Associations of Classroom Design and Classroom-Based Physical Activity with Behavioral and Emotional Engagement among Primary School Students
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Participants
3.2. Structural Equation Model Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Saltmarsh, S.; Chapman, A.; Campbell, M.; Drew, C. Putting “structure within the space”: Spatially un/responsive pedagogic practices in open-plan learning environments. Educ. Rev. 2015, 67, 315–327. [Google Scholar] [CrossRef]
- Niemi, K. ‘The best guess for the future?’ Teachers’ adaptation to open and flexible learning environments in Finland. Educ. Inq. 2020, 1–19. [Google Scholar] [CrossRef]
- Mäkitalo-Siegl, K.; Zottmann, J.; Kaplan, F.; Fischer, F. Classroom of the Future: Orchestrating Collaborative Spaces; Sense Publishers: Rotterdam, The Netherlands, 2010. [Google Scholar]
- Ministry of Education. Finnish National Curriculum. 2014. National Board of Education. Available online: www.oph.fi/sites/default/files/documents/perusopetuksen_opetussuunnitelman_perusteet_2014.pdf (accessed on 21 October 2020).
- Fredricks, J.A.; Blumenfeld, P.C.; Paris, A.H. School engagement: Potential of the concept, state of the evidence. Rev. Educ. Res. 2004, 74, 59–109. [Google Scholar] [CrossRef] [Green Version]
- Appleton, J.J.; Christenson, S.L.; Kim, D.; Reschly, A.L. Measuring cognitive and psychological engagement: Validation of the Student Engagement Instrument. J. Sch. Psychol. 2006, 44, 427–445. [Google Scholar] [CrossRef]
- Jimerson, S.R.; Campos, E.; Greif, J.L. Toward an understanding of definitions and measures of school engagement and related terms. Calif. Sch. Psychol. 2003, 8, 7–27. [Google Scholar] [CrossRef]
- Archambault, I.; Janosz, M.; Morizot, J.; Pagani, L. Adolescent behavioral, affective, and cognitive engagement in school: Relationship to dropout. J. Sch. Health 2009, 79, 408–415. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Lerner, R.M. Interrelations of behavioral, emotional, and cognitive school engagement in high school students. J. Youth Adolesc. 2013, 42, 20–32. [Google Scholar] [CrossRef]
- Kariippanon, K.E.; Cliff, D.P.; Lancaster, S.J.; Okely, A.D.; Parrish, A. Flexible learning spaces facilitate interaction, collaboration and behavioural engagement in secondary school. PLoS ONE 2019, 14, e0223607. [Google Scholar] [CrossRef]
- Rands, M.L.; Gansemer-Topf, A.M. The room itself is active: How classroom design impacts student engagement. J. Learn. Spaces 2017, 6, 26. Available online: http://libjournal.uncg.edu/jls/article/view/1286/1028 (accessed on 12 July 2021).
- Brittin, J.; Sorensen, D.; Trowbridge, M.; Lee, K.K.; Breithecker, D.; Frerichs, L.; Huang, T. Physical activity design guidelines for school architecture. PLoS ONE 2015, 10, e0132597. [Google Scholar] [CrossRef] [Green Version]
- Caspersen, C.J.; Powell, K.E.; Christenson, G.M. Physical activity, exercise, and physical fitness: Definitions and distinctions for health-related research. Public Health Rep. 1985, 100, 126. [Google Scholar] [PubMed]
- Janssen, I.; LeBlanc, A.G. Systematic review of the health benefits of physical activity and fitness in school-aged children and youth. Int. J. Behav. Nutr. Phys. Act. 2010, 7, 40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Biddle, S.J.; Ciaccioni, S.; Thomas, G.; Vergeer, I. Physical activity and mental health in children and adolescents: An updated review of reviews and an analysis of causality. Psychol. Sport Exerc. 2019, 42, 146–155. [Google Scholar] [CrossRef]
