A Multicriteria Evaluation of Sustainable Riparian Revegetation with Local Fruit Trees around a Reservoir of a Hydroelectric Power Plant in Central Brazil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling Procedure
2.2. Data Analysis
3. Results
3.1. Relative Importance among Criteria
3.2. Comparison of Fruit Tree Species Relative to Each Other
3.3. Calculation of Performance of the Fruit Tree Survival Rates at Both Sites
3.4. Consistency Analysis of the Pairwise Comparison Matrix
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Egré, D.; Milewski, J.C. The diversity of hydropower projects. Energy Policy 2002, 30, 1225–1230. [Google Scholar] [CrossRef]
- Zhang, L.; Chai, J.; Zhu, J.; Zhao, Z. Dynamic simulation and assessment of the ecological benefits of hydropower as an alternative energy for thermal power under ecological civilization construction: A case study of Fujian, China. Energy Sci. Eng. 2020, 8, 2426–2442. [Google Scholar] [CrossRef] [Green Version]
- World Commission on Dams (WCD). Dams and Development: A New Framework for Decision-Making: The Report of the World Commission on Dams; Earthscan: London, UK, 2001. [Google Scholar]
- Van Looy, K.; Tormos, T.; Souchon, Y. Disentangling dam impacts in river networks. Ecol. Ind. 2014, 37, 10–20. [Google Scholar] [CrossRef] [Green Version]
- Tealdi, S.; Camporeale, C.; Ridolfi, L. Modeling the impact of river damming on riparian vegetation. J. Hydrol. 2011, 396, 302–312. [Google Scholar] [CrossRef]
- De Faria, F.A.; Davis, A.; Severnini, E.; Jaramillo, P. The local socio-economic impacts of large hydropower plant development in a developing country. Energy Econ. 2017, 67, 533–544. [Google Scholar] [CrossRef]
- Zeleňáková, M.; Fijko, R.; Diaconu, D.C.; Remeňáková, I. Environmental impact of small hydro power plant—A case study. Environments 2018, 5, 12. [Google Scholar] [CrossRef] [Green Version]
- Botelho, A.; Ferreira, P.; Lima, F.; Pinto, L.M.C.; Sousa, S. Assessment of the environmental impacts associated with hydropower. Renew. Sustain. Energy Rev. 2017, 70, 896–904. [Google Scholar] [CrossRef]
- Zarfl, C.; Berlekamp, J.; He, F.; Jähnig, S.C.; Darwall, W.; Tockner, K. Future large hydropower dams impact global freshwater megafauna. Sci. Rep. 2019, 9, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Moran, E.F.; Lopez, M.C.; Moore, N.; Muller, N.; Hyndman, D.W. Sustainable hydropower in the 21st century. Proc. Natl. Acad. Sci. USA 2018, 115, 11891–11898. [Google Scholar] [CrossRef] [Green Version]
- Le, H.D.; Smith, C.; Herbohn, J. What drives the success of reforestation projects in tropical developing countries? The case of the Philippines. Glob. Environ. Chang. 2014, 24, 334–348. [Google Scholar] [CrossRef]
- Reed, M.S.; Stringer, L.; Dougill, A.; Perkins, J.; Atlhopheng, J.; Mulale, K.; Favretto, N. Reorienting land degradation towards sustainable land management: Linking sustainable livelihoods with ecosystem services in rangeland systems. J. Environ. Manag. 2015, 151, 472–485. [Google Scholar] [CrossRef] [Green Version]
