Impact of Alum Water Treatment Residues on the Methanogenic Activity in the Digestion of Primary Domestic Wastewater Sludge
Abstract
:1. Introduction
2. Materials and Methods
2.1. Columns Experiments for Evaluating the Sedimentation Performance of Primary Clarifiers
2.2. Batch Experiments for Evaluating the Methanogenic Activity in Primary Sludge
3. Results and Discussion
3.1. Effect of WTR on the Sedimentation Characteristics of Primary Sludge and on the Effluent Water Quality of Primary Clarifiers
3.2. Effect of WTR on the Methane Production from Primary Sludge
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Crittenden, J.; Trussell, R.; Hand, D.; Howe, K.; Tchobanoglous, G. Water Treatment: Principles and Design, 3rd ed.; John Wiley and Sons: Hoboke, NJ, USA, 2012; p. 1920. [Google Scholar]
- Reali, M. The main quantitative and qualitative characteristics of water treatment sludge. In General Notes on Water Treatment and Residuals Disposal from Water Treatment Plants; Reali, M.P., Ed.; ABES: Rio de Janeiro, Brazil, 1999; Chapter 2; pp. 21–39. (In Portuguese) [Google Scholar]
- Ren, B.; Zhao, Y.; Ji, B.; Wei, T.; Shen, C. Granulation of Drinking Water Treatment Residues: Recent Advances and Prospects. Water 2020, 12, 1400. [Google Scholar] [CrossRef]
- Scalize, P. Disposal of Waste Generated in Water Treatment Plants in Sewage Treatment Plants. Ph.D. Thesis, University of Sao Paulo, São Paulo, Brazil, 2003; 146p. (In Portuguese). [Google Scholar]
- Brazilian Parliament. Law 12.305 on National Policy on Solid Waste; Brazilian Parliament: Brasilia, Brazil, 8 February 2010. (In Portuguese)
- European Commission. Decision No. 2014/955/EU. List of Waste; European Commission: Brussels, Belgium, 18 December 2014. [Google Scholar]
- Kizinievič, O.; Žurauskienė, R.; Kizinievič, V.; Žurauskas, R. Utilisation of sludge waste from water treatment for ceramic products. Constr. Build. Mater. 2013, 41, 464–473. [Google Scholar] [CrossRef]
- Scalize, P.; Araujo, F.; Albuquerque, A.; Lima, F. New cement floor produced with water treatment residues. In Proceedings of the Annual Conference & Exposition 2015 (AWWA), Anaheim, CA, USA, 7–10 June 2015. [Google Scholar]
- Zhao, W.; Xie, H.; Li, J.; Zhang, L.; Zhao, Y. Application of Alum Sludge in Wastewater Treatment Processes: “Science” of Reuse and Reclamation Pathways. Process 2021, 9, 612. [Google Scholar] [CrossRef]
- Park, S.; Kurosawa, K.; Yahata, H. Evaluation of water treatment residue as a soil substitute material compared to decomposed granite soil on the growth of greening trees. Bull. Inst. Trop. Agric. 2009, 32, 93–100. [Google Scholar] [CrossRef]
- Oh, T.-K.; Nakaji, K.; Park, S.-G. Effects of the Application of Water Treatment Sludge on Growth of Lettuce (Lactuca sativa L.) and Changes in Soil Properties. J. Fac. Agric. Kyushu Univ. 2010, 55, 15–20. [Google Scholar] [CrossRef]
- Albuquerque, A.; Scalize, P.; Neto, A. Water treatment sludge as potential soil amendment for native plants of the brazilian Cerrado. Environ. Eng. Manag. J. 2018, 17, 1169–1178. [Google Scholar] [CrossRef]
- Liu, R.; Zhao, Y.; Sibille, C.; Ren, B. Evaluation of natural organic matter release from alum sludge reuse in wastewater treatment and its role in P adsorption. Chem. Eng. J. 2016, 302, 120–127. [Google Scholar] [CrossRef]
- Muisa, N.; Nhapi, I.; Ruziwa, W.; Manyuchi, M.M. Utilization of alum sludge as adsorbent for phosphorus removal in municipal wastewater: A review. J. Water Process. Eng. 2020, 35, 101187. [Google Scholar] [CrossRef]
- Shen, C.; Zhao, Y.; Li, W.; Yang, Y.; Liu, R.; Morgen, D. Global profile of heavy metals and semimetals adsorption using drinking water treatment residual. Chem. Eng. J. 2019, 372, 1019–1027. [Google Scholar] [CrossRef]
- USEPA. Drinking Water Treatment Plant Residuals Management; Technical Report, EPA 820-R-11-003; United States Environmental Protection Agency (USEPA): Washington, DC, USA, 2011; 377p.
