Development and Verification of the Effectiveness of a Fine Dust Reduction Planting Model for Socially Vulnerable Area
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Control Site and Experimental Site
2.3. Monitoring Parameters and Devices
2.4. Data Collection
2.5. Method for Verifying the Effectiveness of Fine Dust Reduction in Planting Zones
3. Results and Discussion
3.1. Observational Monitoring Data
3.2. Verification of Differences in Fine Dust Concentrations Outside and Inside Planting Zones
3.3. Verification of Differences in the Amount of Fine Dust Reduction According to the Green Coverage Ratio
3.4. Verification of Differences in Fine Dust Concentration and Reduction Amount According to Planting Structure
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- International Agency for Research on Cancer (IARC). Outdoor Air Pollution a Leading Environmental Cause of Cancer Deaths. Available online: https://www.euro.who.int/en/health-topics/environment-and-health/urban-health/news/news/2013/10/outdoor-air-pollution-a-leading-environmental-cause-of-cancer-deaths (accessed on 22 July 2021).
- Hayes, R.B.; Lim, C.; Zhang, Y.; Cromar, K.; Shao, Y.; Reynolds, H.R.; Silverman, D.T.; Jones, R.R.; Park, Y.; Jerrett, M.; et al. PM2.5 air pollution and cause-specific cardiovascular disease mortality. Int. J. Epidemiol. 2020, 49, 25–35. [Google Scholar] [CrossRef] [PubMed]
- Iskandar, A.; Andersen, Z.J.; Bønnelykke, K.; Ellermann, T.; Andersen, K.K.; Bisgaard, H. Coarse and fine particles but not ultrafine particles in urban air trigger hospital admission for asthma in children. Thorax 2012, 67, 252–257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moon, H.; Song, J. The impacts of particulate matter on urban activities in Jongno-Gu, Seoul. Korean Reg. Sci. Assoc. 2021, 37, 29–44. [Google Scholar]
- IQAir. 2019 World Air Quality Report. Available online: https://www.google.com/search?q=2019+World+Air+Quality+Report&oq=2019+World+Air+Quality+Report&aqs=chrome.69i57j0i30l3j0i5i30l2j0i5i10i30j0i5i30j0i8i30l2.637j0j4&sourceid=chrome&ie=UTF-8 (accessed on 23 June 2021).
- The Korea Forest Service. Reducing Fine Dust by Planting Large Trees to Refresh City Residents. Available online: https://nifos.forest.go.kr/kfsweb/cmm/fms/FileDown.do;jsessionid=lzanofKr7NJGjvMAn0h1GdQckgMXkbJJgv9azVSSIo37LyicJBanNZFyXlO2XYDG.frswas01_servlet_engine5?atchFileId=FILE_000000000735239&fileSn=2&dwldHistYn=N&bbsId=BBSMSTR_1036 (accessed on 22 July 2021).
- Seoul, the Capital of Korea. 30 Million Trees Planted Project. Available online: http://news.seoul.go.kr/snap/doc.html?fn=policy_bluecity_2021.pdf&rs=/wp-content/blogs.dir/25/files/2021/03/ (accessed on 22 July 2021).
