The Impact of Impervious Surface Expansion on Soil Organic Carbon: A Case Study of 0–300 cm Soil Layer in Guangzhou City
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Mapping Land Use/Cover in 2019
2.3. Compiled SOC Densities for Pervious Surfaces
2.4. Estimates of SOC Density for Impervious Surfaces
2.5. Estimate of SOC Storage Loss Caused by Impervious Surface Expansion
3. Results
3.1. Area Estimation by Land Cover in 2019
3.2. SOC Stock and Its Profile Distribution by Land Cover
3.3. SOC Loss Caused by Soil Removal for the Installation of Impervious Surface
4. Discussion
4.1. Comparison Analysis of SOC Density for Pervious Surfaces
4.2. Comparison Analysis of SOC Density of Impervious-Covered Soil
4.3. Impacts of Impervious Surface Expansion on SOC Storage
4.4. Uncertainties of SOC Pool Evaluation
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- United Nations. World Urbanization Prospects: The 2018 Revision; United Nations: New York, NY, USA, 2019. [Google Scholar]
- Seto, K.C.; Guneralp, B.; Hutyra, L.R. Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proc. Natl. Acad. Sci. USA 2012, 109, 16083–16088. [Google Scholar] [CrossRef] [Green Version]
- Hutyra, L.R.; Duren, R.; Gurney, K.R.; Grimm, N.; Kort, E.A.; Larson, E.; Shrestha, G. Urbanization and the carbon cycle: Current capabilities and research outlook from the natural sciences perspective. Earth’s Future 2014, 2, 473–495. [Google Scholar] [CrossRef] [Green Version]
- Pickett, S.T.; Cadenasso, M.L.; Grove, J.M.; Groffman, P.M.; Band, L.E.; Boone, C.G.; Burch, W.R.; Grimmond, C.S.B.; Hom, J.; Jenkins, J.C.; et al. Beyond urban legends: An emerging framework of urban ecology, as illustrated by the Baltimore Ecosystem Study. Bioscience 2008, 58, 139–150. [Google Scholar] [CrossRef]
- Churkina, G. The role of urbanization in the global carbon cycle. Front. Ecol. Evol. 2016, 3, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Gregg, J.W.; Jones, C.G.; Dawson, T.E. Urbanization effects on tree growth in the vicinity of New York City. Nature 2003, 424, 183–187. [Google Scholar] [CrossRef] [PubMed]
- Kaye, J.P.; Mcculley, R.L.; Burke, I.C. Carbon fluxes, nitrogen cycling, and soil microbial communities in adjacent urban, native and agricultural ecosystems. Glob. Chang. Biol. 2005, 11, 575–587. [Google Scholar] [CrossRef]
- Golubiewski, N.E. Urbanization increases grassland carbon pools: Effects of landscaping in Colorado’s front range. Ecol. Appl. 2006, 16, 555–571. [Google Scholar] [CrossRef]
- Zhao, S.; Liu, S.; Zhou, D. Prevalent vegetation growth enhancement in urban environment. Proc. Natl. Acad. Sci. USA 2016, 113, 6313–6318. [Google Scholar] [CrossRef] [Green Version]
- Pretzsch, H.; Biber, P.; Uhl, E.; Dahlhausen, J.; Schütze, G.; Perkins, D.; Rötzer, T.; Caldentey, J.; Koike, T.; van Con, T.; et al. Climate change accelerates growth of urban trees in metropolises worldwide. Sci. Rep. 2017, 7, 1–10. [Google Scholar] [CrossRef]
- Jia, W.; Zhao, S.; Liu, S. Vegetation growth enhancement in urban environments of the Conterminous United States. Glob. Chang. Biol. 2018, 24, 4084–4094. [Google Scholar] [CrossRef]
- Pouyat, R.V.; Yesilonis, I.D.; Golubiewski, N.E. A comparison of soil organic carbon stocks between residential turf grass and native soil. Urban Ecosyst. 2009, 12, 45–62. [Google Scholar] [CrossRef]
- Churkina, G.; Brown, D.G.; Keoleian, G. Carbon stored in human settlements: The conterminous United States. Glob. Chang. Biol. 2010, 16, 135–143. [Google Scholar] [CrossRef] [Green Version]
