.3. Limitation and Future Research Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Da Silva, V.L.; Kovaleski, J.L.; Pagani, R.N.; Silva, J.D.M.; Corsi, A. Implementation of Industry 4.0 Concept in Companies: Empirical Evidences. Int. J. Comput. Integr. Manuf. 2020, 33, 325–342. [Google Scholar] [CrossRef]
- Frey, C.B.; Osborne, M. The Future of Employment; Oxford Martin Programme on Technology and Employment-Oxford Martin School, University of Oxford: Oxford, UK, 2013. [Google Scholar]
- Servoz, M. The Future of Work? Work of the Future! On How Artificial Intelligence, Robotics and Automation Are Transforming Jobs and the Economy in Europe. AI Rep. 2019, 44, 566–571. [Google Scholar] [CrossRef]
- Chen, B.; Marvin, S.; While, A. Containing COVID-19 in China: AI and the Robotic Restructuring of Future Cities. Dialogues Hum. Geogr. 2020, 10, 238–241. [Google Scholar] [CrossRef]
- Sharma, A.; Zanotti, P.; Musunur, L.P. Drive Through Robotics: Robotic Automation for Last Mile Distribution of Food and Essentials During Pandemics. IEEE Access 2020, 8, 127190–127219. [Google Scholar] [CrossRef]
- Piątkowski, M.J. Expectations and Challenges in the Labour Market in the Context of Industrial Revolution 4.0. The Agglomeration Method-Based Analysis for Poland and Other EU Member States. Sustainability 2020, 12, 5437. [Google Scholar] [CrossRef]
- Hat, K.; Stoeglehner, G. Spatial Dimension of the Employment Market Exposition To-The Case of Austria. Sustainability 2020, 12, 1852. [Google Scholar] [CrossRef] [Green Version]
- Sima, V.; Gheorghe, I.G.; Subić, J.; Nancu, D. Influences of the Industry 4.0 Revolution on the Human Capital Development and Consumer Behavior: A Systematic Review. Sustainability 2020, 12, 4035. [Google Scholar] [CrossRef]
- Manyika, J.; Chui, M.; Miremadi, M.; Bughin, J.; George, K.; Willmott, P.; Dewhurst, M. A Future That Works: AI, Automation, Employment, and Productivity; McKinsey Global Institute: New York, NY, USA, 2017. [Google Scholar]
- Nedelkoska, L.; Quintini, G. Automation, Skills Use and Training; OECD Social, Employment and Migration Working Papers, No. 202; OECD Publishing: Paris, France, 2018. [Google Scholar] [CrossRef]
- IFR. The Impact of Robots on Productivity, Employment and Jobs; IFR: Frankfurt, Germany, 2017; Available online: https://ifr.org/downloads/papers/IFR_The_Impact_of_Robots_on_Employment_Positioning_Paper_updated_version_2018.pdf (accessed on 8 July 2021).
- Zhou, K.; Liu, T.; Zhou, L. Industry 4.0: Towards Future Industrial Opportunities and Challenges. In 2015 12th International Conference on Fuzzy Systems and Knowledge Discovery, FSKD 2015; Institute of Electrical and Electronics Engineers Inc.: New York, NY, USA, 2016; pp. 2147–2152. [Google Scholar] [CrossRef]
- Johansson, J.; Abrahamsson, L.; Kareborn, B.B.; Faltholm, Y.; Grane, C.; Wykowska, A. Work and Organization in a Digital Industrial Context. Manag. Rev. 2017, 28, 281–297. [Google Scholar] [CrossRef]
- Novakova, L. The Impact of Technology Development on the Future of the Labour marketin the Slovak Republic. Technol. Soc. 2020, 62. [Google Scholar] [CrossRef]
- Keynes, J.M. Economic Possibilities for Our Grandchildren. In Essays in Persuasion; Keynes, J.M., Ed.; Palgrave Macmillan: London, UK, 2010; pp. 321–332. [Google Scholar] [CrossRef]
