Empirical Research on Climate Warming Risks for Forest Fires: A Case Study of Grade I Forest Fire Danger Zone, Sichuan Province, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection
2.2.1. Fire Data
2.2.2. Meteorological Data
2.3. Data Analysis
3. Results
3.1. Variations in the Number of Fires and the Area Burned in Different Climatic Regions
3.2. The Influence of Meteorological Factors on Forest Fires
3.3. An Integral Regression Model for the Number and Area Burned
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Oddi, F.; Ghermandi, L.; Lasaponara, R. Annual Burned Area across a Precipitation Gradient in Northwestern Patagonia Steppe; Egu General Assembly: Vienna, Austria, 2013. [Google Scholar]
- Wang, S.; Niu, S. Fuel classes in conifer forests of southwest sichuan, china, and their implications for fire susceptibility. Forest 2016, 7, 52. [Google Scholar] [CrossRef] [Green Version]
- Hall, S.; Burke, I.; Box, D.; Kaufmann, M.; Stoker, J. Estimating stand structure using discrete-return lidar: An example from low density, fire prone ponderosa pine forests. For. Ecol. Manag. 2005, 208, 189–209. [Google Scholar] [CrossRef]
- de Luis, M.; Baeza, M.; Raventos, J.; Hidalgo, J.C.G. Fuel characteristics and fire behaviour in mature Mediterranean gorse shrublands. Int. J. Wildland Fire 2004, 13, 79. [Google Scholar] [CrossRef] [Green Version]
- Chernkhunthod, C.; Hioki, Y. Fuel characteristics and fire behavior in mixed deciduous forest areas with different fire frequencies in Doi Suthep-Pui National Park, Northern Thailand. Landsc. Ecol. Eng. 2020, 16, 289–297. [Google Scholar] [CrossRef]
- Van de Water, K.; North, M. Stand structure, fuel loads, and fire behavior in riparian and upland forests, Sierra Nevada Mountains, USA; a comparison of current and reconstructed conditions. For. Ecol. Manag. 2011, 262, 215–228. [Google Scholar] [CrossRef]
- Wang, S.; Niu, S. Do biological invasions by Eupatorium Adenophorum increase forest fire severity? Biol. Invasions 2016, 18, 717–729. [Google Scholar] [CrossRef]
- Vélez, R. High intensity forest fires in the Mediterranean Basin: Natural and socioeconomic causes. Disaster Manag. 1993, 5, 16–20. [Google Scholar]
- Ying, L.; Han, J.; Du, Y.; Shen, Z. Forest fire characteristics in China: Spatial patterns and determinants with thresholds. For. Ecol. Manag. 2018, 424, 345–354. [Google Scholar] [CrossRef]
- Holden, Z.A.; Jolly, W.M. Modeling topographic influences on fuel moisture and fire danger in complex terrain to improve wildland fire management decision support. For. Ecol. Manag. 2011, 262, 2133–2141. [Google Scholar] [CrossRef]
- Lahaye, S.; Sharples, J.; Matthews, S.; Heemstra, S.; Price, O.; Badlan, R. How do weather and terrain contribute to firefighter entrapments in Australia? Int. J. Wildland Fire 2018, 27, 85. [Google Scholar] [CrossRef]
- Gómez-Nieto, I.; del Martín, M.P.; Salas, F.J.; Gallardo, M. Analysis of Historical Forest Fire Regime in Madrid Region (1984–2010) and ITS Relation with Land-Use/Land-Cover Changes; EGU General Assembly: Vienna, Austria, 2013; Available online: https://2013EGUGA.15.8073G (accessed on 20 October 2020).
