Internet Usage, Human Capital and CO2 Emissions: A Global Perspective
Abstract
:1. Introduction
2. Literature Review
2.1. Internet Usage and CO2 Emissions
2.2. Human Capital and CO2 Emissions
2.3. Income and CO2 Emissions
3. Materials and Methods
3.1. Panel Regression Model
3.2. Threshold Regression Model
3.3. Variables and Data Resources
4. Results and Discussion
4.1. Unit Root Test
4.2. Panel Regression Results
4.3. Threshold Regression Results
4.3.1. Threshold Effect Test and Threshold Value Estimation
4.3.2. Threshold Model Regression Results
4.4. Robustness Test
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Behera, S.R.; Dash, D.P. The effect of urbanization, energy consumption, and foreign direct investment on the carbon dioxide emission in the SSEA (South and Southeast Asian) region. Renew. Sustain. Energy Rev. 2017, 70, 96–106. [Google Scholar] [CrossRef]
- Khan, Z.; Ali, S.; Umar, M.; Kirikkaleli, D.; Jiao, Z.L. Consumption-based carbon emissions and International trade in G7 countries: The role of Environmental innovation and Renewable energy. Sci. Total Environ. 2020, 730, 138945. [Google Scholar] [CrossRef] [PubMed]
- Le Quere, C.; Jackson, R.B.; Jones, M.W.; Smith, A.J.P.; Abernethy, S.; Andrew, R.M.; De-Gol, A.J.; Willis, D.R.; Shan, Y.L.; Canadell, O.S.; et al. Temporary reduction in daily global CO2 emissions during the COVID-19 forced confinement. Nat. Clim. Chang. 2020, 10, 647–653. [Google Scholar] [CrossRef]
- Freund, C.L.; Weinhold, D. The effect of the Internet on international trade. J. Int. Econ. 2004, 62, 171–189. [Google Scholar] [CrossRef] [Green Version]
- Thompson, H.G.; Garbacz, C. Mobile, fixed line and Internet service effects on global productive efficiency. Inf. Econ. Policy 2007, 19, 189–214. [Google Scholar] [CrossRef]
- Hall, A.S.; Parsons, J. Internet addiction: College student case study using best practices in cognitive behavior therapy. J. Ment. Health Couns. 2001, 23, 312. [Google Scholar]
- Zhihong, J.; Jian, H.; Wenzhou, L.; Zhe, C.; Ning, L.; Siyuan, W.; Xiao, Z.; Chang, L. Energy Internet—A New Driving Force for Sustainable Urban Development. Energy Procedia 2018, 152, 1206–1211. [Google Scholar] [CrossRef]
- Harris, M.H. Is the revolution now over, or has it just begun? A year of the internet in higher education. Internet High. Educ. 1998, 1, 243–251. [Google Scholar] [CrossRef]
- Hilty, L.M.; Arnfalk, P.; Erdmann, L.; Goodman, J.; Lehmann, M.; Wager, P.A. The relevance of information and communication technologies for environmental sustainability—A prospective simulation study. Environ. Model. Softw. 2006, 21, 1618–1629. [Google Scholar] [CrossRef]
- Salahuddin, M.; Alam, K. Information and Communication Technology, electricity consumption and economic growth in OECD countries: A panel data analysis. Int. J. Electr. Power Energy Syst. 2016, 76, 185–193. [Google Scholar] [CrossRef] [Green Version]
- David, M.; Aubry, A.; Derigent, W. Towards energy efficient buildings: How ICTs can convert advances? IFAC-PapersOnLine 2018, 51, 758–763. [Google Scholar] [CrossRef]