- Zhou, Z.; Yang, Y.; Li, X.; Gao, W.; Liang, H.; Li, G. Coagulation efficiency and flocs characteristics of recycling sludge during treatment of low temperature and micro-polluted water. J. Environ. Sci. 2012, 24, 1014–1020. [Google Scholar] [CrossRef]
- Scalize, P.S.; Souza, L.M.D.; Albuquerque, A. Reuse of alum sludge for reducing flocculant addition in water treatment plants. Environ. Prot. Eng. 2019, 45, 57–70. [Google Scholar] [CrossRef]
- Carvalho, E. Disposal of Waste Generated at Water Treatment Plants in Sewage Treatment Plants with Primary Settling. Ph.D. Thesis, University of Sao Paulo, Sao Paulo, Brazil, 2000; 224p. (In Portuguese). [Google Scholar]
- Guan, X.-H.; Chen, G.; Shang, C. Re-use of water treatment works sludge to enhance particulate pollutant removal from sewage. Water Res. 2005, 39, 3433–3440. [Google Scholar] [CrossRef]
- Soares, L.; Scalize, P.; Albuquerque, A. Water treatment sludge for post-treatment of effluents from stabilization pond. In Proceedings of the 10th IWA Specialist Ponds Conference, Cartagena, Colombia, 19–22 August 2013; p. 8. [Google Scholar]
- Xu, D.; Lee, L.Y.; Lim, F.Y.; Lyu, Z.; Zhu, H.; Ong, S.L.; Hu, J. Water treatment residual: A critical review of its applications on pollutant removal from stormwater runoff and future perspectives. J. Environ. Manag. 2020, 259, 109649. [Google Scholar] [CrossRef] [PubMed]
- Shanmugam, S. Granulation techniques and technologies: Recent progresses. BioImpacts 2015, 5, 55–63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, A.K.; Thornberg, D.; Andersen, H.R. Application of waterworks sludge in wastewater treatment plants. Int. J. Environ. Sci. Technol. 2013, 10, 1157–1166. [Google Scholar] [CrossRef] [Green Version]
- Hussain, A.; Dubey, S.K. Specific methanogenic activity test for anaerobic degradation of influents. Appl. Water Sci. 2015, 7, 535–542. [Google Scholar] [CrossRef]
- APHA-AWWA-WEF. Standard Methods for the Examination of Water and Wastewater, 20th ed.; American Public Health Association/American Waterworks Association/Water Environmental Federation: Washington, DC, USA, 2005. [Google Scholar]
- Ayres, R.; Mara, D. Analysis of Wastewater for Use in Agriculture: A Laboratory Manual of Parasitological and Bacteriological Techniques; World Health Organization: Geneva, Switzerland, 1996; 35p. [Google Scholar]
- Aquino, S.F.; Chernicharo, C.A.L.; Foresti, E.; Santos, M.D.L.F.D.; Monteggia, L.O. Metodologias para determinação da atividade metanogênica específica (AME) em lodos anaeróbios. Eng. Sanit. Ambient. 2007, 12, 192–201. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Yang, J.; Ye, T.; Han, Z. Establishment of analysis method for methane detection by gas chromatography. In Earth and Environmental Science, Proceedings of the 3rd International Conference on Advances in Energy Resources and Environment Engineering, Harbin, China, 8–10 December 2017; IOP Conference Series; IOP Publishing Ltd.: Bristol, UK, 2018; Volume 113. [Google Scholar]
- Da Silva, J.D.; Schneiders, D.; Till, A.; Lapa, K.R.; Pinheiro, A. Specific methanogenic activity (SMA) of industrial sludge from the aerobic and anaerobic biological treatment. Ambient. Agua Interdiscip. J. Appl. Sci. 2013, 8, 135–145. [Google Scholar] [CrossRef] [Green Version]
- ASCE-AWWA-USEPA. Technology Transfer Handbook: Management of Water Treatment Plant Residuals; American Society of Civil Engineers (ASCE); American Water Works Association (AWWA); U.S. Environmental Protection Agency: Reston, VA, USA, 1996; 181p.