- Stocks, B.J.; Fosberg, M.A.; Lynham, T.J.; Mearns, L.; Wotton, B.M.; Yang, Q.; Jin, J.-Z.; Lawrence, K.; Hartley, G.R.; Mason, J.A.; et al. Climate Change and Forest Fire Potential in Russian and Canadian Boreal Forests. Clim. Chang. 1998, 38, 1–13. [Google Scholar] [CrossRef]
- Fill, J.M.; Davis, C.N.; Crandall, R.M. Climate change lengthens southeastern USA lightning-ignited fire seasons. Glob. Chang. Biol. 2019, 25, 3562–3569. [Google Scholar] [CrossRef]
- Boucher, D.; Gauthier, S.; Thiffault, N.; Marchand, W.; Girardin, M.; Urli, M. How climate change might affect tree regeneration following fire at northern latitudes: A review. New For. 2020, 51, 543–571. [Google Scholar] [CrossRef] [Green Version]
- Agovino, M.; Cerciello, M.; Ferraro, A.; Garofalo, A. Spatial analysis of wildfire incidence in the USA: The role of climatic spillovers. Environ. Dev. Sustain. 2021, 23, 6084–6105. [Google Scholar] [CrossRef]
- Mariani, M.; Holz, A.; Veblen, T.T.; Williamson, G.; Fletcher, M.; Bowman, D.M.J.S. Climate change amplifications of climate-fire teleconnections in the Southern Hemisphere. Geophys. Res. Lett. 2018, 45, 5071–5081. [Google Scholar] [CrossRef]
- Gu, X.L.; Wu, Z.W.; Zhang, Y.J.; Yan, S.J.; Fu, J.J.; Du, L.H. Prediction research of the forest fire in Jiangxi province in the background of climate change. Acta Ecol. Sin. 2020, 40, 667–677. [Google Scholar]
- Mokhov, I.; Chernokulsky, A. Regional model assessments of forest fire risks in the Asian part of Russia under climate change. Geogr. Nat. Resour. 2010, 31, 165–169. [Google Scholar] [CrossRef]
- Chen, F.; Niu, S.; Tong, X.; Zhao, J.; Sun, Y.; He, T. The impact of precipitation regimes on forest fires in Yunnan province, southwest China. Sci. World J. 2014, 2014, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Groisman, P.Y.; Knight, R.W.; Heim, R.R.; Razuvaev, V.N.; Alexandersson, H. Changes in Climate, Potential Forest Fire Danger, and Land Use in High Latitudes of the Northern Hemisphere; American Geophysical Union: Washington, DC, USA, 2004. [Google Scholar]
- Wotton, B.M.; Nock, C.A.; Flannigan, M. Forest fire occurrence and climate change in Canada. Int. J. Wildland Fire 2010, 19, 253–271. [Google Scholar] [CrossRef]
- Lasslop, G.; Hantson, S.; Kloster, S. Influence of wind speed on the global variability of burned fraction: A global fire model’s perspective. Int. J. Wildland Fire 2015, 24, 989–1000. [Google Scholar] [CrossRef]
- Varela, V.; Vlachogiannis, D.; Sfetsos, A.; Karozis, S.; Politi, N.; Giroud, F. Projection of forest fire danger due to climate change in the french mediterranean region. Sustainability 2019, 11, 4284. [Google Scholar] [CrossRef] [Green Version]
- McKenzie, D.; Gedalof, Z.; Peterson, D.L.; Mote, P. Climatic change, wildfire, and conservation. Conserv. Biol. 2004, 18, 890–902. [Google Scholar] [CrossRef]
- Cheng, M.L. The Integration Regression Model for Economic Forecasting. Forecasting 2001, 20, 73–75. [Google Scholar]