- Chazdon, R.L.; Cullen, L., Jr.; Padua, S.M.; Padua, C.V. People, primates and predators in the Pontal: From endangered species conservation to forest and landscape restoration in Brazil’s Atlantic Forest. R. Soc. Open Sci. 2020, 7, 200939. [Google Scholar] [CrossRef]
- Buchanan, S.W.; Baskerville, M.; Oelbermann, M.; Gordon, A.M.; Thevathasan, N.V.; Isaac, M.E. Plant diversity and agroecosystem function in riparian agroforests: Providing ecosystem services and land-use transition. Sustainability 2020, 12, 568. [Google Scholar] [CrossRef] [Green Version]
- Meyfroidt, P. Environmental cognitions, land change and social-ecological feedbacks: Local case studies of forest transition in Vietnam. Hum. Ecol. 2013, 41, 367–392. [Google Scholar] [CrossRef]
- Lambin, E.F.; Meyfroidt, P. Global land use change, economic globalization, and the looming land scarcity. Proc. Natl. Acad. Sci. USA 2011, 108, 3465–3472. [Google Scholar] [CrossRef] [Green Version]
- Kemppinen, K.M.; Collins, P.M.; Hole, D.G.; Wolf, C.; Ripple, W.J.; Gerber, L.R. Global reforestation and biodiversity conservation. Conserv. Biol. 2020, 34, 1221–1228. [Google Scholar] [CrossRef]
- Chazdon, R.L. Making tropical succession and landscape reforestation successful. J. Sustain. For. 2013, 32, 649–658. [Google Scholar] [CrossRef]
- Calvo-Alvarado, J.C.; Arias, D.; Richter, D. Early growth performance of native and introduced fast growing tree species in wet to sub-humid climates of the Southern region of Costa Rica. For. Ecol. Manag. 2007, 242, 227–235. [Google Scholar] [CrossRef]
- Le, H.D.; Smith, C.; Herbohn, J.; Harrison, S. More than just trees: Assessing reforestation success in tropical developing countries. J. Rural Stud. 2012, 28, 5–19. [Google Scholar] [CrossRef] [Green Version]
- Silva, R.R.; Oliveira, D.R.; da Rocha, G.P.; Vieira, D.L. Direct seeding of Brazilian savanna trees: Effects of plant cover and fertilization on seedling establishment and growth. Restor. Ecol. 2015, 23, 393–401. [Google Scholar] [CrossRef] [Green Version]
- Miina, J.; Saksa, T. Predicting regeneration establishment in Norway spruce plantations using a multivariate multilevel model. New For. 2006, 32, 265–283. [Google Scholar] [CrossRef]
- Budke, J.C.; Jarenkow, J.A.; de Oliveira-Filho, A.T. Relationships between tree component structure, topography and soils of a riverside forest, Rio Botucaraí, Southern Brazil. Plant Ecol. 2007, 189, 187–200. [Google Scholar] [CrossRef]
- Vargas-Rodriguez, Y.L.; Vázquez-García, J.A.; Williamson, G.B. Environmental correlates of tree and seedling–sapling distributions in a Mexican tropical dry forest. Plant Ecol. 2005, 180, 117–134. [Google Scholar] [CrossRef]
- van Dijk, A.I.; Keenan, R.J. Planted forests and water in perspective. For. Ecol. Manag. 2007, 251, 1–9. [Google Scholar] [CrossRef]
- Valdecantos, A.; Fuentes, D.; Smanis, A.; Llovet, J.; Morcillo, L.; Bautista, S. Effectiveness of low-cost planting techniques for improving water availability to Olea Europaea seedlings in degraded drylands. Restor. Ecol. 2014, 22, 327–335. [Google Scholar] [CrossRef]