- Eichhorst, W.; Hinte, H.; Rinne, U.; Tobsch, V. How Big Is the Gig? Assessing the Preliminary Evidence on the Effects of Digitalization on the Labor Market. Manag. Rev. 2017, 28, 298–318. [Google Scholar] [CrossRef] [Green Version]
- Habanik, J.; Grencikova, A.; Krajco, K. The Impact of New Technology on Sustainable Development. Inz. Ekon. Econ. 2019, 30, 41–49. [Google Scholar] [CrossRef] [Green Version]
- Sánchez, A.L. Digitalization, Robotization, Work and Life: Cartographies, Debates and Practices. Cuad. Relac. Labor. 2019, 37, 249–273. [Google Scholar] [CrossRef]
- Vojtovic, S.; Krajnakova, E. Trends in Economic Growth and Unemployment in Slovakia. In Proceedings of the 2013 International Conference on Education, Management and Social Science; Atlantis Press: Paris, France, 2013. [Google Scholar] [CrossRef] [Green Version]
- Nagy, J.; Oláh, J.; Erdei, E.; Máté, D.; Popp, J. The Role and Impact of Industry 4.0 and the Internet of Things on the Business Strategy of the Value Chain—The Case of Hungary. Sustainability 2018, 10, 3491. [Google Scholar] [CrossRef] [Green Version]
- Fergnani, A. Scenario Archetypes of the Futures of Capitalism: The Conflict between the Psychological Attachment to Capitalism and the Prospect of Its Dissolution. Futures 2019, 105, 1–16. [Google Scholar] [CrossRef]
- Kőmüves, Z.; Berke, S. Labor Retention in the Domestic SME Sector in Somogy County. Reg. Szle. 2021, 6, 66–77. [Google Scholar] [CrossRef]
- Király, G. Útban a Fenntarthatóság Felé. Az Átmenetmenedzsment Megközelítése. Kovász 2013, 17, 3–28. [Google Scholar]
- Hofmann, E.; Rüsch, M. Industry 4.0 and the Current Status as Well as Future Prospects on Logistics. Comput. Ind. 2017, 89, 23–34. [Google Scholar] [CrossRef]
- Türkeș, M.; Oncioiu, I.; Aslam, H.; Marin-Pantelescu, A.; Topor, D.; Căpușneanu, S. Drivers and Barriers in Using Industry 4.0: A Perspective of SMEs in Romania. Processes 2019, 7, 153. [Google Scholar] [CrossRef] [Green Version]
- Qin, J.; Liu, Y.; Grosvenor, R. A Categorical Framework of Manufacturing for Industry 4.0 and Beyond. In Procedia CIRP; Elsevier: Amsterdam, The Netherlands, 2016; Volume 52, pp. 173–178. [Google Scholar] [CrossRef] [Green Version]
- Tortorella, G.L.; Fettermann, D. Implementation of Industry 4.0 and Lean Production in Brazilian Manufacturing Companies. Int. J. Prod. Res. 2018, 56, 2975–2987. [Google Scholar] [CrossRef]
- Lee, J.; Kao, H.-A.; Yang, S. Service Innovation and Smart Analytics for Industry 4.0 and Big Data Environment. Procedia CIRP 2014, 16, 3–8. [Google Scholar] [CrossRef] [Green Version]
- Branca, T.A.; Fornai, B.; Colla, V.; Murri, M.M.; Streppa, E.; Schroder, A.J. Current and Future Aspects of the Digital Transformation in the European Steel Industry. Mater. Tech. 2020, 108. [Google Scholar] [CrossRef]
- Cerezo-Narváez, A.; Otero-Mateo, M.; Rodríguez-Pecci, F.; Pastor-Fernández, A. Digital Transformation of Requirements in the Industry 4.0: Case of Naval Platforms. Dyna 2018, 93, 448–456. [Google Scholar] [CrossRef] [Green Version]
- Brynjolfsson, E.; McAfee, A. Race against the Machine: How the Digital Revolution Is Accelerating Innovation, Driving Productivity, and Irreversibly Transforming Employment and the Economy; Digital Frontier Press: Lexington, MA, USA, 2011. [Google Scholar]
- Manavalan, E.; Jayakrishna, K. A Review of Internet of Things (IoT) Embedded Sustainable Supply Chain for Industry 4.0 Requirements. Comput. Ind. Eng. 2019, 127, 925–953. [Google Scholar] [CrossRef]
- Guchhait, R.; Pareek, S.; Sarkar, B. How Does a Radio Frequency Identification Optimize the Profit in an Unreliable Supply Chain Management? Mathematics 2019, 7, 490. [Google Scholar] [CrossRef] [Green Version]
- Sardar, S.K.; Sarkar, B.; Kim, B. Integrating Machine Learning, Radio Frequency Identification, and Consignment Policy for Reducing Unreliability in Smart Supply Chain Management. Processes 2021, 9, 247. [Google Scholar] [CrossRef]
- Sarkar, M.; Pan, L.; Dey, B.K.; Sarkar, B. Does the Autonomation Policy Really Help in a Smart Production System for Controlling Defective Production? Mathematics 2020, 8, 1142. [Google Scholar] [CrossRef]
- Sett, B.K.; Dey, B.K.; Sarkar, B. Autonomated Inspection Policy for Smart Factory—An Improved Approach. Mathematics 2020, 8, 1815. [Google Scholar] [CrossRef]
- Dey, B.K.; Pareek, S.; Tayyab, M.; Sarkar, B. Autonomation Policy to Control Work-in-Process Inventory in a Smart Production System. Int. J. Prod. Res. 2021, 59, 1258–1280. [Google Scholar] [CrossRef]
- Jazdi, N. Cyber Physical Systems in the Context of Industry 4.0. In 2014 IEEE International Conference on Automation, Quality and Testing, Robotics; IEEE: New York, NY, USA, 2014; pp. 1–4. [Google Scholar] [CrossRef]
- Wollschlaeger, M.; Sauter, T.; Jasperneite, J. The Future of Industrial Communication: Automation Networks in the Era of the Internet of Things and Industry 4.0. IEEE Ind. Electron. Mag. 2017, 11, 17–27. [Google Scholar] [CrossRef]
- Taylor, K.B. The Passing of Western Civilization. Futures 2020, 122, 102582. [Google Scholar] [CrossRef]
- Krämer, W.; Kahneman, D. (2011): Thinking, Fast and Slow. Stat Pap. 2014, 55, 915. [Google Scholar] [CrossRef] [Green Version]
- Skidelsky, R.; Skidelsky, E. How Much Is Enough? Money and the Good Life; Other Press: New York, NY, USA, 2013. [Google Scholar]
- Kamerāde, D.; Wang, S.; Burchell, B.; Balderson, S.U.; Coutts, A. A Shorter Working Week for Everyone: How Much Paid Work Is Needed for Mental Health and Well-Being? Soc. Sci. Med. 2019, 241, 112353. [Google Scholar] [CrossRef] [PubMed]
- Glaveski, S. The Case for the 6-Hour Workday. Harv. Bus. Rev. 2018. Available online: https://hbr.org/2018/12/the-case-for-the-6-hour-workday (accessed on 2 February 2021).
- Soojung-Kim, A. Shorter: How Working Less Will Revolutionise the Way Your Company Gets Things Done; Penguin: London, UK, 2020. [Google Scholar]
- Akerlof, G.A.; Shiller, R.J. Animal Spirits: How Human Psychology Drives the Economy, and Why It Matters for Global Capitalism; Princeton University Press: Princeton, NJ, USA, 2011. [Google Scholar]
- Krugman, P. End This Depression Now! W. W. Norton & Company: New York, NY, USA, 2012. [Google Scholar]
- Riskbank. Digitisation and Inflation. Monetary Policy Report 2015 February. 2015. Available online: http://archive.riksbank.se/Documents/Rapporter/PPR/2015/150212/rap_ppr_150212_eng.pdf (accessed on 12 March 2021).
- Graetz, G.; Michaels, G. Robots at Work. Rev. Econ. Stat. 2018, 100, 753–768. [Google Scholar] [CrossRef] [Green Version]
- Grigoli, F.; Koczan, Z.; Topalova, P. Automation and Labor Force Participation in Advanced Economies: Macro and Micro Evidence. Eur. Econ. Rev. 2020, 126, 103443. [Google Scholar] [CrossRef]
- Keynes, J.M. Economic Possibilities for Our Grandchildren; Nation & Athenaeum: London, UK, 1930. [Google Scholar]
- Manyika, J.; Chui, M.; Bughin, J.; Dobbs, R.; Bisson, P.; Marrs, A. Disruptive Technologies: Advances That Will Transform Life, Business, and the Global Economy; McKinsey Global Institute: New York, NY, USA, 2013. [Google Scholar]
- Cseh Papp, I.; Bilan, S.; Dajnoki, K. Globalization of the Labour Market—Circular Migration in Hungary. J. Int. Stud. 2019, 12, 182–200. [Google Scholar] [CrossRef] [PubMed]
- Weldon, M.K. The Future X Network: A Bell Labs Perspective; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar] [CrossRef]
- Frey, C.B.; Osborne, M.A. The Future of Employment: How Susceptible Are Jobs to Computerisation? Technol. Forecast. Soc. Change 2017, 114, 254–280. [Google Scholar] [CrossRef]
- Nafchi, M.Z.; Mohelska, H. Effects of Industry 4.0 on the Labor Markets of Iran and Japan. Economies 2018, 6, 39. [Google Scholar] [CrossRef] [Green Version]
- Danaher, J. Will Life Be Worth Living in a World Without Work? Technological Unemployment and the Meaning of Life. Sci Eng Ethics 2017, 23, 41–64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghislieri, C.; Molino, M.; Cortese, C.G. Work and Organizational Psychology Looks at the Fourth Industrial Revolution: How to Support Workers and Organizations? Front. Psychol. 2018, 9. [Google Scholar] [CrossRef] [PubMed]
- Hernandez-de-Menendez, M.; Morales-Menendez, R.; Escobar, C.A.; McGovern, M. Competencies for Industry 4.0. Int. J. Interact. Des. Manuf. IJIDEM 2020, 14, 1511–1524. [Google Scholar] [CrossRef]
- Bokrantz, J.; Skoogh, A.; Berlin, C.; Stahre, J. Maintenance in Digitalised Manufacturing: Delphi-Based Scenarios for 2030. Int. J. Prod. Econ. 2017, 191, 154–169. [Google Scholar] [CrossRef]
- Gordon, R.J. Is U.S. Economic Growth Over? Faltering Innovation Confronts the Six Headwinds; NBER: Cambridge, MA, USA, 2012. [Google Scholar] [CrossRef]
- Manyika, J.; Lund, S.; Chui, M.; Bughin, J.; Woetzel, J.; Batra, P.; Ko, R.; Sanghvi, S. Jobs Lost, Jobs Gained: Workforce Transitions in a Time of Automation; McKinsey Global Institute: New York, NY, USA, 2017. [Google Scholar]
- Jäger, J.; Schöllhammer, O.; Lickefett, M.; Bauernhansl, T. Advanced Complexity Management Strategic Recommendations of Handling the “Industrie 4.0” Complexity for Small and Medium Enterprises. Procedia CIRP 2016, 57, 116–121. [Google Scholar] [CrossRef]
- Krykavskyy, Y.; Pokhylchenko, O.; Hayvanovych, N. Supply Chain Development Drivers in Industry 4.0 in Ukrainian Enterprises. Oecon. Copernic. 2019, 10, 273–290. [Google Scholar] [CrossRef]
- Bányai, T.; Tamás, P.; Illés, B.; Stankevičiūtė, Ž.; Bányai, Á. Optimization of Municipal Waste Collection Routing: Impact of Industry 4.0 Technologies on Environmental Awareness and Sustainability. Int. J. Environ. Res. Public Health 2019, 16, 634. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lambert, J.; Cone, E. How Robots Change the World. What Automation Really Means for Jobs and Productivity. Economic Outlook; Oxford Economics: London, UK, 2019; Available online: https://www.oxfordeconomics.com/recent-releases/how-robots-change-the-world (accessed on 11 February 2021).
- Albers, A.; Gladysz, B.; Pinner, T.; Butenko, V.; Stürmlinger, T. Procedure for Defining the System of Objectives in the Initial Phase of an Industry 4.0 Project Focusing on Intelligent Quality Control Systems. Procedia CIRP 2016, 52, 262–267. [Google Scholar] [CrossRef] [Green Version]
- Moeuf, A.; Pellerin, R.; Lamouri, S.; Tamayo-Giraldo, S.; Barbaray, R. The Industrial Management of SMEs in the Era of Industry 4.0. Int. J. Prod. Res. 2018, 56, 1118–1136. [Google Scholar] [CrossRef] [Green Version]
- Bakhshi, H.; Downing, J.M.; Osborne, M.A.; Schneider, P. The Future of Skills Employment 2030; Pearson and Nesta: London, UK, 2017. [Google Scholar]
- Malathi, M. Cloud Computing Concepts. In Proceedings of the ICECT 2011—2011 3rd International Conference on Electronics Computer Technology, Kanyakumari, India, 8–10 April 2011; Volume 6, pp. 236–239. [Google Scholar] [CrossRef]
- Liu, Y.; Peng, Y.; Wang, B.; Yao, S.; Liu, Z. Review on Cyber-Physical Systems. IEEE/CAA J. Autom. Sin. 2017, 4, 27–40. [Google Scholar] [CrossRef]
- Mohamed, M. Challenges and Benefits of Industry 4.0: An Overview. Int. J. Supply Oper. Manag. 2018, 5, 256–265. [Google Scholar]
- Kim, Y.J.; Kim, K.; Lee, S. The Rise of Technological Unemployment and Its Implications on the Future Macroeconomic Landscape. Futures 2017, 87, 1–9. [Google Scholar] [CrossRef]
- Brynjolfsson, E.; McAfee, A. The Second Machine Age: Work, Progress, and Prosperity in a Time of Brilliant Technologies; WW Norton & Company: New York, NY, USA, 2014. [Google Scholar]
- Smith, A.; Anderson, J. AI, Robotics, and the Future of Jobs. Pew Research Center, Report, 6 (51) 2014. Available online: https://5y1.org/download/6042b8dba7ffcec7cac5f4b9cc7d2264.pdf (accessed on 5 April 2021).
- Zemtsov, S. New Technologies, Potential Unemployment and ‘Nescience Economy’ during and after the 2020 Economic Crisis. Reg. Sci. Policy Pract. 2020, 12, 723–743. [Google Scholar] [CrossRef]
- Forum, W.E. The Future of Jobs Report 2018; Centre for the New Economy and Society: Geneva, Switzerland, 2018. [Google Scholar]
- OECD. Average Annual Hours Actually Worked. Database. Available online: https://www.oecd-ilibrary.org/employment/data/hours-worked/average-annual-hours-actually-worked_data-00303-en (accessed on 18 January 2021). [CrossRef]
- Harris, K.; Kimson, A.; Andrew, S. Labor 2030: The Collision of Demographics, Automation and Inequality. Bain & Company, Report. 2018. Available online: https://www.explodingafrica.com/wp-content/uploads/2018/04/Labor-2030.-The-Collision-of-Demographics-Automation-and-Inequality_Bain-Company-1.pdf (accessed on 22 April 2021).