- Xu, G.X.; Luo, S.X.; Guo, Q.S.; Pei, S.X.; Shi, Z.M.; Zhu, L.; Zhu, N.N. Responses of leaf unfolding and flowering to climate change in 12 tropical evergreen broadleaf tree species in Jianfengling, Hainan Island. Chin. J. Plant Ecol. 2013, 28, 799–811. [Google Scholar]
- Qiu, X.Q.; Jiang, X.D. Application of regression-integral in the research of relationships between tree growth and climate. J. Fujian Coll. For. 1989, 9, 418–422. [Google Scholar]
- Jiang, X.D.; Qiu, X.Q.; Dong, X.E. Growth prediction of the relationship between annual growth of trees and climate base on Regression-Integral. In Central South Forest Inventory and Planning; State Forestry Administration: Beijing, China, 1990; pp. 28–31. [Google Scholar]
- Wu, Z.D.; Wang, C.D.; Li, Q.; Liu, M. Crown profile and volume compatibility model of Cunninghamia lanceolata in Fujian Province. J. Zhejiang A F Univ. 2020, 37, 114–121. [Google Scholar]
- Wang, Y. The area burned and damage area of forest fire was “three decrease” of Sichuan province in 2019. Gree Tianfu. 2020, 2, 36–39. [Google Scholar]
- Li, D. Relationship of Forest Fires and Meteorological Factors in Key Region of Sichuan Province; Beijing Forestry University: Beijing, China, 2013. [Google Scholar]
- Ding, Z.L.; Yuan, F.; Chen, Z.; Tan, J.B. Error Theory and Data Processing, 2nd ed.; Harbin Institute of Technology Press: Harbin, China, 2002. [Google Scholar]
- Xu, J.H. Quantitative Geography; Higher Education Press: Beijing, China, 2006. [Google Scholar]
- Zhou, C.Y.; Cen, S.X.; Li, Y.Q.; Peng, G.Z.; Yang, S.Q.; Peng, J. Precipitation Variation and Its Impacts in Sichuan in the Last 50 Years. Acta Geogr. Sin. 2011, 66, 619–630. [Google Scholar]
- Zhang, F.C. Statistic analysis on the phenophase of trees in spring of Beijing. Geogr. Res. 1983, 2, 55–64. [Google Scholar]
- Pang, W. Climate change in Ya’an city from 1961 to 2010. J. Guizhou Meteorol. 2012, 36, 40–42. [Google Scholar]
- Zhang, L.; Xiao, T.G.; Yan, Y.F.; Zhang, H.; Zhong, X. Analysis on the characteristics of climate change in Bazhong Si-chuan province in recent 38 years. J. Chengdu Univ. Inf. Technol. 2010, 25, 293–300. [Google Scholar]
- Zhao, X.M. Study on the Prevention and Extinguishing Methods of Summer Forest Fire in Summer of Daxinganling Forest Region; Northeast Forestry University: Harbin, China, 2005. [Google Scholar]
- Honnay, O.; Verheyen, K.; Butaye, J.; Jacquemyn, H.; Bossuyt, B.; Hermy, M. Possible effects of habitat fragmentation and climate change on the range of forest plant species. Ecol. Lett. 2002, 5, 525–530. [Google Scholar] [CrossRef]
- Lu, A.F. Study on the relationship among forest fire, temperature and precipitation and its spatial-temporal variability in China. Agric. Sci. Technol. 2011, 12, 1396–1400. [Google Scholar]
- Guan, S.; Liu, H.Y.; Gao, B.; Han, X.Y.; Shan, T.L.; Du, S.; Yin, S.N. Relationship of Particularly Serious Forest Fires and Meteorological Factors in Jilin Province. J. Southwest For. Univ. 2018, 38, 168–172. [Google Scholar]
- Zeng, W.Q.; Xu, D.M.; Fan, W. Analysis of climate change characteristics in Liangshan Prefecture in the past 50 year. In Proceedings of the Plateau Mountain Meteorological Research and Southwest Regional Meteorological Academic Exchange Meeting in 2013, Guiyang, China, 10–11 October 2013. [Google Scholar]