- Piotto, D.; Craven, D.; Montagnini, F.; Alice, F. Silvicultural and economic aspects of pure and mixed native tree species plantations on degraded pasturelands in humid Costa Rica. New For. 2010, 39, 369–385. [Google Scholar] [CrossRef]
- Engel, V.L.; Parrotta, J.A. An evaluation of direct seeding for reforestation of degraded lands in central Sao Paulo state, Brazil. For. Ecol. Manag. 2001, 152, 169–181. [Google Scholar] [CrossRef]
- Lamb, S.E.; Jørstad-Stein, E.C.; Hauer, K.; Becker, C. Development of a common outcome data set for fall injury prevention trials: The Prevention of Falls Network Europe consensus. J. Am. Geriatr. Soc. 2005, 53, 1618–1622. [Google Scholar] [CrossRef] [PubMed]
- Dodd, M.B.; Power, I.L. Direct seeding of indigenous tree and shrub species into New Zealand hill country pasture. Ecol. Manag. Restor. 2007, 8, 49–55. [Google Scholar] [CrossRef]
- Grossnickle, S.C.; MacDonald, J.E. Seedling quality: History, application, and plant attributes. Forests 2018, 9, 283. [Google Scholar] [CrossRef] [Green Version]
- Bojórquez-Tapia, L.A.; Cruz-Bello, G.M.; Luna-González, L. Connotative land degradation mapping: A knowledge-based approach to land degradation assessment. Environ. Model. Softw. 2013, 40, 51–64. [Google Scholar] [CrossRef]
- Holl, K.D.; Brancalion, P.H. Tree planting is not a simple solution. Science 2020, 368, 580–581. [Google Scholar] [CrossRef] [PubMed]
- Esmail, B.A.; Geneletti, D. Multi-criteria decision analysis for nature conservation: A review of 20 years of applications. Methods Ecol. Evol. 2018, 9, 42–53. [Google Scholar] [CrossRef] [Green Version]
- Martin, D.M.; Hermoso, V.; Pantus, F.; Olley, J.; Linke, S.; Poff, N.L. A proposed framework to systematically design and objectively evaluate non-dominated restoration tradeoffs for watershed planning and management. Ecol. Econ. 2016, 127, 146–155. [Google Scholar] [CrossRef] [Green Version]
- Forsyth, G.; Le Maitre, D.C.; O’Farrell, P.J.; Van Wilgen, B. The prioritisation of invasive alien plant control projects using a multi-criteria decision model informed by stakeholder input and spatial data. J. Environ. Manag. 2012, 103, 51–57. [Google Scholar] [CrossRef] [PubMed]
- Qureshi, M.E.; Harrison, S.R. Application of the analytic hierarchy process to riparian revegetation policy options. Small-Scale For. Econ. Manag. Policy 2003, 2, 441–458. [Google Scholar] [CrossRef] [Green Version]
- Aguirre-Salado, C.A.; Miranda-Aragón, L.; Pompa-García, M.; Reyes-Hernández, H.; Soubervielle-Montalvo, C.; Flores-Cano, J.A.; Méndez-Cortés, H. Improving identification of areas for ecological restoration for conservation by integrating USLE and MCDA in a GIS-environment: A pilot study in a priority region Northern Mexico. ISPRS Int. J. Geo Inf. 2017, 6, 262. [Google Scholar] [CrossRef] [Green Version]
- Oliveira-Filho, A.T.; Ratter, J.A. Vegetation Physiognomies and Woody Flora of the Cerrado Biome; Oliveira, P., Marquis, R., Eds.; Columbia University Press: New York, NY, USA, 2002; Volume 13, p. 91. [Google Scholar]
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World map of the Köppen-Geiger climate classification updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef]
- Carvalho, F.M.; Júnior, P.D.M.; Ferreira, L.G. The Cerrado into-pieces: Habitat fragmentation as a function of landscape use in the savannas of central Brazil. Biol. Conserv. 2009, 142, 1392–1403. [Google Scholar] [CrossRef]
- Klink, C.A.; Machado, R.B. Conservation of the Brazilian cerrado. Conserv. Biol. 2005, 19, 707–713. [Google Scholar] [CrossRef]
- Martinelli, L.A.; Naylor, R.; Vitousek, P.M.; Moutinho, P. Agriculture in Brazil: Impacts, costs, and opportunities for a sustainable future. Curr. Opin. Environ. Sustain. 2010, 2, 431–438. [Google Scholar] [CrossRef]
- Ribas, J.R. An assessment of conflicting intentions in the use of multipurpose water reservoirs. Water Resour. Manag. 2014, 28, 3989–4000. [Google Scholar] [CrossRef]
- Paulucio, V.d.O.; Silva, C.F.d.; Martins, M.A.; Pereira, M.G.; Schiavo, J.A.; Rodrigues, L.A. Reforestation of a degraded area with Eucalyptus and Sesbania: Microbial activity and chemical soil properties. Rev. Brasil. Ciência Solo 2017, 41, 41. [Google Scholar] [CrossRef] [Green Version]
- De Carvalho, J.C.B.; Espíndola, C.R.; Alves, M.C.; Figueiredo, G.C.; Dechen, S.C.F. Recovery of an oxisol degraded by the construction of a hydroelectric power plant. Rev. Brasil. Ciência Solo 2015, 39, 1776–1785. [Google Scholar] [CrossRef] [Green Version]
- Brockerhoff, E.G.; Jactel, H.; Parrotta, J.A.; Ferraz, S.F. Role of eucalypt and other planted forests in biodiversity conservation and the provision of biodiversity-related ecosystem services. For. Ecol. Manag. 2013, 301, 43–50. [Google Scholar] [CrossRef]
- Carriere, R.; Lohmann, L. Pulping the South: Industrial Tree Plantations and the World Paper Economy; Zed Books: London, UK, 1996. [Google Scholar]
- Tucker, N.I.; Murphy, T.M. The effects of ecological rehabilitation on vegetation recruitment: Some observations from the Wet Tropics of North Queensland. For. Ecol. Manag. 1997, 99, 133–152. [Google Scholar] [CrossRef]
- Da Silva, F.C. Manual de Análises Químicas de Solos, Plantas e Fertilizantes (Handbook of Chemical Analysis of Soils, Plants and Fertilizers); Embrapa Informação Tecnológica: Rio de Janeiro, Brazil; Embrapa Solos Brasília: Brasilia, Brazil, 2009. [Google Scholar]
- Hou, D.; Bolan, N.S.; Tsang, D.C.; Kirkham, M.B.; O’Connor, D. Sustainable soil use and management: An interdisciplinary and systematic approach. Sci. Total Environ. 2020, 729, 138961. [Google Scholar] [CrossRef] [PubMed]
- Schuren, S.; Snelder, D. Tree Growing on Farms in Northeast Luzon (The Philippines): Smallholders’ Motivations and Other Determinants for Adopting Agroforestry Systems; Snelder, D., Lasco, R., Eds.; Springer: New York, NY, USA, 2008; p. 75. [Google Scholar]
- Dos Santos, H.; Jacomine-Klinger, P.; Dos Anjos, L.; De Oliveira, V.; Lumbreras, J.F.; Coelho, M.; De Almeida, J.; de Araújo Filho, J.; De Oliveira, J.; Cunha, T. Sistema Brasileiro de Classificação de Solos; Embrapa: Brasília, Brazil, 2018. [Google Scholar]
- Silva, D.; Silva, J.; Junqueira, N.; Andrade, L. Frutas do Cerrado; Embrapa: Planaltina, Brazil, 2001. [Google Scholar]
- Bullock, J.M. Gaps in Seedling Colonization; Fenner, M., Ed.; CAB International: Wallingford, UK, 2000; Volume 2, p. 375. [Google Scholar]
- INPE. Sistema de Organizaçao Nacional de Dados Ambientais; Instituto Nacional de Pesquisas Espaciais: Natal, Brazil, 2021. [Google Scholar]
- Levine, J.M.; Vila, M.; Antonio, C.M.D.; Dukes, J.S.; Grigulis, K.; Lavorel, S. Mechanisms underlying the impacts of exotic plant invasions. Proc. R. Soc. Lond. Ser. B Biol. Sci. 2003, 270, 775–781. [Google Scholar]
- Da Silva, D.M.; Batalha, M.A. Defense syndromes against herbivory in a cerrado plant community. Plant Ecol. 2011, 212, 181–193. [Google Scholar] [CrossRef]
- Celis, G.; Jose, S. Restoring abandoned pasture land with native tree species in Costa Rica: Effects of exotic grass competition and light. For. Ecol. Manag. 2011, 261, 1598–1604. [Google Scholar] [CrossRef]
- Büyüközkan, G.; Ruan, D. Evaluation of software development projects using a fuzzy multi-criteria decision approach. Math. Comput. Simul. 2008, 77, 464–475. [Google Scholar] [CrossRef]
- Chand, P.; Thakkar, J.J.; Ghosh, K.K. Analysis of supply chain complexity drivers for Indian mining equipment manufacturing companies combining SAP-LAP and AHP. Resour. Policy 2018, 59, 389–410. [Google Scholar] [CrossRef]
- Chang, D. Applications of the extent analysis method on fuzzy AHP. Eur. J. Oper. Res. 1996, 95, 649–655. [Google Scholar] [CrossRef]
- Pictet, J.; Bollinger, D. The silent negotiation or how to elicit collective information for group MCDA without excessive discussion. J. Multi-Criteria Decis. Anal. 2005, 13, 199–211. [Google Scholar] [CrossRef]
- Ribas, J.R.; Rocha, M.d.S. A decision support system for prioritizing investments in an energy efficiency program in favelas in the city of Rio de Janeiro. J. Multi-Criteria Decis. Anal. 2015, 22, 89–99. [Google Scholar] [CrossRef]
- Saaty, T.L.; Vargas, L.G. How to Make a Decision; Springer: New York, NY, USA, 2012; p. 1. [Google Scholar]
- Bazzaz, F.; Ackerly, D.; Reekie, E. Reproductive Allocation in Plants; Fenner, M., Ed.; CAB International: Wallingford, UK, 2000; Volume 2, p. 30. [Google Scholar]
- Pons, T. Seed Responses to Light; Fenner, M., Ed.; CAB International: Wallingford, UK, 2000; Volume 2, p. 237. [Google Scholar]
- Mexal, J.G.; Landis, T.D. Target Seedling Concepts: Height and Diameter. 1990. Available online: https://agris.fao.org/agris-search/search.do?recordID=US9143647 (accessed on 4 June 2014).
- Rodríguez-Calcerrada, J.; Martin-StPaul, N.K.; Lempereur, M.; Ourcival, J.M.; del Rey, M.d.C.; Joffre, R.; Rambal, S. Stem CO2 efflux and its contribution to ecosystem CO2 efflux decrease with drought in a Mediterranean forest stand. Agric. For. Meteorol. 2014, 195, 61–72. [Google Scholar] [CrossRef] [Green Version]