- Fragoso, R.A.; Duarte, E.D.A. Reuse of drinking water treatment sludge for olive oil mill wastewater treatment. Water Sci. Technol. 2012, 66, 887–894. [Google Scholar] [CrossRef] [PubMed]
- Nair, A.T.; Ahammed, M.M. Coagulant recovery from water treatment plant sludge and reuse in post-treatment of UASB reactor effluent treating municipal wastewater. Environ. Sci. Pollut. Res. 2014, 21, 10407–10418. [Google Scholar] [CrossRef] [PubMed]
- Di Bernardo, L.; Carvalho, E.; Scalize, P. Disposal of liquid residues from WTP in WWTP. In General Notes on Water Treatment and Residuals Disposal from Water Treatment Plants; Reali, M.P., Ed.; ABES: Rio de Janeiro, Brazil, 1999; Chapter 8; pp. 169–202. (In Portuguese) [Google Scholar]
- Ojo, P.; Ifelebuegu, A.O. The Effects of Aluminium- and Ferric-Based Chemical Phosphorus Removal on Activated Sludge Digestibility and Dewaterability. Process 2019, 7, 228. [Google Scholar] [CrossRef] [Green Version]
- Alvarez, L.H.; Cervantes, F.J. Assessing the impact of alumina nanoparticles in an anaerobic consortium: Methanogenic and humus reducing activity. Appl. Microbiol. Biotechnol. 2011, 95, 1323–1331. [Google Scholar] [CrossRef] [PubMed]
- Simon-Deckers, A.; Loo, S.; Mayne-L’Hermite, M.; Herlin-Boime, N.; Menguy, N.; Reynaud, C.; Gouget, B.; Carrière, M. Size-, Composition- and Shape-Dependent Toxicological Impact of Metal Oxide Nanoparticles and Carbon Nanotubes toward Bacteria. Environ. Sci. Technol. 2009, 43, 8423–8429. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Du, H.; Li, F.; Su, H.; Bhat, S.; Hudori, H.; Rosadi, M.; Arsyad, F.; Lu, Y.; Wu, H. Effect of Adding Drinking Water Treatment Sludge on Excess Activated Sludge Digestion Process. Sustainability 2020, 12, 6953. [Google Scholar] [CrossRef]
- Pradhan, S.K.; Torvinen, E.; Siljanen, H.M.P.; Pessi, M.; Heinonen-Tanski, H. Iron flocculation stimulates biogas production in Microthrix parvicella-spiked wastewater sludge. Int. J. Environ. Sci. Technol. 2015, 12, 3039–3046. [Google Scholar] [CrossRef] [Green Version]
- Escobar, J. Treatment and Recovery of Washing Filters Streams from a Direct Filtration Plant and Simulation of It Disposal into Sewage Treatment Plants. Ph.D. Thesis, University of Sao Paulo, São Paulo, Brazil, 2001; 144p. (In Portuguese). [Google Scholar]
- Kayranli, B.; Ugurlu, A. Assessment of methanogenic activity and kinetics of anaerobic granular sludge. Fresenius Environ. Bull. 2012, 21, 2397–2402. Available online: https://www.researchgate.net/publication/257298150_Assessment_of_Methanogenic_Activity_and_Kinetics_of_Anaerobic_Granular_Sludge (accessed on 20 May 2021).