- Raciti, S.M.; Hutyra, L.R.; Finzi, A.C. Depleted soil carbon and nitrogen pools beneath impervious surfaces. Environ. Pollut. 2012, 164, 248–251. [Google Scholar] [CrossRef]
- Scalenghe, R.; Marsan, F.A. The anthropogenic sealing of soils in urban areas. Landsc. Urban Plan. 2009, 90, 1–10. [Google Scholar] [CrossRef]
- Kuang, W.; Liu, J.; Zhang, Z.; Lu, D.; Xiang, B. Spatiotemporal dynamics of impervious surface areas across China during the early 21st century. Chin. Sci. Bull. 2013, 58, 1691–1701. [Google Scholar] [CrossRef] [Green Version]
- Fuller, R.A.; Gaston, K.J. The scaling of green space coverage in European cities. Biol. Lett. 2009, 5, 352–355. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pouyat, R.V.; Yesilonis, I.D.; Nowak, D.J. Carbon storage by urban soils in the United States. J. Environ. Qual. 2006, 35, 1566–1575. [Google Scholar] [CrossRef] [Green Version]
- Yan, Y.; Kuang, W.; Zhang, C.; Chen, C. Impacts of impervious surface expansion on soil organic carbon—A spatially explicit study. Sci. Rep. 2015, 5, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wei, Z.; Wu, S.; Yan, X.; Zhou, S. Density and stability of soil organic carbon beneath impervious surfaces in urban areas. PLoS ONE 2014, 9, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Cambou, A.; Shaw, R.K.; Huot, H.; Vidal-Beaudet, L.; Hunault, G.; Cannavo, P.; Nold, F.; Schwartz, C. Estimation of soil organic carbon stocks of two cities, New York City and Paris. Sci. Total Environ. 2018, 644, 452–464. [Google Scholar] [CrossRef] [Green Version]
- Lu, C.; Kotze, D.J.; Setl, H.M. Soil sealing causes substantial losses in C and N storage in urban soils under cool climate. Sci. Total Environ. 2020, 725, 138369. [Google Scholar] [CrossRef]
- Edmondson, J.L.; Davies, Z.G.; Mchugh, N.; Gaston, K.J.; Leake, J.R. Organic carbon hidden in urban ecosystems. Sci. Rep. 2012, 2, 1–7. [Google Scholar] [CrossRef]
- Tian, H.; Melillo, J.; Lu, C.; Kicklighter, D.; Liu, M.; Ren, W.; Xu, X.; Chen, G.; Zhang, C.; Pan, S.; et al. China’s terrestrial carbon balance: Contributions from multiple global change factors. Glob. Biogeochem. Cycles 2011, 25, 1–16. [Google Scholar] [CrossRef]
- Zhang, C.; Tian, H.; Chen, G.; Chappelka, A.; Xu, X.; Ren, W.; Hui, D.; Liu, M.; Lu, C.; Pan, S.; et al. Impacts of urbanization on carbon balance in terrestrial ecosystems of the Southern United States. Environ. Pollut. 2012, 164, 89–101. [Google Scholar] [CrossRef]
- Jiang, W.; Deng, Y.; Tang, Z.; Lei, X.; Chen, Z. Modelling the potential impacts of urban ecosystem changes on carbon storage under different scenarios by linking the CLUE-S and the InVEST models. Ecol. Model. 2016, 345, 30–40. [Google Scholar] [CrossRef]
- Lyu, R.; Mi, L.; Zhang, J.; Xu, M. Modeling the effects of urban expansion on regional carbon storage by coupling SLEUTH model and InVEST model. Ecol. Res. 2019, 34, 380–393. [Google Scholar] [CrossRef]
- Heuvelink, G.B.; Angelini, M.E.; Poggio, L.; Bai, Z.; Batjes, N.H.; Bosch, R.; Bossio, D.; Estella, S.; Lehmann, J.; Olmedo, G.; et al. Machine learning in space and time for modelling soil organic carbon change. Eur. J. Soil Sci. 2021, 72, 1607–1623. [Google Scholar] [CrossRef]
- Majidzadeh, H.; Graeme, L.B.; Robert, P.; Robin, G. Soil Carbon and Nitrogen Dynamics beneath Impervious Surfaces. Soil Sci. Soc. Am. J. 2018, 82, 1–8. [Google Scholar] [CrossRef]
- Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Design Code for Residential Buildings (GB 50096-2011); China Building Industry Press: Beijing, China, 2011; pp. 18–19.