- Chen, X.; Gong, X.; Li, D.; Zhang, J. Can information and communication technology reduce CO2 emission? A quantile regression analysis. Environ. Sci. Pollut. Res. 2019, 26, 32977–32992. [Google Scholar] [CrossRef]
- Bloom, N.; Sadun, R.; Van Reenen, J. Americans Do IT Better: US Multinationals and the Productivity Miracle. Am. Econ. Rev. 2012, 102, 167–201. [Google Scholar] [CrossRef] [Green Version]
- Zafar, M.W.; Zaidi, S.A.H.; Khan, N.R.; Mirza, F.M.; Hou, F.; Kirmani, S.A.A. The impact of natural resources, human capital, and foreign direct investment on the ecological footprint: The case of the United States. Resour. Policy 2019, 63, 101428. [Google Scholar] [CrossRef]
- Todorova, G.; Durisin, B. Absorptive capacity: Valuing a reconceptualization. Acad. Manag. Rev. 2007, 32, 774–786. [Google Scholar] [CrossRef]
- Zhang, J.; Liang, X.J. Promoting green ICT in China: A framework based on innovation system approaches. Telecommun. Policy 2012, 36, 997–1013. [Google Scholar] [CrossRef]
- Erumban, A.A.; Das, D.K. Information and communication technology and economic growth in India. Telecommun. Policy 2016, 40, 412–431. [Google Scholar] [CrossRef]
- Haseeb, A.; Xia, E.; Saud, S.; Ahmad, A.; Khurshid, H. Does information and communication technologies improve environmental quality in the era of globalization? An empirical analysis. Environ. Sci. Pollut. Res. 2019, 26, 8594–8608. [Google Scholar] [CrossRef] [PubMed]
- Moyer, J.D.; Hughes, B.B. ICTs: Do they contribute to increased carbon emissions? Technol. Forecast. Soc. Chang. 2012, 79, 919–931. [Google Scholar] [CrossRef]
- Mastykash, O.; Peleshchyshyn, A.; Fedushko, S.; Trach, O.; Syerov, Y. Internet Social Environmental Platforms Data Representation. In Proceedings of the 2018 IEEE 13th International Scientific and Technical Conference on Computer Sciences and Information Technologies (CSIT), Lviv, Ukraine, 11–14 September 2018; IEEE: New York, NY, USA, 2018; pp. 199–202. [Google Scholar]
- May, G.; Stahl, B.; Taisch, M.; Kiritsis, D. Energy management in manufacturing: From literature review to a conceptual framework. J. Clean. Prod. 2017, 167, 1464–1489. [Google Scholar] [CrossRef]
- Takase, K.; Murota, Y. The impact of IT investment on energy: Japan and US comparison in 2010. Energy Policy 2004, 32, 1291–1301. [Google Scholar] [CrossRef]
- Pradhan, R.P.; Arvin, M.B.; Nair, M.; Bennett, S.E. Sustainable economic growth in the European Union: The role of ICT, venture capital, and innovation. Rev. Financ. Econ. 2020, 38, 34–62. [Google Scholar] [CrossRef]
- Khan, A.; Javaid, N.; Khan, M.I. Time and device based priority induced comfort management in smart home within the consumer budget limitation. Sustain. Cities Soc. 2018, 41, 538–555. [Google Scholar] [CrossRef]
- Kumari, A.; Gupta, R.; Tanwar, S.; Tyagi, S.; Kumar, N. When Blockchain Meets Smart Grid: Secure Energy Trading in Demand Response Management. IEEE Netw. 2020, 34, 299–305. [Google Scholar] [CrossRef]
- Zhang, C.G.; Liu, C. The impact of ICT industry on CO2 emissions: A regional analysis in China. Renew. Sustain. Energy Rev. 2015, 44, 12–19. [Google Scholar] [CrossRef]