- Tremblay, M.S.; LeBlanc, A.G.; Kho, M.E.; Saunders, T.J.; Larouche, R.; Colley, R.C.; Goldfield, G.; Gorber, S.C. Systematic review of sedentary behaviour and health indicators in school-aged children and youth. Int. J. Behav. Nutr. Phys. Act. 2011, 8, 98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Altenburg, T.M.; Chinapaw, M.J. Bouts and breaks in children’s sedentary time: Currently used operational definitions and recommendations for future research. Prev. Med. 2015, 77, 1–3. [Google Scholar] [CrossRef]
- Saunders, T.J.; Tremblay, M.S.; Mathieu, M.; Henderson, M.; O’Loughlin, J.; Tremblay, A.; Chaput, J.-P. on behalf of the QUALITY Cohort Research Group Associations of Sedentary Behavior, Sedentary Bouts and Breaks in Sedentary Time with Cardiometabolic Risk in Children with a Family History of Obesity. PLoS ONE 2013, 8, e79143. [Google Scholar] [CrossRef] [Green Version]
- Carson, V.; Hunter, S.; Kuzik, N.; Gray, C.; Poitras, V.J.; Chaput, J.-P.; Saunders, T.J.; Katzmarzyk, P.; Okely, A.; Gorber, S.C.; et al. Systematic review of sedentary behaviour and health indicators in school-aged children and youth: An update. Appl. Physiol. Nutr. Metab. 2016, 41, S240–S265. [Google Scholar] [CrossRef] [PubMed]
- Bull, F.C.; Al-Ansari, S.S.; Biddle, S.; Borodulin, K.; Buman, M.P.; Cardon, G.; Carty, C.; Chaput, J.-P.; Chastin, S.; Chou, R.; et al. World Health Organization 2020 guidelines on physical activity and sedentary behaviour. Br. J. Sports Med. 2020, 54, 1451–1462. [Google Scholar] [CrossRef]
- Ortega, F.B.; Konstabel, K.; Pasquali, E.; Ruiz, J.; Hurtig-Wennlöf, A.; Mäestu, J.; Löf, M.; Harro, J.; Bellocco, R.; Labayen, I.; et al. Objectively Measured Physical Activity and Sedentary Time during Childhood, Adolescence and Young Adulthood: A Cohort Study. PLoS ONE 2013, 8, e60871. [Google Scholar] [CrossRef] [Green Version]
- Aubert, S.; Barnes, J.D.; Abdeta, C.; Abi Nader, P.; Adeniyi, A.F.; Aguilar-Farias, N.; Tenesaca, D.S.A.; Bhawra, J.; Brazo-Sayavera, J.; Cardon, G.; et al. Global Matrix 3.0 Physical Activity Report Card Grades for Children and Youth: Results and Analysis From 49 Countries. J. Phys. Act. Health 2018, 15, 251–273. [Google Scholar] [CrossRef] [Green Version]
- Colley, R.C.; Garriguet, D.; Janssen, I.; Wong, S.L.; Saunders, T.J.; Carson, V.; Tremblay, M.S. The association between accelerometer-measured patterns of sedentary time and health risk in children and youth: Results from the Canadian Health Measures Survey. BMC Public Health 2013, 13, 200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Konstabel, K.; Veidebaum, T.; Verbestel, V.; Moreno, L.A.; Bammann, K.; Tornaritis, M.; Eiben, G.; Molnár, D.; Siani, A.; Sprengeler, O.; et al. Objectively measured physical activity in European children: The IDEFICS study. Int. J. Obes. 2014, 38, S135–S143. [Google Scholar] [CrossRef] [Green Version]
- van Stralen, M.M.; Yıldırım, M.; Wulp, A.; Te Velde, S.J.; Verloigne, M.; Doessegger, A.; Androutsos, O.; Kovács, É.; Brug, J.; Chinapaw, M.J. Measured sedentary time and physical activity during the school day of European 10-to 12-year-old children: The ENERGY project. J. Sci. Med. Sport 2014, 17, 201–206. [Google Scholar] [CrossRef] [PubMed]
- Salin, K.; Huhtiniemi, M.; Watt, A.; Hakonen, H.; Jaakkola, T. Differences in the Physical Activity, Sedentary Time, and BMI of Finnish Grade 5 Students. J. Phys. Act. Health 2019, 16, 765–771. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trost, S.G.; Pate, R.R.; Sallis, J.F.; Freedson, P.S.; Taylor, W.C.; Dowda, M.; Sirard, J. Age and gender differences in objectively measured physical activity in youth. Med. Sci. Sports Exerc. 2002, 34, 350–355. [Google Scholar] [CrossRef]