- Klir, G.J.; Yuan, B. Fuzzy sets and fuzzy logic: Theory and applications. Possibility Theory Vs. Probab.Theory 1996, 32, 207–208. [Google Scholar]
- Saaty, T. Optimization in Integers and Related Problems Extreme; McGraw-Hill: New York, NY, USA, 1970. [Google Scholar]
- Ellis, M.; Mathews, E. Needs and trends in building and HVAC system design tools. Build. Environ. 2002, 37, 461–470. [Google Scholar] [CrossRef]
- Ruggiero, P.G.C.; Batalha, M.A.; Pivello, V.R.; Meirelles, S.T. Soil-vegetation relationships in cerrado (Brazilian savanna) and semideciduous forest, Southeastern Brazil. Plant Ecol. 2002, 160, 1–16. [Google Scholar] [CrossRef]
- Motta, P.; Curi, N.; Franzmeier, D. Relation of Soils and Geomorphic Surfaces in the Brazilian Cerrado; Oliveira, P., Marquis, R., Eds.; Columbia University Press: New York, NY, USA, 2002; Volume 13, p. 13. [Google Scholar]
- Stokes, A.; Norris, J.E.; Van Beek, L.; Bogaard, T.; Cammeraat, E.; Mickovski, S.B.; Jenner, A.; Di Iorio, A.; Fourcaud, T. How Vegetation Reinforces Soil on Slopes; Springer: New York, NY, USA, 2008; p. 65. [Google Scholar]
- Capobianco, V.; Robinson, K.; Kalsnes, B.; Ekeheien, C.; Høydal, Ø. Hydro-mechanical effects of several riparian vegetation combinations on the streambank stability—A benchmark case in southeastern Norway. Sustainability 2021, 13, 4046. [Google Scholar] [CrossRef]
- Fagundes, N.C.A.; Braga, L.D.L.; Silva, W.A.; Coutinho, C.A.; Neves, W.V.; De Souza, R.A.; Veloso, M.D.D.M.; Nunes, Y.R.F. Survival of saplings in recovery of riparian vegetation of pandeiros river (MG). Floresta Ambient. 2018, 25, 25. [Google Scholar] [CrossRef] [Green Version]
- Rossi, J.; Celini, L.; Mora, P.; Mathieu, J.; Lapied, E.; Nahmani, J.; Ponge, J.; Lavelle, P. Decreasing fallow duration in tropical slash-and-burn agriculture alters soil macroinvertebrate diversity: A case study in southern French Guiana. Agric. Ecosyst. Environ. 2010, 135, 148–154. [Google Scholar] [CrossRef] [Green Version]
Granulometric Composition | pH | Chemical Composition (cmolc/dm3 = mE/100 mL) | |||||||
Clay (%) | Sand (%) | Silt (%) | SOB ** | V% | CEC | SOC *** | SOM **** | ||
ES-1 | 31.3 | 47.5 | 21.2 | 5.0 | 1.07 | 20 | 5.30 | 11.1 | 19.1 |
ES-2 | 29.4 | 60.0 | 10.6 | 4.8 | 0.90 | 18 | 5.14 | 13.1 | 22.4 |
Chemical Composition(cmolc/dm3 = mE/100 mL) | |||||||||
P * | Ca | Mg | K | Na | Fe * | Al | Al sat % | ||
ES-1 | 1.1 | 0.4 | 0.4 | 0.18 | 0.02 | 299 | 1.7 | 61 | |
ES-2 | 0.7 | 0.4 | 0.2 | 0.20 | 0.02 | 241 | 1.5 | 62 |
Abbreviation Identification | Binomial Name | Brazilian Common Name |
---|---|---|
PgS | Psidium guineense Swartz | Araçá Vermelho |
SsAG | Sterculia striata A.St.-Hill & Gaudin | Chichá |
IAW | Ingá Alba (Sw) Willd | Ingá |
HsMH | Hymenaea stigonocarpa Mart. ex Hayne | Jatobá do Cerrado |
GaLL | Genipa americana L. | Jenipapo |