- Bobylev, N. Mainstreaming sustainable development into a city’s Master plan: A case of Urban Underground Space use. Land Use Policy 2009, 26, 1128–1137. [Google Scholar] [CrossRef]
- Cui, J.; Broere, W.; Lin, D. Underground space utilization for urban renewal. Tunn. Undergr. Space Technol. 2021, 108, 1–10. [Google Scholar] [CrossRef]
- Jobbágy, E.G.; Jackson, R.B. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol. Appl. 2000, 10, 423–436. [Google Scholar] [CrossRef]
- Zhao, S.; Zhu, C.; Zhou, D.; Huang, D.; Jeremy, W.; Ben, B.L. Organic carbon storage in China’s urban areas. PLoS ONE 2013, 8, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.; Chi, G.; Li, J. The spatial association of ecosystem services with land use and land cover change at the county level in China, 1995–2015. Sci. Total Environ. 2019, 669, 459–470. [Google Scholar] [CrossRef] [PubMed]
- Song, W.; Deng, X. Land-use/land-cover change and ecosystem service provision in China. Sci. Total Environ. 2017, 576, 705–719. [Google Scholar] [CrossRef] [PubMed]
- Statistics Bureau of Guangzhou City. Guangzhou Statistical Yearbook of 2020 and 2000; China Statistics Press: Beijing, China, 2021; Available online: http://112.94.72.17/portal/queryInfo/statisticsYearbook/index (accessed on 7 February 2021).
- Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Code for Design of Building Foundation GB 50007-2002; China Building Industry Press: Beijing, China, 2002; pp. 17–35.
- Fan, F.; Fan, W.; Weng, Q. Improving urban impervious surface mapping by linear spectral mixture analysis and using spectral indices. Can. J Remote Sens. 2015, 41, 577–586. [Google Scholar] [CrossRef]
- Zhu, X. Temporal and spatial variation of organic carbon and soil carbon storage in the Pearl River Delta Economic Zone. Chin. J. Geol. Miner. Resour. South China 2014, 30, 176–185. [Google Scholar]
- Transport Engineering Center of Ministry of Housing and Urban-Rural Development of the People’s Republic of China; China Academy of Urban Planning and design; Beijing Siwei Tuxin Science and Technology Co., Ltd. Annual Report on Road Network Density in Major Chinese Cities (2020); China Academy of Urban Planning and Design: Beijing, China, 2020.
- Bae, J.; Ryu, Y. High soil organic carbon stocks under impervious surfaces contributed by urban deep cultural layers. Landsc. Urban Plan. 2020, 204, 103953. [Google Scholar] [CrossRef]
- Soil Census Office of Guangdong Province. Soil Species Records of Guangdong Province; Science Press: Beijing, China, 1996; pp. 85–88, 91–94, 117–123, 393–396, 409–410, 413–414. [Google Scholar]
- Soil Census Office of Guangdong Province. Soils of Guangdong Province; Science Press: Beijing, China, 1996; pp. 142–144, 147–152. [Google Scholar]
- Wang, Q. Study on the structure and composition of granite residual soil in the Eastern China. Chin. J. Changchun Univ. Earth Sci. 1991, 21, 70–81. [Google Scholar]
- Ding, L.; Jiang, Y.; Chen, D.; Zhang, X. Analysis of mechanical properties and correlation of soft soil developed in Guangzhou City. Chin. J. Railw. Eng. 2011, 75–78. [Google Scholar] [CrossRef]
- Nelson, D.W.; Sommers, L.E. Total Carbon, Organic Carbon, and Organic Matter. In Methods of Soil Analysis; Sparks, D., Page, A., Helmke, P., Loeppert, R., Soltanpour, P.N., Tabatabai, M.A., Johnston, C.T., Sumner, M.E., Eds.; Wiley: Hoboken, NJ, USA, 1996. [Google Scholar] [CrossRef]
- Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Code for Design of Urban Road Engineering CJJ37-2012; China Building Industry Press: Beijing, China, 2012; pp. 45–46.