- Puñal, A. Influence of C:N ratio on the start-up of up-flow anaerobic filter reactors. Water Res. 2000, 34, 2614–2619. [Google Scholar] [CrossRef]
- Kohlmayer, M.; Huber, R.; Brotsack, R.; Mayer, W. Simultaneous CO2 and CO methanation using microbes. bioRxiv 2018. [Google Scholar] [CrossRef] [Green Version]
- DiNova, N.; Belouhova, M.; Schneider, I.; Rangelov, J.; Topalova, Y. Control of biogas production process by enzymatic and fluorescent image analysis. Biotechnol. Biotechnol. Equip. 2018, 32, 366–375. [Google Scholar] [CrossRef] [Green Version]
- Tonanzi, B.; Gallipoli, A.; Gianico, A.; Montecchio, D.; Pagliaccia, P.; Di Carlo, M.; Rossetti, S.; Braguglia, C.M. Long-term anaerobic digestion of food waste at semi-pilot scale: Relationship between microbial community structure and process performances. Biomass Bioenergy 2018, 118, 55–64. [Google Scholar] [CrossRef]
- Ali, S.S.; Sun, J. Effective thermal pretreatment of water hyacinth (Eichhornia crassipes) for the enhancement of biomethanation: VIT® gene probe technology for microbial community analysis with special reference to methanogenic Archaea. J. Environ. Chem. Eng. 2019, 7, 102853. [Google Scholar] [CrossRef]
Samples | CC | Columns with WTR | |||||
---|---|---|---|---|---|---|---|
TC1 | TC2 | TC3 | |||||
(% of Volume) | Volume (%) | TSS (g/L) | Volume (%) | TSS (g/L) | Volume (%) | TSS (g/L) | |
DWW | 100 | 92.76 | 0.137 | 92.76 | 0.137 | 92.76 | 0.137 |
WTR-C | 0 | 1.44 | 0.88 | 1.44 | 2.71 | 1.44 | 5.24 |
WTR-F | 0 | 5.80 | 0.23 | 5.80 | 0.23 | 5.80 | 0.23 |
Parameter | WTR Samples before the Experiments | WTR Samples after Mixing Used in Each Column | DWW | ||||||
---|---|---|---|---|---|---|---|---|---|
WTR-F | WTR-C | CC | WTR-C + WTR-F | ||||||
TC1 | TC2 | TC3 | TC1 | TC2 | TC3 | ||||
Turbidity (NTU) | 172 | 576 | 1836 | 3565 | Only DWW; No WTR | 260 | 477 | 745 | 78 |
TSS (g/L) | 0.23 | 0.88 | 2.71 | 5.24 | 0.37 | 0.72 | 1.23 | 137 | |
FSS (g/L) | 0.18 | 0.70 | 2.16 | 4.20 | 0.29 | 0.57 | 0.98 | 20 | |
VSS (g/L) | 0.05 | 0.18 | 0.55 | 1.04 | 0.08 | 0.15 | 0.25 | 117 | |
pH | 7.3 | 6.7 | 6.7 | 6.7 | 6.9 | 6.9 | 6.9 | 6.9 | |
COD (mg/L) | 62 | 268 | 1048 | 962 | 78 | 263 | 197 | 381 |
Time (Minutes) | TSS (mg/L) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
CC | TC1 | TC2 | TC3 | |||||||||
P1 | P2 | P3 | P1 | P2 | P3 | P1 | P2 | P3 | P1 | P2 | P3 | |
0 | 137 | 137 | 137 | 167 | 167 | 167 | 203 | 203 | 203 | 227 | 227 | 227 |
20 | 128 | 136 | 118 | 156 | 154 | 148 | 170 | 176 | 166 | 178 | 176 | 160 |
40 | 134 | 136 | 130 | 156 | 148 | 144 | 146 | 140 | 134 | 130 | 140 | 110 |
60 | 132 | 128 | 124 | 138 | 136 | 130 | 126 | 118 | 110 | 112 | 112 | 110 |
80 | 130 | 128 | 126 | 146 | 138 | 132 | 124 | 116 | 110 | 128 | 118 | 114 |
100 | 134 | 124 | 122 | 124 | 124 | 114 | 114 | 114 | 112 | 114 | 112 | 106 |