- Zhang, L.Y.; Mao, W.S.; Pang, B. Characteristics of Climate Change in Chengdu Plain. J. Chengdu Univ. Inf. Technol. 2020, 35, 179–187. [Google Scholar]
- Chen, C.; Pang, Y.M.; Pan, X.B.; Zhang, D.F. Characteristics of climate resources under global climate change in Sichuan province. Resour. Sci. 2011, 33, 1310–1316. [Google Scholar]
- He, Y. Occurrence Regularity of Forest Fire in Guangxi and Its Correlation with Meteorological Factors; Central South University of Forestry and Technology: Changsha, China, 2018; pp. 1–2. [Google Scholar]
- Dimitrakopoulos, A.P. Distribution of forest fires and area burned according tometeorological and topographic factors in Greece. In Proceedings of the Forest Fire Research and Wildland Fire Safety: Proceedings of IV International Conference on Forest Fire Research 2002 Wildland Fire Safety Summit, Luso, Coimbra, Portugal, 18–23 November 2002. [Google Scholar]
- Wang, J.H.; Niu, S.K.; Li, D.; Wang, S.; Chen, F. Research on the spatial distribution of forest fires in Sichuan province. Guangdong Agric. Sci. 2012, 233–236. [Google Scholar]
- Moya, D.; Certini, G.; Fulé, P.Z. Fire regime and ecosystem responses: Adaptive forest management in a changing world (Part 1). Int. J. Wildland Fire 2019, 28, 471–472. [Google Scholar] [CrossRef] [Green Version]
- Lynch, J.A.; Hollis, J.L.; Feng, S.H. Climatic and landscape controls of the boreal forest fire regime: Holocene records from Alaska. J. Ecol. 2004, 92, 477–489. [Google Scholar] [CrossRef]
- Cruz, M.G.; Alexander, M.E.; Wakimoto, R.H. Assessing canopy fuel stratum characteristics in crown fire prone fuel types of western North America. Int. J. Wildland Fire 2003, 12, 39–50. [Google Scholar] [CrossRef] [Green Version]
Region | Integral Regression Model | R2 | p | |
---|---|---|---|---|
Panzhihua | Area burned | y = 167.2250 + 0.0254T1 + 0.1927T3 − 0.3553P2 − 0.6538P4 + 4.0347WS0 + 3.6740WS4 | 0.9967 | 0.0001 |
Number of fires | y = 43.2114 + 3.0319T0 + 2.1809T2 + 1.0007T5 − 0.0067P3 + 0.0634WS1 | 0.9981 | 0.0002 | |
Liangshan | Area burned | y = 274.9370 + 0.1859T0 + 1.1990T2 − 0.7153P3 − 0.1460P5 + 2.1770WS1 + 5.1770WS3 | 0.9900 | 0.0004 |
Number of fires | y = −41.8700 + 2.0275T1 + 2.6875T3 − 0.6800P3 − 0.1809P4 − 0.1612P5 + 0.0065WS3 | 0.9931 | 0.0005 | |
Ganzi | Area burned | y = 200.6600 + 0.0181T0 + 0.0675T4 − 0.0861P4 + 9.3573WS0 + 8.0212WS3 + 6.142WS4 | 0.9991 | 0.0023 |
Number of fires | y = −9.4317 + 0.6994T1 + 0.3182T3 − 3.3573P0 − 2.4231P2 + 0.0174WS5 | 0.9992 | 0.0019 | |
A’ba | Area burned | y = 132.8521 + 0.3772T1 + 0.2290T5 − 1.7228P3 − 1.9472P5 + 5.4998WS0 + 9.4841WS1 | 0.9978 | 0.0001 |
Number of fires | y = −2.3857 + 0.0246T0 + 0.0509T4 − 3.1362P1 − 2.2360P4 + 0.0053WS1 + 0.0502WS5 | 0.9956 | 0.0001 | |
Ya’an | Area burned | y = 70.1155 + 0.3200T0 − 0.3300P0 − 0.0544P3 + 1.9939WS4 | 0.9998 | 0.0002 |
Number of fires | y = 8.6500 + 0.3253T0 − 1.0261P3 + 0.0175WS0 + 0.0208WS5 | 0.9957 | 0.0001 | |