- Jago, R.; Solomon-Moore, E.; Macdonald-Wallis, C.; Sebire, S.J.; Thompson, J.L.; Lawlor, D.A. Change in children’s physical activity and sedentary time between Year 1 and Year 4 of primary school in the B-PROACT1V cohort. Int. J. Behav. Nutr. Phys. Act. 2017, 14, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grao-Cruces, A.; Sánchez-Oliva, D.; Padilla-Moledo, C.; Izquierdo-Gómez, R.; Cabanas-Sánchez, V.; Castro-Piñero, J. Changes in the school and non-school sedentary time in youth: The UP&DOWN longitudinal study. J. Sports Sci. 2020, 38, 780–786. [Google Scholar] [CrossRef]
- Harding, S.K.; Page, A.S.; Falconer, C.; Cooper, A.R. Longitudinal changes in sedentary time and physical activity during adolescence. Int. J. Behav. Nutr. Phys. Act. 2015, 12, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Goh, T.L.; Hannon, J.; Webster, C.; Podlog, L.; Newton, M. Effects of a TAKE 10! Classroom-based physical activity intervention on third-to fifth-grade children’s on-task behavior. J. Phys. Act. Health 2016, 13, 712–718. [Google Scholar] [CrossRef]
- Watson, A.; Timperio, A.; Brown, H.; Best, K.; Hesketh, K.D. Effect of classroom-based physical activity interventions on academic and physical activity outcomes: A systematic review and meta-analysis. Int. J. Behav. Nutr. Phys. Act. 2017, 14, 1–24. [Google Scholar] [CrossRef] [Green Version]
- Owen, K.B.; Parker, P.D.; Astell-Burt, T.; Lonsdale, C. Effects of physical activity and breaks on mathematics engagement in adolescents. J. Sci. Med. Sport 2018, 21, 63–68. [Google Scholar] [CrossRef]
- Mavilidi, M.F.; Drew, R.; Morgan, P.J.; Lubans, D.R.; Schmidt, M.; Riley, N. Effects of different types of classroom physical activity breaks on children’s on-task behaviour, academic achievement and cognition. Acta Paediatr. 2020, 109, 158–165. [Google Scholar] [CrossRef] [Green Version]
- Vazou, S.; Gavrilou, P.; Mamalaki, E.; Papanastasiou, A.; Sioumala, N. Does integrating physical activity in the elementary school classroom influence academic motivation? Int. J. Sport Exerc. Psychol. 2012, 10, 251–263. [Google Scholar] [CrossRef]
- Owen, K.B.; Parker, P.D.; Van Zanden, B.; MacMillan, F.; Astell-Burt, T.; Lonsdale, C. Physical activity and school engagement in youth: A systematic review and meta-analysis. Educ. Psychol. 2016, 51, 129–145. [Google Scholar] [CrossRef]
- Hartikainen, J.; Haapala, E.A.; Poikkeus, A.-M.; Lapinkero, E.; Pesola, A.J.; Rantalainen, T.; Sääkslahti, A.; Gao, Y.; Finni, T. Comparison of Classroom-Based Sedentary Time and Physical Activity in Conventional Classrooms and Open Learning Spaces Among Elementary School Students. Front. Sports Act. Living 2021, 3, 626282. [Google Scholar] [CrossRef]
- Saari, A.; Sankilampi, U.; Hannila, M.; Kiviniemi, V.; Kesseli, K.; Dunkel, L. New Finnish growth references for children and adolescents aged 0 to 20 years: Length/height-for-age, weight-for-length/height, and body mass index-for-age. Ann. Med. 2011, 43, 235–248. [Google Scholar] [CrossRef]
- Aittasalo, M.; Vähä-Ypyä, H.; Vasankari, T.; Husu, P.; Jussila, A.; Sievänen, H. Mean amplitude deviation calculated from raw acceleration data: A novel method for classifying the intensity of adolescents’ physical activity irrespective of accelerometer brand. BMC Sports Sci. Med. Rehabil. 2015, 7, 18. [Google Scholar] [CrossRef] [Green Version]
- Vähä-Ypyä, H.; Vasankari, T.; Husu, P.; Suni, J.; Sievänen, H. A universal, accurate intensity-based classification of different physical activities using raw data of accelerometer. Clin. Physiol. Funct. Imaging 2015, 35, 64–70. [Google Scholar] [CrossRef]
- Lindberg, C.M.; Srinivasan, K.; Gilligan, B.; Razjouyan, J.; Lee, H.; Najafi, B.; Mehl, M.R.; Currim, F.; Ram, S.; Lunden, M.M.; et al. Effects of office workstation type on physical activity and stress. Occup. Environ. Med. 2018, 75, 689–695. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haapala, E.A.; Gao, Y.; Rantalainen, T.; Finni, T. Associations of age, body size, and maturation with physical activity intensity in different laboratory tasks in children. J. Sports Sci. 2021, 39, 1428–1435. [Google Scholar] [CrossRef] [PubMed]