TsAR | Talisia esculenta (A.St.-Hill.) Radlk | Pitomba |
AcLE | Acrocomia aculeata (Jacq.) Lodd. Ex Mart. | Macaúba |
Byr | Byrsonima verbascifolia (L.) L.C.Rich | Murici |
AaAR | Alibertia edulis (L.C.Rich) A.Riche ex DC. | Marmelada de Bezerro |
SUR | LEA | HEI | DBH | |
---|---|---|---|---|
SUR | 1 | 2 | 3 | 5 |
LEA | 1/2 | 1 | 2 | 4 |
HEI | 1/3 | 1/2 | 1 | 3 |
DBH | 1/5 | 1/4 | 1/3 | 1 |
PGs | SsAG | IAW | HsMH | GaLL | TsAR | AcLE | BgT | AeAR | |
---|---|---|---|---|---|---|---|---|---|
PGs | 1 | 1/2 | 1 | 4 | 1/3 | 3 | 3 | 4 | 3 |
SsAG | 2 | 1 | 2 | 5 | 1/2 | 4 | 4 | 5 | 4 |
IAW | 1 | 1/2 | 1 | 4 | 1/3 | 3 | 3 | 4 | 3 |
HsMH | 1/4 | 1/5 | 1/4 | 1 | 1/6 | 1/2 | 1/2 | 1 | 1/2 |
GaLL | 3 | 2 | 3 | 6 | 1 | 5 | 5 | 6 | 5 |
TsAR | 1/3 | 1/4 | 1/3 | 2 | 1/5 | 1 | 1 | 2 | 1 |
AcLE | 1/3 | 1/4 | 1/3 | 2 | 1/5 | 1 | 1 | 2 | 1 |
BgT | 1/4 | 1/5 | 1/4 | 1 | 1/6 | 1/2 | 1/2 | 1 | 1/2 |
AeAR | 1/3 | 1/4 | 1/3 | 2 | 1/5 | 1 | 1 | 2 | 1 |
SUR | LEA | HEI | DBH |
---|---|---|---|
0.285 | 0.270 | 0.248 | 0.197 |
Criteria | ES-1 | ES-2 | |||||||
---|---|---|---|---|---|---|---|---|---|
SUR | LEA | HEI | DBH | SUR | LEA | HEI | DBH | ||
CI | 0.017 | 0.019 | 0.025 | 0.019 | 0.031 | 0.012 | 0.017 | 0.023 | 0.031 |
CR | 0.019 | 0.013 | 0.017 | 0.013 | 0.021 | 0.008 | 0.012 | 0.016 | 0.022 |
Species | ES-1 | ES-2 | ||
---|---|---|---|---|
PGs | 0.141 | 3rd | 0.1302 | 4th |
SsAG | 0.137 | 4th | 0.1531 | 2nd |
IAW | 0.183 | 1st | 0.1785 | 1st |
HsMH | 0.044 | 9th | 0.0377 | 9th |
GaLL | 0.152 | 2nd | 0.1465 | 3rd |
TsAR | 0.087 | 6th | 0.0796 | 8th |
AcLE | 0.078 | 7th | 0.0807 | 6th |
Byr | 0.054 | 8th | 0.0799 | 7th |
AeAR | 0.124 | 5th | 0.1139 | 5th |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ribas, J.R.; Ribas, J.S.; García, A.S.; Fariña, E.A.; Peña, D.G.; Rodríguez, A.G. A Multicriteria Evaluation of Sustainable Riparian Revegetation with Local Fruit Trees around a Reservoir of a Hydroelectric Power Plant in Central Brazil. Sustainability 2021, 13, 7849. https://doi.org/10.3390/su13147849
Ribas JR, Ribas JS, García AS, Fariña EA, Peña DG, Rodríguez AG. A Multicriteria Evaluation of Sustainable Riparian Revegetation with Local Fruit Trees around a Reservoir of a Hydroelectric Power Plant in Central Brazil. Sustainability. 2021; 13(14):7849. https://doi.org/10.3390/su13147849
Chicago/Turabian StyleRibas, José Roberto, Jorge Santos Ribas, Andrés Suárez García, Elena Arce Fariña, David González Peña, and Ana García Rodríguez. 2021. "A Multicriteria Evaluation of Sustainable Riparian Revegetation with Local Fruit Trees around a Reservoir of a Hydroelectric Power Plant in Central Brazil" Sustainability 13, no. 14: 7849. https://doi.org/10.3390/su13147849
APA StyleRibas, J. R., Ribas, J. S., García, A. S., Fariña, E. A., Peña, D. G., & Rodríguez, A. G. (2021). A Multicriteria Evaluation of Sustainable Riparian Revegetation with Local Fruit Trees around a Reservoir of a Hydroelectric Power Plant in Central Brazil. Sustainability, 13(14), 7849. https://doi.org/10.3390/su13147849