120 | 132 | 132 | 120 | 130 | 122 | 104 | 108 | 108 | 106 | 102 | 98 | 90 |
RE (%) | 0.75 | 0.75 | 12.41 | 22.15 | 26.94 | 37.72 | 46.79 | 46.79 | 47.78 | 55.06 | 56.82 | 60.35 |
Parameter | Time = 0 min | Time = 60 min | Time = 120 min | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
CC | TC1 | TC2 | TC3 | CC | TC1 | TC2 | TC3 | CC | TC1 | TC2 | TC3 | |
pH | 6.9 | 7 | 7 | 7.1 | 6.9 | 7 | 7.1 | 7.1 | 6.9 | 7 | 7.1 | 7.2 |
Colour (Pt-Co) | 1535 | 1675 | 2005 | 2050 | 1620 | 1604 | 1460 | 1290 | 1419 | 1275 | 1236 | 1024 |
Turbidity (NTU) | 78.0 | 79.4 | 92.8 | 96.4 | 79.9 | 70.3 | 69.5 | 66.3 | 79.1 | 65.6 | 64.6 | 63.2 |
TSS (mg/L) | 137 | 167 | 203 | 227 | 114 | 120 | 114 | 110 | 112 | 106 | 98 | 94 |
FSS (mg/L) | 20 | 43 | 60 | 80 | 16 | 14 | 26 | 26 | 16 | 18 | 20 | 18 |
VSS (mg/L) | 117 | 124 | 143 | 147 | 98 | 106 | 88 | 84 | 96 | 88 | 78 | 76 |
COD (mg/L) | 381 | 365 | 342 | 367 | 382 | 332 | 308 | 330 | 357 | 313 | 301 | 292 |
TC × 105 (NMP/100 mL) | 185 | 185 | 185 | 185 | IC | IC | IC | IC | 2.76 | 2.76 | 2.55 | 2.31 |
Escherichia coli × 105 (NMP/100 mL) | 75 | 75 | 75 | 75 | IC | IC | IC | IC | 1.19 | 1.05 | 0.73 | 0.62 |
Digestion Flasks | Composition of the Digested Flasks | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
WTR-PC | DAS | Volume of Deionized Water (mL) | ||||||||
Vol. (mL) | pH | TSS (g/L) | FSS (g/L) | VSS (g/L) | Vol. (mL) | TSS (g/L) | FSS (g/L) | VSS (g/L) | ||
DFC | 120.5 | 7.0 | 14.43 | 3.23 | 11.20 | 57.20 | 87.73 | 40.50 | 47.23 | 122.3 |
DF1 | 132.4 | 7.2 | 17.42 | 7.22 | 10.20 | 57.20 | 87.73 | 40.50 | 47.23 | 110.4 |
DF2 | 113.9 | 7.1 | 23.28 | 11.43 | 11.85 | 57.20 | 87.73 | 40.50 | 47.23 | 128.9 |
DF3 | 118.4 | 7.2 | 25.23 | 13.83 | 11.40 | 57.20 | 87.73 | 40.50 | 47.23 | 124.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Scalize, P.; Albuquerque, A.; Di Bernardo, L. Impact of Alum Water Treatment Residues on the Methanogenic Activity in the Digestion of Primary Domestic Wastewater Sludge. Sustainability 2021, 13, 8783. https://doi.org/10.3390/su13168783
Scalize P, Albuquerque A, Di Bernardo L. Impact of Alum Water Treatment Residues on the Methanogenic Activity in the Digestion of Primary Domestic Wastewater Sludge. Sustainability. 2021; 13(16):8783. https://doi.org/10.3390/su13168783
Chicago/Turabian StyleScalize, Paulo, Antonio Albuquerque, and Luiz Di Bernardo. 2021. "Impact of Alum Water Treatment Residues on the Methanogenic Activity in the Digestion of Primary Domestic Wastewater Sludge" Sustainability 13, no. 16: 8783. https://doi.org/10.3390/su13168783
APA StyleScalize, P., Albuquerque, A., & Di Bernardo, L. (2021). Impact of Alum Water Treatment Residues on the Methanogenic Activity in the Digestion of Primary Domestic Wastewater Sludge. Sustainability, 13(16), 8783. https://doi.org/10.3390/su13168783