- Song, I.; Yoon, C. Establishment and Utilization of Ecosystem Service Assessment in Seoul; The Seoul Institute: Seoul, Korea, 2019; pp. 100–101. [Google Scholar]
- Sung, S.-Y. Environmental planning contermeasures considering spatial distribution and potential factors of particulate matters concentration. J. Korean Soc. Environ. Restor. Technol. 2020, 23, 89–96. [Google Scholar]
- Pugh, T.A.; MacKenzie, A.R.; Whyatt, J.D.; Hewitt, C.N. Effectiveness of green infrastructure for improvement of air quality in urban street canyons. Environ. Sci. Technol. 2012, 46, 7692–7699. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abhijith, K.V.; Kumar, P.; Gallagher, J.; McNabola, A.; Baldauf, R.; Pilla, F.; Broderick, B.; Sabatino, S.D.; Pulvireni, B. Air pollution abatement performances of green infrastructure in open road and built-up street canyon environments—A review. Atmos. Environ. 2017, 162, 71–86. [Google Scholar] [CrossRef]
- Jia, Y.P.; Lu, K.F.; Zheng, T.; Li, X.B.; Liu, X.; Peng, Z.R.; He, H.D. Effects of roadside green infrastructure on particle exposure: A focus on cyclists and pedestrians on pathways between urban roads and vegetative barriers. Atmos. Pollut. Res. 2021, 12, 1–12. [Google Scholar] [CrossRef]
- Song, Y.; Maher, B.A.; Li, F.; Wang, X.; Sun, X.; Zhang, H. Particulate matter deposited on leaf of five evergreen species in Beijing, China: Source identification and size distribution. Atmos. Environ. 2015, 105, 53–60. [Google Scholar] [CrossRef]
- Jim, C.Y.; Chen, W.Y. Assessing the ecosystem service of air pollutant removal by urban trees in Guangzhou (China). J. Environ. Manag. 2008, 88, 665–676. [Google Scholar] [CrossRef]
- Beckett, K.P.; Freer-Smith, P.H.; Taylor, G. The capture of particulate pollution by trees at five contrasting urban sites. Arboric. J. 2000, 24, 209–230. [Google Scholar] [CrossRef]
- Yin, S.; Shen, Z.; Zhou, P.; Zou, X.; Che, S.; Wang, W. Quantifying air pollution attenuation within urban parks: An experimental approach in Shanghai, China. Environ. Pollut. 2011, 159, 2155–2163. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Liu, H.; Zhou, J.; Xia, M. Simulation of the impact of urban forest scale on PM2.5 and PM10 based on system dynamic. Sustainability 2019, 11, 5998. [Google Scholar] [CrossRef] [Green Version]
- Nowak, D.J.; Hirabayashi, S.; Bodine, A.; Hoehn, R. Modeled PM2.5 removal by trees in ten U.S. cities and associated health effects. Environ. Pollut. 2013, 178, 395–402. [Google Scholar] [CrossRef] [PubMed]
- Gromke, C.; Ruck, B. Influence of trees on the dispersion of pollutants in an urban street canyon-Experimental investigation of the flow and concentration field. Atmos. Environ. 2007, 41, 3287–3302. [Google Scholar] [CrossRef] [Green Version]
- Buccolieri, R.; Jeanjean, A.P.R.; Gatto, E.; Leigh, R.J. The impact of trees on street ventilation, NOx and PM2.5 concentrations across heights in Marylebone Rd street canyon, central London. Sustain. Cities Soc. 2018, 41, 227–241. [Google Scholar] [CrossRef]
- Son, J.-M.; Eum, J.-H.; Sung, U.-J.; Baek, J.-B.; Kim, J.-E.; Oh, J.-H. Proposal of direction of wind ventilation forest through urban condition analysis—A case study of Pyeongtaek-si. J. Korean Assoc. Geogr. Inf. Stud. 2020, 23, 101–119. [Google Scholar]
- Jeanjean, A.P.; Monks, P.S.; Leigh, R.J. Modelling the effectiveness of urban trees and grass on PM2. 5 reduction via dispersion and deposition at a city scale. Atmos. Environ. 2016, 147, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Ram, S.S.; Majumder, S.; Chaudhuri, P.; Chanda, S.; Santra, S.C.; Chakraborty, A.; Sudarshan, M. A review on air pollution monitoring and management using plants with special reference to foliar dust adsorption and physiological stress responses. Crit. Rev. Environ. Sci. Technol. 2015, 45, 2489–2522. [Google Scholar] [CrossRef]
- Chen, L.; Liu, C.; Zhang, L.; Zou, R.; Zhang, Z. Variation in tree species ability to capture and retain airborne fine particulate matter (PM 2.5). Sci. