Effects of Combined HIIT and Stroop on Strength Manifestations, Serve Speed and Accuracy in Recreational Tennis Players
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Procedures and Materials
2.3. Outcomes
- Serve ball speed (hitting power). A radar (Stalker Radar Sport 2), with ± 1 km/h accuracy, was employed to measure the ball’s speed during the services. A tripod was placed 1.5 m behind the centerline. The radar was orientated from the shot spot to the bullseye to avoid mistakes related to the angle formed by the radar and the ball’s trajectory, following the protocol of previous studies [21].
- Lower body muscular power was evaluated through horizontal countermovement jump tests. Participants performed a standardized warm-up consisting of 2 × 10 vertical jumps with 30 s recovery (previously) and then, they performed two maximal horizontal countermovement jumps with hands placed on the waist, recovering for 15 s between them, as previously reported [22], and the best attempt was used for the statistical analysis.
- Spirometry: Forced Vital Capacity (FVC), volume exhaled at the end of the first second of forced expiration (FEV1) and the peak expiratory flow (PEF) using a QM-SP100 (Quirumed, Spain) spirometer during a maximum inhale-exhale cycle following previous protocols [23].
- Isometric hand strength (IHS) with a grip dynamometer (Takei Kiki Koyo, Japan). Participants were in anatomical position with the dominant arm extended. From that position, they were asked to perform two maximum contractions of the hand from 3 s with 3 s of recovery between them. The highest value was used for the research [24].
- Skin temperature (ST) was measured with a digital infra-red thermometer (Temp Touch; Xilas Medical, San Antonio, TX). With the subject in anatomical position, the area of the right temple was cleaned with sterile gauze and then the temperature of the area was taken with an infrared thermometer [25].
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Menayo, R.; Fuentes García, J.; Moreno Hernández, F.; Clemente, R.; García Calvo, T. Relación entre la velocidad de la pelota y la precisión en el servicio plano en tenis en jugadores de perfeccionamiento. Eur. J. Hum. Mov. 2008, 21, 17–30. [Google Scholar] [CrossRef]
- O’Donoghe, G.P.; Brown, E. The importance of service in Grand Slam singles tennis. Int. J. Perform. Anal. Sport 2008, 8, 70–78. [Google Scholar] [CrossRef]
- Fett, J.; Ulbricht, A.; Ferrauti, A. Impact of physical performance and anthropometric characteristics on serve velocity in elite junior tennis players. J. Strength Cond. Res. 2020, 34, 192–202. [Google Scholar] [CrossRef]
- Wang, L.H.; Lo, K.C.; Su, F.C. Skill level and forearm muscle fatigue effects on ball speed in tennis serve. Sports Biomech. 2019, 1, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Poire, B.; Killen, L.G.; Green, J.M.; O’Neal, E.K.; Renfroe, L.G. Effects of caffeine on tennis serve accuracy. Int. J. Exerc. Sci. 2019, 12, 1290–1301. [Google Scholar]
- Menayo, R.; Sabido, R.; Fuentes, J.P.; Moreno, F.J.; García, J.A. Simultaneous treatment effects in learning four tennis shots in contextual interference conditions. Percept. Mot. Skills 2010, 110, 661–673. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maquirriain, J.; Baglione, R.; Cardey, M. Male professional tennis players maintain constant serve speed and accuracy over long matches on grass courts. Eur. J. Sport Sci. 2016, 16, 845–849. [Google Scholar] [CrossRef] [PubMed]
- Menayo, R.; Moreno Hernández, F.; Fuentes García, J.P.; Damas Arroyo, J. Relationship between motor variability, accuracy, and ball speed in the tennis serve. J. Hum. Kinet. 2012, 33, 45–53. [Google Scholar] [CrossRef] [Green Version]
- Terraza-Rebollo, M.; Baiget, E. Effects of postactivation potentiation on tennis serve velocity and accuracy. Int. J. Sports Physiol. Perform. 2020, 1, 1–6. [Google Scholar] [CrossRef]
- Murphy, A.P.; Duffield, R.; Kellett, A.; Reid, M. A comparison of the perceptual and technical demands of tennis training, simulated match play, and competitive tournaments. Int. J. Sports Physiol. Perform. 2016, 11, 40–47. [Google Scholar] [CrossRef]
- Van Cutsem, J.; Marcora, S.; De Pauw, K.; Bailey, S.; Meeusen, R.; Roelands, B. The effects of mental fatigue on physical performance: A systematic review. Sports Med. 2017, 47, 1569–1588. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Habay, J.; Van Cutsem, J.; Verschueren, J.; De Bock, S.; Proost, M.; De Wachter, J.; Tassignon, B.; Meeusen, R.; Roelands, B. Mental fatigue and sport-specific psychomotor performance: A systematic review. Sports Med. 2021. [CrossRef]
- Van Cutsem, J.; De Pauw, K.; Vandervaeren, C.; Marcora, S.; Meeusen, R.; Roelands, B. Mental fatigue impairs visuomotor response time in badminton players and controls. Psychol. Sport Exerc. 2019, 45, 1–8. [Google Scholar] [CrossRef]
- Le Mansec, Y.; Pageaux, B.; Nordez, A.; Dorel, S.; Jubeau, M. Mental fatigue alters the speed and the accuracy of the ball in table tennis. J. Sports Sci. 2018, 36, 2751–2759. [Google Scholar] [CrossRef]
- Pageaux, B.; Lepers, R. The effects of mental fatigue on sport-related performance. Prog. Brain Res. 2018, 240, 291–315. [Google Scholar] [CrossRef]
- Herlambang, M.B.; Cnossen, F.; Taatgen, N.A. The effects of intrinsic motivation on mental fatigue. PLoS ONE 2021, 16, e0243754. [Google Scholar] [CrossRef]
- Herlambang, M.B.; Taatgen, N.A.; Cnossen, F. The role of motivation as a factor in mental fatigue. Hum. Factors 2019, 61, 1171–1185. [Google Scholar] [CrossRef] [Green Version]
- Van Cutsem, J.; Roelands, B.; Pluym, B.; Tassignon, B.; Verschueren, J.O.; De Pauw, K.; Meeusen, R. Can creatine combat the mental fatigue-associated decrease in visuomotor skills? Med. Sci. Sports Exerc. 2020, 52, 120–130. [Google Scholar] [CrossRef]
- Curiel-Regueros, A.; Fernández-Lucas, J.; Clemente-Suárez, V.J. Effectiveness of an applied high intensity interval training as a specific operative training. Physiol. Behav. 2019, 201, 208–211. [Google Scholar] [CrossRef] [PubMed]
- Van Cutsem, J.; Marcora, S. The effects of mental fatigue on sport performance. In Motivation and Self-Regulation in Sport and Exercise; Routledge: London, UK, 2021; pp. 134–148. [Google Scholar]
- Alfonso, M.; Menayo, R. Induced variability during the tennis service practice affect the performance of every tennis player individually and specifically. Eur. J. Hum. Mov. 2019, 43, 86–101. [Google Scholar]
- Clemente-Suárez, V.J.; Delgado-Moreno, R.; González, B.; Ortega, J.; Ramos-Campo, D.J. Amateur endurance triathletes’ performance is improved independently of volume or intensity based training. Physiol. Behav. 2019, 205, 2–8. [Google Scholar] [CrossRef]
- Belinchón-deMiguel, P.; Ruisoto-Palomera, P.; Clemente-Suárez, V.J. Psychophysiological stress response of a paralympic athlete during an Ultra-Endurance event. A case study. J. Med. Syst. 2019, 43, 70–74. [Google Scholar] [CrossRef]
- Belinchón-deMiguel, P.; Tornero-Aguilera, J.F.; Dalamitros, A.A.; Nikolaidis, P.T.; Rosemann, T.; Knechtle, B.; Clemente-Suárez, V.J. Multidisciplinary analysis of differences between finisher and non-finisher ultra-endurance mountain athletes. Front. Psychol. 2019, 10, 1507. [Google Scholar] [CrossRef] [PubMed]
- Hormeño-Holgado, A.J.; Clemente-Suárez, V.J. Effect of different combat jet manoeuvres in the psychophysiological response of professional pilots. Physiol. Behav. 2019, 208, 112559. [Google Scholar] [CrossRef] [PubMed]
- Tornero-Aguilera, J.F.; Gil-Cabrera, J.; Fernández-Lucas, J.; Clemente-Suárez, V.J. The effect of experience on the psychophysiological response and shooting performance under acute physical stress of soldiers. Physiol. Behav. 2021, 238, 113489. [Google Scholar] [CrossRef] [PubMed]
- Fritz, C.; Morris, P.; Richler, J. Effect size estimates: Current use, calculations, and interpretation. J. Exp. Psychol. Gen. 2012, 141, 2–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duffield, R.; Murphy, A.; Kellett, A.; Reid, M. Recovery from repeated on-court tennis sessions: Combining cold-water immersion, compression, and sleep interventions. Int. J. Sports Physiol. Perform. 2014. [CrossRef] [PubMed]
- Suárez Rodríguez, D.; Del Valle Soto, M. A study of intensity, fatigue and precision in two specific interval trainings in young tennis players: High-intensity interval training versus intermittent interval training. BMJ Open Sport Exerc. Med. 2017, 3, e00250. [Google Scholar] [CrossRef] [Green Version]
- Smith, M.R.; Chai, R.; Nguyen, H.T.; Marcora, S.M.; Coutts, A.J. Comparing the effects of three cognitive tasks on indicators of mental fatigue. J. Psychol. Interdiscip. Appl. 2019, 153, 759–783. [Google Scholar] [CrossRef]
- McMorris, T. Cognitive fatigue effects on physical performance: The role of interoception. Sports Med. 2020, 50, 1703–1708. [Google Scholar] [CrossRef] [PubMed]
- McCormick, A.; Meijen, C.; Marcora, S. Psychological determinants of whole-body endurance performance. Sports Med. 2015, 45, 997–1015. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Russell, S.; Jenkins, D.; Rynne, S.; Halson, S.L.; Kelly, V. What is mental fatigue in elite sport? Perceptions from athletes and staff. Eur. J. Sport Sci. 2019, 19, 1367–1376. [Google Scholar] [CrossRef]
- Ishii, A.; Tanaka, M.; Watanabe, Y. Neural mechanisms of mental fatigue. Rev. Neurosci. 2014, 25, 469–479. [Google Scholar] [CrossRef]
- Filipas, L.; Martin, K.; Northey, J.M.; La Torre, A.; Keegan, R.; Rattray, B. A 4-week endurance training program improves tolerance to mental exertion in untrained individuals. J. Sci. Med. Sport 2020, 23, 1215–1219. [Google Scholar] [CrossRef]
- O’Keeffe, K.; Hodder, S.; Lloyd, A. A comparison of methods used for inducing mental fatigue in performance research: Individualised, dual-task and short duration cognitive tests are most effective. Ergonomics 2020, 63, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Ferreira-Junior, A.; Chierotti, P.; Gabardo, J.M.; Giovanini, B.; Okano, A.H.; Buzzachera, C.F.; Okazaki, V.H.A.; Okuno, N.M.; Altimari, L.R. Residual effects of mental fatigue on subjective fatigue, reaction time and cardiac responses. J. Sport Psychol. 2020, 29, 27–34. [Google Scholar]
- Brown, D.M.Y.; Bray, S.R. Effects of mental fatigue on exercise intentions and behavior. Ann. Behav. Med. 2019, 53, 405–414. [Google Scholar] [CrossRef] [PubMed]
- Lopes, T.R.; Oliveira, D.M.; Simurro, P.B.; Akiba, H.T.; Nakamura, F.Y.; Okano, A.H.; Dias, Á.M.; Silva, B.M. No sex difference in mental fatigue effect on high-level runners’ aerobic performance. Med. Sci. Sports Exerc. 2020. [CrossRef]
Test | Baseline Mean (SD) | HIIT without Cognitive Load Mean (SD) | HIIT with Cognitive Load Mean (SD) | Chi-Squared | p * | Effect Size |
---|---|---|---|---|---|---|
Ball speed [km/h] | 98.24 (23.22) | 102.92 (23.29) | 99.76 (20.35) | 0.813 | 0.666 | 0.05 |
Accuracy average score [points] | 4.88 (1.20) | 3.88 (1.37) | 3.60 (1.36) | 13.95 | 0.001 | 0.87 |
HIIT without Cognitive Load Mean (SD) | HIIT with Cognitive Load Mean (SD) | |||||||
---|---|---|---|---|---|---|---|---|
Variables | Pre (1) | Post (2) | Pre (3) | Post (4) | F | p | η2 | Moment Comparison |
Horizontal Jump Test [cm] | 167.4 ± 29.0 | 169.9 ± 24.6 | 170.3 ± 26.9 | 170.1 ± 28.8 | 0.448 | 0.720 | 0.044 | |
FVC | 4.9 ± 1.3 | 4.8 ± 1.4 | 4.9 ± 1.3 | 4.6 ± 0.7 | 0.994 | 0.409 | 0.093 | |
FEV1 | 3.7 ± 0.9 | 3.6 ± 0.7 | 3.9 ± 0.7 | 3.7 ± 0.9 | 1.417 | 0.258 | 0.128 | |
PEF | 8.1 ± 2.0 | 7.8 ± 2.23 | 8.5 ± 2.0 | 7.8 ± 2.2 | 2.526 | 0.077 | 0.207 | |
Isometric Hand strength [N] | 41.0 ± 10.9 | 40.5 ± 9.3 | 40.4 ± 10.0 | 41.5 ± 9.9 | 0.552 | 0.651 | 0.054 | |
Skin Temperature [°C] | 32.0 ± 1.0 | 30.9 ± 1.6 | 32.0 ± 1.0 | 31.6 ± 1.5 | 5.312 | 0.005 | 0.355 | 1 > 2; 3 > 2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fuentes-García, J.P.; Díaz-García, J.; López-Gajardo, M.Á.; Clemente-Suarez, V.J. Effects of Combined HIIT and Stroop on Strength Manifestations, Serve Speed and Accuracy in Recreational Tennis Players. Sustainability 2021, 13, 7717. https://doi.org/10.3390/su13147717
Fuentes-García JP, Díaz-García J, López-Gajardo MÁ, Clemente-Suarez VJ. Effects of Combined HIIT and Stroop on Strength Manifestations, Serve Speed and Accuracy in Recreational Tennis Players. Sustainability. 2021; 13(14):7717. https://doi.org/10.3390/su13147717
Chicago/Turabian StyleFuentes-García, Juan Pedro, Jesús Díaz-García, Miguel Ángel López-Gajardo, and Vicente Javier Clemente-Suarez. 2021. "Effects of Combined HIIT and Stroop on Strength Manifestations, Serve Speed and Accuracy in Recreational Tennis Players" Sustainability 13, no. 14: 7717. https://doi.org/10.3390/su13147717
APA StyleFuentes-García, J. P., Díaz-García, J., López-Gajardo, M. Á., & Clemente-Suarez, V. J. (2021). Effects of Combined HIIT and Stroop on Strength Manifestations, Serve Speed and Accuracy in Recreational Tennis Players. Sustainability, 13(14), 7717. https://doi.org/10.3390/su13147717