- Lee, C.-C.; Lee, C.-C.; Ning, S.-L. Dynamic relationship of oil price shocks and country risks. Energy Econ. 2017, 66, 571–581. [Google Scholar] [CrossRef]
- Park, Y.; Meng, F.C.; Baloch, M.A. The effect of ICT, financial development, growth, and trade openness on CO2 emissions: An empirical analysis. Environ. Sci. Pollut. Res. 2018, 25, 30708–30719. [Google Scholar] [CrossRef]
- Shabani, Z.D.; Shahnazi, R. Energy consumption, carbon dioxide emissions, information and communications technology, and gross domestic product in Iranian economic sectors: A panel causality analysis. Energy 2019, 169, 1064–1078. [Google Scholar] [CrossRef]
- Lee, J.W.; Brahmasrene, T. ICT, CO2 Emissions and Economic Growth: Evidence from a Panel of ASEAN. Glob. Econ. Rev. 2014, 43, 93–109. [Google Scholar] [CrossRef]
- Asongu, S.A. ICT, openness and CO2 emissions in Africa. Environ. Sci. Pollut. Res. 2018, 25, 9351–9359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Danish. Effects of information and communication technology and real income on CO2 emissions: The experience of countries along Belt and Road. Telemat. Inform. 2019, 45, 101300. [Google Scholar] [CrossRef]
- Asongu, S.A.; Le Roux, S.; Biekpe, N. Environmental degradation, ICT and inclusive development in Sub-Saharan Africa. Energy Policy 2017, 111, 353–361. [Google Scholar] [CrossRef] [Green Version]
- Higon, D.A.; Gholami, R.; Shirazi, F. ICT and environmental sustainability: A global perspective. Telemat. Inform. 2017, 34, 85–95. [Google Scholar] [CrossRef]
- Ozcan, B.; Apergis, N. The impact of internet use on air pollution: Evidence from emerging countries. Environ. Sci. Pollut. Res. 2018, 25, 4174–4189. [Google Scholar] [CrossRef]
- Khan, M. CO2 emissions and sustainable economic development: New evidence on the role of human capital. Sustain. Dev. 2020, 28, 1279–1288. [Google Scholar] [CrossRef]
- Sarkodie, S.A.; Adams, S.; Owusu, P.A.; Leirvik, T.; Ozturk, I. Mitigating degradation and emissions in China: The role of environmental sustainability, human capital and renewable energy. Sci. Total Environ. 2020, 719, 137530. [Google Scholar] [CrossRef] [PubMed]
- Balaguer, J.; Cantavella, M. The role of education in the Environmental Kuznets Curve. Evidence from Australian data. Energy Econ. 2018, 70, 289–296. [Google Scholar] [CrossRef]
- Salahodjaev, R. Is there a link between cognitive abilities and environmental awareness? Cross-national evidence. Environ. Res. 2018, 166, 86–90. [Google Scholar] [CrossRef]
- Desha, C.; Robinson, D.; Sproul, A. Working in partnership to develop engineering capability in energy efficiency. J. Clean. Prod. 2015, 106, 283–291. [Google Scholar] [CrossRef] [Green Version]
- Kwon, D.-B. Human capital and its measurement. In Proceedings of the 3rd OECD World Forum on “Statistics, Knowledge and Policy” Charting Progress, Building Visions, Improving Life, Busan, Korea, 27–30 October 2009; Available online: https://www.oecd.org/site/progresskorea/44109779.pdf (accessed on 15 May 2021).
- Yuan, B.; Zhang, K. Can environmental regulation promote industrial innovation and productivity? Based on the strong and weak Porter hypothesis. Chin. J. Popul. Resour. Environ. 2017, 15, 322–336. [Google Scholar] [CrossRef]
- Bano, S.; Zhao, Y.H.; Ahmad, A.; Wang, S.; Liu, Y. Identifying the impacts of human capital on carbon emissions in Pakistan. J. Clean. Prod. 2018, 183, 1082–1092. [Google Scholar] [CrossRef]
- Yao, Y.; Ivanovski, K.; Inekwe, J.; Smyth, R. Human capital and CO2 emissions in the long run. Energy Econ. 2020, 91, 104907. [Google Scholar] [CrossRef]
- Hatzigeorgiou, E.; Polatidis, H.; Haralambopoulos, D. CO2 emissions, GDP and energy intensity: A multivariate cointegration and causality analysis for Greece, 1977–2007. Appl. Energy 2011, 88, 1377–1385. [Google Scholar] [CrossRef]
- Saidi, K.; Ben Mbarek, M. The impact of income, trade, urbanization, and financial development on CO2 emissions in 19 emerging economies. Environ. Sci. Pollut. Res. 2017, 24, 12748–12757. [Google Scholar] [CrossRef] [PubMed]
- Apergis, N.; Payne, J.E. The emissions, energy consumption, and growth nexus: Evidence from the commonwealth of independent states. Energy Policy 2010, 38, 650–655. [Google Scholar] [CrossRef]
- Baek, J. A panel cointegration analysis of CO2 emissions, nuclear energy and income in major nuclear generating countries. Appl. Energy 2015, 145, 133–138. [Google Scholar] [CrossRef]
- Sapkota, P.; Bastola, U. Foreign direct investment, income, and environmental pollution in developing countries: Panel data analysis of Latin America. Energy Econ. 2017, 64, 206–212. [Google Scholar] [CrossRef]
- Ma, X.R.; Ge, J.P.; Wang, W. The relationship between urbanization, income growth and carbon dioxide emissions and the policy implications for China: A cointegrated vector error correction (VEC) analysis. Nat. Hazards 2017, 87, 1017–1033. [Google Scholar] [CrossRef]
- Costantini, V.; Monni, S. Environment, human development and economic growth. Ecol. Econ. 2008, 64, 867–880. [Google Scholar] [CrossRef] [Green Version]
- Inglesi-Lotz, R.; Dogan, E. The role of renewable versus non-renewable energy to the level of CO2 emissions a panel analysis of sub-Saharan Africa’s Big 10 electricity generators. Renew. Energy 2018, 123, 36–43. [Google Scholar] [CrossRef] [Green Version]
- Hansen, B.E. Threshold effects in non-dynamic panels: Estimation, testing, and inference. J. Econom. 1999, 93, 345–368. [Google Scholar] [CrossRef] [Green Version]
- Wagner, M. The carbon Kuznets curve: A cloudy picture emitted by bad econometrics? Resour. Energy Econ. 2008, 30, 388–408. [Google Scholar] [CrossRef] [Green Version]
- Blundell, R.; Bond, S. Initial conditions and moment restrictions in dynamic panel data models. J. Econom. 1998, 87, 115–143. [Google Scholar] [CrossRef] [Green Version]
- He, Q.C.; Sun, M. Does Financial Reform Promote the Inflow of FDI? Evidence from China’s Panel Data. Glob. Econ. Rev. 2013, 42, 15–28. [Google Scholar] [CrossRef]
- Khan, F.N.; Sana, A.; Arif, U. Information and communication technology (ICT) and environmental sustainability: A panel data analysis. Environ. Sci. Pollut. Res. 2020, 27, 36718–36731. [Google Scholar] [CrossRef] [PubMed]
- Chang, N. Changing industrial structure to reduce carbon dioxide emissions: A Chinese application. J. Clean. Prod. 2015, 103, 40–48. [Google Scholar] [CrossRef]
- Fan, Q.; Goetz, S.J.; Liang, J.C. The interactive effects of human capital and quality of life on economic growth. Appl. Econ. 2016, 48, 5186–5200. [Google Scholar] [CrossRef]
- Mouelhi, R.B.A. Impact of the adoption of information and communication technologies on firm efficiency in the Tunisian manufacturing sector. Econ. Model. 2009, 26, 961–967. [Google Scholar] [CrossRef]
- Haini, H. Internet penetration, human capital and economic growth in the ASEAN economies: Evidence from a translog production function. Appl. Econ. Lett. 2019, 26, 1774–1778. [Google Scholar] [CrossRef]
High-Income | Middle- and Low-Income | |||||
---|---|---|---|---|---|---|
Australia | Finland | Korea (South) | Singapore | Algeria | Egypt | Philippines |
Austria | France | Latvia | Slovak Republic | Argentina | Georgia | Romania |
Belgium | Germany | Lithuania | Slovenia | Armenia | Guatemala | Russian Federation |
Canada | Greece | Luxembourg | Spain | Bangladesh | India | South Africa |
Chile | Hungary | Netherlands | Sweden | Brazil | Indonesia | Sri Lanka |
Croatia | Iceland | New Zealand | Switzerland | Bulgaria | Malaysia | Thailand |
Cyprus | Ireland | Norway | United Arab Emirates | China | Mexico | Tunisia |
Czech Republic | Israel | Poland | United Kingdom | Colombia | Morocco | Ukraine |
Denmark | Italy | Portugal | United States | Costa Rica | Pakistan | Vietnam |
Estonia | Japan | Saudi Arabia | Uruguay | Ecuador | Peru | Zambia |
Variables | Mean Value | Standard Errors | Min | Max |
---|---|---|---|---|
CO2 | 345.951 | 1014.417 | 1.620 | 9528.214 |
NET | 39.312 | 31.819 | 0.000 | 99.011 |
HC | 9.620 | 2.539 | 2.800 | 14.100 |
GDP | 727.229 | 1962.680 | 1.468 | 20,580.170 |
STRU | 85.274 | 6.419 | 51.600 | 99.461 |
URB | 67.768 | 18.287 | 18.196 | 100.000 |
FD | 0.473 | 0.232 | 0.065 | 1.000 |
FDI | 202.073 | 525.715 | 0.032 | 7844.205 |
TF | 85.700 | 57.862 | 15.600 | 437.300 |
MP | 75.387 | 51.057 | 0.000 | 212.639 |
Variables | LLC | IPS | ||
---|---|---|---|---|
Level | First Difference | Level | First Difference | |
LnCO2 | −1.740 ** | −15.085 *** | 5.183 | −27.292 *** |
LnNET | −19.723 *** | −16.907 *** | −13.325 *** | −18.791 *** |
LnHC | −6.688 *** | −11.481 *** | −3.918 *** | −23.168 *** |
LnGDP | −2.657 *** | −17.688 *** | 0.450 | −19.660 *** |
LnSTRU | −5.898 *** | −17.428 *** | −2.419 *** | −28.546 *** |
LnURB | −9.262 *** | −5.997 *** | −1.975 ** | −23.924 *** |
LnFD | −5.322 *** | −16.018 *** | −4.137 *** | −28.364 *** |
LnFDI | −5.956 *** | −17.672 *** | −5.548 *** | −21.690 *** |
LnTF | −4.086 *** | −14.579 *** | −0.685 | −24.669 *** |
LnMP | −19.212 *** | −24.012 *** | −15.069 *** | −15.757 *** |
Variables | FGLS | System GMM | ||||
---|---|---|---|---|---|---|
(1) Total | (2) High-Income | (3) Middle- and Low-Income | (4) Total | (5) High-Income | (6) Middle- and Low-Income | |
L.LnCO2 | 0.957 *** (0.014) | 0.903 *** (0.020) | 0.988 *** (0.023) | |||
LnNET | −0.147 *** (0.002) | −0.219 *** (0.003) | −0.045 *** (0.003) | −0.025 *** (0.003) | −0.015 * (0.007) | −0.014 * (0.010) |
LnHC | 0.126 *** (0.009) | 0.259 *** (0.012) | 0.173 *** (0.018) | −0.480 *** (0.054) | −0.888 *** (0.093) | −0.613 *** (0.012) |
LnGDP | 1.283 *** (0.004) | 0.989 *** (0.003) | 0.879 *** (0.008) | −0.016 ** (0.008) | 0.028 ** (0.013) | −0.015 (0.033) |
LnSTRU | −1.334 *** (0.030) | 2.734 *** (0.063) | −0.700 *** (0.058) | 0.449 *** (0.142) | 0.415 (0.403) | −0.378 (0.552) |
LnURB | −0.132 *** (0.007) | −0.754 *** (0.007) | 0.034 * (0.020) | 0.156 *** (0.047) | 0.320 * (0.166) | 0.071 (0.114) |
LnFD | −0.413 *** (0.008) | −0.444 *** (0.006) | 0.207 *** (0.013) | −0.144 *** (0.014) | 0.115 *** (0.027) | −0.466 *** (0.075) |
LnFDI | −0.178 *** (0.003) | −0.041 *** (0.002) | −0.039 *** (0.006) | 0.091 *** (0.004) | 0.032 *** (0.011) | 0.181 *** (0.045) |
LnTF | 0.430 *** (0.007) | −0.002 (0.004) | 0.301 *** (0.013) | 0.145 *** (0.016) | 0.191 *** (0.016) | 0.161 *** (0.045) |
CONS | 4.710 *** (0.134) | −7.921 *** (0.263) | 1.061 *** (0.265) | −1.666 *** (0.578) | −2.251 (1.586) | 3.089 (2.365) |
Wald | 237,354.380 | 961,635.930 | 22,846.020 | |||
Prob > Chi2 | 0.000 | 0.000 | 0.000 | |||
AR(1) | 0.000 | 0.000 | 0.000 | |||
AR(2) | 0.319 | 0.318 | 0.407 | |||
Hansen Test | 0.492 | 0.841 | 0.246 | |||
Obs | 1680 | 960 | 720 | 1680 | 960 | 720 |
Region | Hypothetical Test | F Value | p Value | 10% Critical Value | 5% Critical Value | 1% Critical Value |
---|---|---|---|---|---|---|
Total | Single | 256.510 | 0.000 | 63.608 | 73.463 | 99.213 |
Double | 49.520 | 0.143 | 54.463 | 69.813 | 107.069 | |
High-income | Single | 99.350 | 0.004 | 50.388 | 61.335 | 79.544 |
Double | 76.120 | 0.006 | 37.831 | 44.935 | 67.515 | |
Triple | 18.040 | 0.626 | 56.926 | 68.354 | 98.637 | |
Middle- and low-income | Single | 149.980 | 0.000 | 50.311 | 61.976 | 90.318 |
Double | 7.610 | 0.878 | 54.542 | 65.359 | 83.426 |
Region | The Number of Thresholds | The Value of Threshold | 95% Confidence Intervals |
---|---|---|---|
Total | Single | 2.380 | [2.370, 2.389] |
High-income | Single | 2.342 | [2.337, 2.366] |
Double | 2.501 | [2.493, 2.510] | |
Middle- and low-income | Single | 2.361 | [2.351, 2.370] |
Variables | (1) Total | Variables | (2) High-Income | Variables | (3) Middle- and Low-Income |
---|---|---|---|---|---|
LnNET (LnHC ≤ 2.380) | 0.038 *** (0.004) | LnNET (LnHC ≤ 2.342) | 0.025 *** (0.007) | LnNET (LnHC ≤ 2.361) | 0.032 *** (0.004) |
LnNET (LnHC > 2.380) | −0.015 *** (0.005) | LnNET (2.342 < LnHC ≤ 2.501) | −0.010 (0.007) | LnNET (LnHC > 2.361) | −0.067 *** (0.010) |
LnNET (LnHC > 2.501) | −0.037 *** (0.008) | ||||
LnGDP | 0.204 *** (0.015) | LnGDP | 0.144 *** (0.020) | LnGDP | 0.313 *** (0.021) |