- Pan, X.; Huan, Q. Experimental study on cement modified red clay compaction. Chin. J. Sci. Techn. Vis. 2018, 4–85. [Google Scholar] [CrossRef]
- Zhou, J. Modification and modification mechanism of red clay. Master’s Thesis, Chongqing University, Chongqing, China, May 2014. [Google Scholar]
- Li, H.; Yu, G.; Liang, X. Study on variation of maximum dry density with time for modified mild clay. Chin. J. Subgrade Eng. 2007, 95–97. [Google Scholar] [CrossRef]
- Liu, X. Research on the Application of Construction Waste Regeneration in Highway Subgrade. Chin. J. Highw. Eng. 2019, 44, 208–212. [Google Scholar]
- Zhang, Y.; Xu, Q.; Peng, D.; Zhao, K.; Guo, C. An experimental study of the permeability of the catastrophic landslide at the Shenzhen Landfill. Chin. J. Hydrogeol. Eng. Geol. 2017, 44, 149. [Google Scholar]
- Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Technical Code for Ground Treatment of Buildings JGJ79-2012; China Building Industry Press: Beijing, China, 2012; p. 13.
- Liang, S.; Zhou, S.; Zhang, L.; Wang, M. Statistical analysis of physical and mechanical indexes of granite residual soil in eastern Guangzhou. Chin. J. Guangdong Uni. Tech. 2015, 32, 49. [Google Scholar]
- USDA–NRCS. Soil Survey Laboratory Information Manual, Version 2.0; Soil Survey Investigations Report No. 45; U.S. Government Printer: Washington, DC, USA, 2011; pp. 235–253.
- Cao, M. Comparative analysis of granite residual soil developed in Yan Mountains period and sinian system. Chin. J. Sichuan Cem. 2016, 53–55. [Google Scholar] [CrossRef]
- Xiang, Y. Statistical Analysis of physical and mechanical properties of granite residual soil and weathered layer in Luogang station of Guangzhou Metro Line 6. Chin. J. Constr. Sci. Technol. 2012, 92–93. [Google Scholar] [CrossRef]
- Huang, H. Engineering geological characteristics of granite residual soil and application in Panyu District, Guangdong Province. Chin. J. Hydrogeol. Eng. Geol. 2000, 38–39. [Google Scholar] [CrossRef]
- Zeng, F. The engineering geological feature of granite residual soil in Guangdong Shiqiao Region. Chin. J. Soil Eng. Found. 1993, 7, 29–34. [Google Scholar]
- Wu, F. Study of engineering geological characteristics of granitic rocks weathered in Guangzhou. Master’s Thesis, Guangzhou University, Guangzhou, China, 30 May 2013. [Google Scholar]
- Technical Regulations on Urban and Rural Planning of Guangzhou City (Government Decree of the People’s Government of Guangzhou Municipality [2015] No. 133). Available online: http://www.gz.gov.cn/zwgk/fggw/zfgz/content/mpost_4756949.html (accessed on 4 November 2015).
- Ten Years of Urban Renewal in Guangzhou: From Single Goal to Multiple Goals. 2020. Available online: https://www.xkb.com.cn/article_634086 (accessed on 27 November 2020).
- Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Planting Soil for Greening CJ/T 340-2011; Standards Press of China: Beijing, China, 2011; p. 4.