- Haapala, E.A.; Gao, Y.; Hartikainen, J.; Rantalainen, T.; Finni, T. Associations of fitness, motor competence, and adiposity with the indicators of physical activity intensity during different physical activities in children. Sci. Rep. 2021, 11, 1–11. [Google Scholar] [CrossRef]
- Haapala, E.A.; Gao, Y.; Vanhala, A.; Rantalainen, T.; Finni, T. Validity of traditional physical activity intensity calibration methods and the feasibility of self-paced walking and running on individualised calibration of physical activity intensity in children. Sci. Rep. 2020, 10, 1–10. [Google Scholar] [CrossRef]
- Kiuru, N.; Pakarinen, E.; Vasalampi, K.; Silinskas, G.; Aunola, K.; Poikkeus, A.-M.; Metsäpelto, R.-L.; Lerkkanen, M.-K.; Nurmi, J.-E. Task-Focused Behavior Mediates the Associations Between Supportive Interpersonal Environments and Students’ Academic Performance. Psychol. Sci. 2014, 25, 1018–1024. [Google Scholar] [CrossRef] [PubMed]
- Aunola, K.; Viljaranta, J.; Lehtinen, E.; Nurmi, J. The role of maternal support of competence, autonomy and relatedness in children’s interests and mastery orientation. Learn. Individ. Differ. 2013, 25, 171–177. [Google Scholar] [CrossRef]
- Aunola, K.; Nurmi, J.E. Achievement Beliefs Scale for Children (ABS-C); University of Jyväskylä: Jyväskylä, Finland, 2006; unpublished. [Google Scholar]
- Lei, P.; Wu, Q. Introduction to structural equation modeling: Issues and practical considerations. Educ. Meas. Issues Pract. 2007, 26, 33–43. [Google Scholar] [CrossRef]
- Carvalho, L.; Yeoman, P. Framing learning entanglement in innovative learning spaces: Connecting theory, design and practice. Br. Educ. Res. J. 2018, 44, 1120–1137. [Google Scholar] [CrossRef]
- Sigurðardóttir, A.K.; Hjartarson, T. The idea and reality of an innovative school: From inventive design to established practice in a new school building. Improv. Sch. 2016, 19, 62–79. [Google Scholar] [CrossRef]
- Campbell, M.; Saltmarsh, S.; Chapman, A.; Drew, C. Issues of teacher professional learning within ‘non-traditional’ classroom environments. Improv. Sch. 2013, 16, 209–222. [Google Scholar] [CrossRef] [Green Version]
- Deed, C.; Lesko, T. ‘Unwalling’ the classroom: Teacher reaction and adaptation. Learn. Environ. Res. 2015, 18, 217–231. [Google Scholar] [CrossRef]
- Kariippanon, K.E.; Cliff, D.P.; Lancaster, S.L.; Okely, A.D.; Parrish, A. Perceived interplay between flexible learning spaces and teaching, learning and student wellbeing. Learn. Environ. Res. 2018, 21, 301–320. [Google Scholar] [CrossRef]
- Michael, R.D.; Webster, C.A.; Egan, C.A.; Nilges, L.; Brian, A.; Johnson, R.; Carson, R.L. Facilitators and Barriers to movement integration in elementary classrooms: A systematic review. Res. Q. Exerc. Sport 2019, 90, 151–162. [Google Scholar] [CrossRef] [PubMed]
- Blom, A.; Tammelin, T.; Laine, K.; Tolonen, H. Bright spots, physical activity investments that work: The Finnish Schools on the Move programme. Br. J. Sports Med. 2018, 52, 820–822. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hox, J.J.; Maas, C.J. The accuracy of multilevel structural equation modeling with pseudobalanced groups and small samples. Struct. Equ. Model. 2001, 8, 157–174. [Google Scholar] [CrossRef]
- Broer, M.; Bai, Y.; Fonseca, F. A review of the literature on socioeconomic status and educational achievement. Socioecon. Inequal. Educ. Outcomes 2019, 7–17. [Google Scholar] [CrossRef] [Green Version]
- Hernán, M.A.; Hernández-Díaz, S.; Robins, J.M. A structural approach to selection bias. Epidemiology 2004, 615–625. Available online: http://www.jstor.org/stable/20485961 (accessed on 12 July 2021).