Dazhou | Area burned | y = 6.6421 + 0.9502T1 + 0.7562T3 − 0.0295P0 − 0.0155P3 + 0.2467WS2 + 0.0862WS5 | 0.9998 | 0.0004 |
Number of fires | y = 24.2100 + 3.6677T0 + 1.5600T2 + 0.2300T4 − 1.001P3 − 0.0095P4 + 0.0541WS0 + 0.WS4 | 0.9997 | 0.0003 | |
Guangyuan | Area burned | y = 117.4290 + 0.9313T1 + 1.7334T3 − 0.3009P3 − 0.4663P5 + 0.8553WS2 + 0.0368WS5 | 0.9995 | 0.0002 |
Number of fires | y = 48.1379 + 0.0745T0 + 0.4673T5 − 0.2009P2 − 0.0301P4 − 0.003P5 + 0.1475WS3 | 0.9987 | 0.0018 | |
Bazhong | Area burned | y = 169.3035 + 0.2538T3 + 0.1108T5 − 0.7263P0 − 0.7159P4 + 2.5576WS2 + 1.9237WS5 | 0.9997 | 0.0023 |
Number of fires | y = 66.9078 + 0.2158T3 + 1.9512T5 − 0.4178P0 − 1.0154P3 + 0.7424WP4 | 0.9995 | 0.0017 | |
Nanchong | Area burned | y = 54.7800 + 0.8065T0 + 0.2228T3 − 0.6244P1 − 0.3348P3 + 1.8859WS2 + 2.5352WS5 | 0.9996 | 0.0023 |
Number of fires | y = 23.100 + 0.7300T1 + 0.2234T4 − 0.3001P4 − 0.4501P5 + 0.2998WS4 | 0.9994 | 0.0020 | |
Mianyang | Area burned | y = 137.9300 + 0.2397T0 + 0.0374T3 − 0.3457P2 − 0.0234P5 + 0.9901WS1 + 1.0901WS1 | 0.9995 | 0.0019 |
Number of fires | y = 53.2300 + 0.9099T2 + 0.0801T3 − 0.0342P2 − 0.0789T4 + 0.5698WS3 | 0.9991 | 0.0018 | |
Luzhou | Area burned | y = 65.8439 + 0.0038T2 + 0.0369T3 − 0.7203P2 − 0.5118P5 + 2.0426WS2 + 0.7255WS5 | 0.9997 | 0.0001 |
Number of fires | y = 8.9971 + 0.3435T3 + 0.3755T5 − 0.0426P2 − 0.0947P5 + 0.5856WS3 | 0.9998 | 0.0001 | |
Yibin | Area burned | y = 21.4600 + 0.0900T0 + 0.0844T3 − 0.5589WS1 + 2.2310WS3 | 0.9996 | 0.0021 |
Number of fires | y = 1.1100 + 0.0788T0 + 0.1238T4 − 0.4579P3 − 0.0079P5 + 0.1129WS0 | 0.9993 | 0.0018 | |
Leshan | Area burned | y = 70.1155 + 0.03053T2 + 0.4590T5 − 0.0304P3 − 0.0123P5 + 2.0978WS4 | 0.9995 | 0.0019 |
Number of fires | y = 33.1100 + 0.1124T1 + 0.2314T4 − 0.0897P0 − 0.2398P3 + 0.1123WS3 | 0.9997 | 0.0015 | |
Chengdu | Area burned | y = 25.5379 + 1.6466T0 + 0.7584 T2 − 0.2901P2 + 6.4084WS2 + 3.6583WS3 + 2.7286WS5 | 0.9530 | 0.0789 |
Number of fires | y = 48.1139 + 7.0694T1 + 6.487T3 + 8.8075 T5 − 4.0083P1 − 3.0083P2 + 4.7307WS2 + 0.9664WS3 | 0.9461 | 0.0889 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Li, H.; Niu, S. Empirical Research on Climate Warming Risks for Forest Fires: A Case Study of Grade I Forest Fire Danger Zone, Sichuan Province, China. Sustainability 2021, 13, 7773. https://doi.org/10.3390/su13147773
Wang S, Li H, Niu S. Empirical Research on Climate Warming Risks for Forest Fires: A Case Study of Grade I Forest Fire Danger Zone, Sichuan Province, China. Sustainability. 2021; 13(14):7773. https://doi.org/10.3390/su13147773
Chicago/Turabian StyleWang, San, Hongli Li, and Shukui Niu. 2021. "Empirical Research on Climate Warming Risks for Forest Fires: A Case Study of Grade I Forest Fire Danger Zone, Sichuan Province, China" Sustainability 13, no. 14: 7773. https://doi.org/10.3390/su13147773
APA StyleWang, S., Li, H., & Niu, S. (2021). Empirical Research on Climate Warming Risks for Forest Fires: A Case Study of Grade I Forest Fire Danger Zone, Sichuan Province, China. Sustainability, 13(14), 7773. https://doi.org/10.3390/su13147773