LnSTRU | 0.161 (0.121) | LnSTRU | −0.542 * (0.322) | LnSTRU | 0.407 *** (0.128) |
LnURB | 1.161 *** (0.085) | LnURB | −0.350 ** (0.176) | LnURB | 0.987 *** (0.102) |
LnFD | 0.034 (0.027) | LnFD | 0.085 ** (0.041) | LnFD | 0.090 ** (0.035) |
LnFDI | −0.042 *** (0.008) | LnFDI | 0.015 * (0.009) | LnFDI | −0.082 *** (0.013) |
LnTF | −0.049 ** (0.025) | LnTF | −0.142 *** (0.034) | LnTF | 0.149 *** (0.032) |
CONS | −2.051 *** (0.676) | CONS | 7.720 *** (1.585) | CONS | −3.486 *** (0.728) |
R2 | 0.606 | R2 | 0.767 | R2 | 0.802 |
F Value | 307.860 | F Value | 36.080 | F Value | 344.720 |
Obs | 1680 | Obs | 960 | Obs | 720 |
Variables | GLS | System GMM | ||||
---|---|---|---|---|---|---|
(1) Total | (2) High-Income | (3) Middle- and Low-Income | (4) Total | (5) High-Income | (6) Middle- and Low-Income | |
L.LnCO2 | 0.948 *** (0.013) | 0.846 *** (0.031) | 0.995 *** (0.024) | |||
LnMP | −0.150 *** (0.002) | −0.212 *** (0.002) | −0.055 *** (0.004) | −0.024 *** (0.003) | −0.025 *** (0.007) | −0.019 * (0.010) |
LnHC | 0.043 *** (0.007) | −0.079 *** (0.012) | 0.362 *** (0.020) | −0.503 *** (0.045) | −1.298 *** (0.119) | −0.563 *** (0.114) |
LnGDP | 1.282 *** (0.004) | 1.004 *** (0.002) | 1.103 *** (0.008) | −0.003 (0.008) | −0.001 (0.021) | −0.005 (0.026) |
LnSTRU | −1.089 *** (0.028) | 2.828 *** (0.023) | −0.842 *** (0.041) | 0.626 *** (0.119) | 1.404 *** (0.498) | −0.366 (0.700) |
LnURB | −0.213 *** (0.004) | −0.788 *** (0.009) | 0.012 (0.026) | 0.139 *** (0.040) | 0.082 (0.296) | 0.028 (0.107) |
LnFD | −0.456 *** (0.008) | −0.494 *** (0.004) | 0.064 *** (0.010) | −0.152 *** (0.012) | 0.085 *** (0.027) | −0.489 *** (0.068) |
LnFDI | −0.174 *** (0.003) | −0.051 *** (0.001) | −0.036 *** (0.005) | 0.082 *** (0.006) | 0.100 *** (0.014) | 0.170 *** (0.033) |
LnTF | 0.430 *** (0.006) | 0.012 *** (0.004) | 0.671 *** (0.014) | 0.154 *** (0.014) | 0.156 *** (0.023) | 0.216 *** (0.040) |
CONS | 4.429 *** (0.127) | −7.199 *** (0.105) | −0.290 (0.228) | −2.317 *** (0.439) | −4.232 * (2.246) | 2.945 (2.943) |
Wald | 436,027.300 | 1,380,574.000 | 31,688.090 | |||
Prob > Chi2 | 0.000 | 0.000 | 0.000 | |||
AR(1) | 0.000 | 0.000 | 0.000 | |||
AR(2) | 0.280 | 0.663 | 0.376 | |||
Hansen Test | 0.490 | 0.711 | 0.259 | |||
Obs | 1680 | 960 | 720 | 1680 | 960 | 720 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Xu, Y. Internet Usage, Human Capital and CO2 Emissions: A Global Perspective. Sustainability 2021, 13, 8268. https://doi.org/10.3390/su13158268
Wang J, Xu Y. Internet Usage, Human Capital and CO2 Emissions: A Global Perspective. Sustainability. 2021; 13(15):8268. https://doi.org/10.3390/su13158268
Chicago/Turabian StyleWang, Jing, and Yubing Xu. 2021. "Internet Usage, Human Capital and CO2 Emissions: A Global Perspective" Sustainability 13, no. 15: 8268. https://doi.org/10.3390/su13158268
APA StyleWang, J., & Xu, Y. (2021). Internet Usage, Human Capital and CO2 Emissions: A Global Perspective. Sustainability, 13(15), 8268. https://doi.org/10.3390/su13158268