- Frey, C.B.; Osborne, M.A.; Holmes, C.; Rahbari, E.; Garlick, R.; Friedlander, G.; McDonald, G.; Curmi, E.; Chua, J.; Chalif, P.; et al. Technology at Work v2. 0: The Future Is Not What It Used to Be; Oxford Martin School: Oxford, UK, 2016. [Google Scholar]
- Berger, T.; Frey, C.B. Bridging the Skills Gap. In Technology, Globalisation and the Future of Work in Europe Essays on Employment in a Digitised Economy; Dolphin, T., Ed.; Institute for Public Policy Research: London, UK, 2015; pp. 75–80. [Google Scholar]
- Vinichenko, M.V.; Melnichuk, A.V.; Karácsony, P. Technologies of Improving the University Efficiency by Using Artificial Intelligence: Motivational Aspect. Entrep. Sustain. Issues 2020, 7, 2696–2714. [Google Scholar] [CrossRef]
- Cui, F.; Ma, L.; Hou, G.; Pang, Z.; Hou, Y.; Li, L. Development of Smart Nursing Homes Using Systems Engineering Methodologies in Industry 4.0. Enterp. Inf. Syst. 2020, 14, 463–479. [Google Scholar] [CrossRef]
- Schulte, P.A.; Streit, J.M.K.; Sheriff, F.; Delclos, G.; Felknor, S.A.; Tamers, S.L.; Fendinger, S.; Grosch, J.; Sala, R. Potential Scenarios and Hazards in the Work of the Future: A Systematic Review of the Peer-Reviewed and Gray Literatures. Ann. Work Expo. Health 2020, 64, 786–816. [Google Scholar] [CrossRef] [PubMed]
- Inshakova, A.O.; Frolova, E.E.; Rusakova, E.P.; Kovalev, S.I. The Model of Distribution of Human and Machine Labor at Intellectual Production in Industry 4.0. J. Intellect. Cap. 2020, 21, 601–622. [Google Scholar] [CrossRef]
- Oláh, J.; Aburumman, N.; Popp, J.; Khan, M.A.; Haddad, H.; Kitukutha, N. Impact of Industry 4.0 on Environmental Sustainability. Sustainability 2020, 12, 4674. [Google Scholar] [CrossRef]
Authors | Location | Number of Study |
---|---|---|
Grigoli et al. (2020); Taylor (2020); Glaveski (2018); Sharma et al. (2020); Lee et al. (2016); Lee et al. (2014); Graetz and Michaels (2018); Weldon (2018) | USA | 8 |
Chen et al. (2020); Cui et al. (2020); Liu et al. (2017); Zhou et al. (2016) | China | 4 |
Eichhorst et al. (2017); Johansson et al. (2017) Albers et al. (2016); Jäger et al. (2016) | Germany | 4 |
Habanik et al. (2019); Vojtovic, and Krajnakova (2013); Novakova (2020) | Slovakia | 3 |
Da Silva et al. (2020); Tortorella and Fettermann (2018) | Brazil | 2 |
Kamerāde et al. (2019); Frey and Osborne, 2013) | England | 2 |
Zemtsov (2020); Vinichenko et al. (2020) | Russia | 2 |
Sima et al. (2018) Türkeș et al. (2019; | Romania | 2 |
Hat and Stoeglehner (2020) | Austria | 1 |
Moeuf et al. (2018) | France | 1 |
Ziaei Nafchi and Mohelská (2018) | Iran and Japan | 1 |
Danaher (2017) | Ireland | 1 |
Kim et al. (2017) | Korea | 1 |
Piątkowski (2020) | Poland | 1 |
Bányai et al. (2019) | Hungary | 1 |
Ghislieri et al. (2018) | Italy | 1 |
Sánchez (2019) | Spain | 1 |
Hofmann and Rüsch (2017) | Switzerland | 1 |
Bokrantz et al. (2017) | Sweden | 1 |
Fergnani (2019) | Singapore | 1 |
Krykavskyy et al. (2019) | Ukraine | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szabó-Szentgróti, G.; Végvári, B.; Varga, J. Impact of Industry 4.0 and Digitization on Labor Market for 2030-Verification of Keynes’ Prediction. Sustainability 2021, 13, 7703. https://doi.org/10.3390/su13147703
Szabó-Szentgróti G, Végvári B, Varga J. Impact of Industry 4.0 and Digitization on Labor Market for 2030-Verification of Keynes’ Prediction. Sustainability. 2021; 13(14):7703. https://doi.org/10.3390/su13147703
Chicago/Turabian StyleSzabó-Szentgróti, Gábor, Bence Végvári, and József Varga. 2021. "Impact of Industry 4.0 and Digitization on Labor Market for 2030-Verification of Keynes’ Prediction" Sustainability 13, no. 14: 7703. https://doi.org/10.3390/su13147703
APA StyleSzabó-Szentgróti, G., Végvári, B., & Varga, J. (2021). Impact of Industry 4.0 and Digitization on Labor Market for 2030-Verification of Keynes’ Prediction. Sustainability, 13(14), 7703. https://doi.org/10.3390/su13147703