- Zhu, Y.; Luo, Q.; Chen, Y.; Huang, Y.; Guan, D. Carbon density and distribution of main ecosystems in Ten-Thousand-Mu Orchard at Haizhu District, Guangzhou. Chin. J. Ecol. 2016, 35, 164–169. [Google Scholar] [CrossRef]
- Wu, Z.; Huang, Y.; Jiang, C. Soil and vegetation carbon storage and its spatial pattern analysis of Guangzhou City, China. J. Guangzhou Univ. 2014, 13, 73–79. [Google Scholar]
- Sulman, B.N.; Harden, J.; He, Y.; Treat, C.; Nave, L.E. Land use and land cover affect the depth distribution of soil carbon: Insights from a large database of soil profiles. Front. Environ. Sci. 2020, 8, 1–12. [Google Scholar] [CrossRef]
- D’Elia, A.H.; Liles, G.C.; Viers, J.H.; Smart, D.R. Deep carbon storage potential of buried floodplain soils. Sci. Rep. 2017, 7, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Steger, K.; Fiener, P.; Marvin-DiPasquale, M.; Viers, J.H.; Smart, D.R. Human-induced and natural carbon storage in floodplains of the Central Valley of California. Sci. Total Environ. 2019, 651, 851–858. [Google Scholar] [CrossRef]
- Bi, L.; Chen, X.; Lu, B. Distribution features of soft soil and the prediction of seismic subsidence in Guangzhou. Chin. J. China Earthq. Eng. J. 2018, 40, 1026–1033. [Google Scholar]
- Guo, L.B.; Gifford, R.M. Soil carbon stocks and land use change: A meta analysis. Glob. Chang. Biol. 2010, 8, 345–360. [Google Scholar] [CrossRef]
- Zhang, X.; Xu, Z.; Zeng, F.; Hu, X.; Han, Q. Carbon density distribution and storage dynamics of forest ecosystem in Pearl River Delta of low subtropical China. China Environ. Sci. 2011, 31, 69–77. [Google Scholar] [CrossRef]
- Vasenev, V.; Yakov, K. Urban soils as hot spots of anthropogenic carbon accumulation: Review of stocks, mechanisms and driving factors. Land Degrad. Dev. 2018, 29, 1607–1622. [Google Scholar] [CrossRef]
- Xu, X.L.; Liu, J.Y.; Zhang, S.W.; Li, R.D.; Yan, C.Z.; Wu, S.X. China’s Multi-Period Land Use/Cover Remote Sensing Monitoring Dataset (CNLUCC); Data Registration and Publishing System of the Resource and Environmental Science Data Center of the Chinese Academy of Sciences: Beijing, China, 2018. [Google Scholar] [CrossRef]
Land Use/Cover | Area (km2) | SOC Density (kg/m2) | ||||
---|---|---|---|---|---|---|
0–20 cm | 20–100 cm | 100–200 cm | 200–300 cm | 0–300 cm | ||
Farmland | 24.97 | 2.49 | 6.97 | 6.88 | 2.70 | 19.04 |
Woodland | 59.02 | 2.22 | 5.82 | 5.38 | 3.90 | 17.32 |
Greenspace | 67.16 | 2.13 | 6.14 | 6.18 | 2.70 | 17.15 |
IS20 | 261.46 | 0 | 5.82 | 5.52 | 2.70 | 14.04 |
IS100 | 241.90 | 0 | 0 | 5.52 | 2.70 | 8.22 |
IS300 | 36.51 | 0 | 0 | 0.00 | 0.00 | 0.00 |
Impervious Surface Type | SOC Density Loss kg/m2 | SOC Pool Loss Tg | Fraction of SOC Pool Loss % | Impervious Surface Coverage % |
---|---|---|---|---|
IS300 | 18.18 | 0.66 | 16 | 5 |
IS100 | 9.96 | 2.41 | 58 | 33 |
IS20 | 4.14 | 1.08 | 26 | 35 |
Total | 7.67 * | 4.16 | 100 | 73 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, J.; Yu, M.; Yan, J. The Impact of Impervious Surface Expansion on Soil Organic Carbon: A Case Study of 0–300 cm Soil Layer in Guangzhou City. Sustainability 2021, 13, 7901. https://doi.org/10.3390/su13147901
Du J, Yu M, Yan J. The Impact of Impervious Surface Expansion on Soil Organic Carbon: A Case Study of 0–300 cm Soil Layer in Guangzhou City. Sustainability. 2021; 13(14):7901. https://doi.org/10.3390/su13147901
Chicago/Turabian StyleDu, Jifeng, Mengxiao Yu, and Junhua Yan. 2021. "The Impact of Impervious Surface Expansion on Soil Organic Carbon: A Case Study of 0–300 cm Soil Layer in Guangzhou City" Sustainability 13, no. 14: 7901. https://doi.org/10.3390/su13147901
APA StyleDu, J., Yu, M., & Yan, J. (2021). The Impact of Impervious Surface Expansion on Soil Organic Carbon: A Case Study of 0–300 cm Soil Layer in Guangzhou City. Sustainability, 13(14), 7901. https://doi.org/10.3390/su13147901