- Rushton, S.; Giallo, R.; Efron, D. ADHD and emotional engagement with school in the primary years: Investigating the role of student–teacher relationships. Br. J. Educ. Psychol. 2020, 90, 193–209. [Google Scholar] [CrossRef]
School Classroom Type | Missing N (%) | All | School 1 Open | School 2 Conventional | School 3 Conventional | |||
---|---|---|---|---|---|---|---|---|
Grade | 3rd | 5th | 3rd | 5th | 3rd | 5th | ||
N | 204 | 40 | 26 | 52 | 34 | 25 | 27 | |
Girls (%) | 40 | 50 | 59.6 | 52.9 | 44 | 44.4 | ||
Age (y) | 10 (4.9) | 10.3 (1.0) | 9.3 (0.3) | 11.2 (0.3) | 9.5 (0.3) | 11.5 (0.3) | 9.7 (0.3) | 11.2 (0.3) |
Height (cm) | 3 (1.5) | 142.4 (8.2) | 136.5 (4.5) | 148.0 (5.2) | 137.0 (4.6) | 150.2 (6.9) | 139.0 (6.8) | 149.2 (6.0) |
Weight (kg) | 3 (1.5) | 36 (8.6) | 31.8 (5.6) | 39.5 (6.7) | 31.6 (4.2) | 41.0 (9.7) | 34.8 (9.8) | 41.7 (10.0) |
ISO-BMI (kg/m2) | 10 (4.9) | 21.5 (3.1) | 21.7 (3.5) | 21.4 (2.5) | 21.0 (2.4) | 21.3 (3.4) | 21.7 (3.5) | 22.2 (3.7) |
TFB (mean score; 1 to 5) | 1 (0.5) | 3.7 (0.8) | 3.8 (0.6) | 3.6 (0.8) | 3.6 (0.8) | 3.6 (0.7) | 3.9 (0.7) | 3.6 (0.9) |
ATT (mean score; 1 to 5) | 1 (0.5) | 3.9 (0.8) | 4.2 (0.8) | 4.1 (0.5) | 3.7 (0.8) | 3.7 (0.8) | 4.1 (0.8) | 3.8 (0.9) |
CPA (G/60 min) | 9 (4.4) | 9.568 (2.709) | 9.493 (1.809) | 6.966 (1.891) | 10.085 (2.879) | 9.016 (2.823) | 10.345 (3.227) | 9.846 (2.066) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hartikainen, J.; Poikkeus, A.-M.; Haapala, E.A.; Sääkslahti, A.; Finni, T. Associations of Classroom Design and Classroom-Based Physical Activity with Behavioral and Emotional Engagement among Primary School Students. Sustainability 2021, 13, 8116. https://doi.org/10.3390/su13148116
Hartikainen J, Poikkeus A-M, Haapala EA, Sääkslahti A, Finni T. Associations of Classroom Design and Classroom-Based Physical Activity with Behavioral and Emotional Engagement among Primary School Students. Sustainability. 2021; 13(14):8116. https://doi.org/10.3390/su13148116
Chicago/Turabian StyleHartikainen, Jani, Anna-Maija Poikkeus, Eero A. Haapala, Arja Sääkslahti, and Taija Finni. 2021. "Associations of Classroom Design and Classroom-Based Physical Activity with Behavioral and Emotional Engagement among Primary School Students" Sustainability 13, no. 14: 8116. https://doi.org/10.3390/su13148116
APA StyleHartikainen, J., Poikkeus, A. -M., Haapala, E. A., Sääkslahti, A., & Finni, T. (2021). Associations of Classroom Design and Classroom-Based Physical Activity with Behavioral and Emotional Engagement among Primary School Students. Sustainability, 13(14), 8116. https://doi.org/10.3390/su13148116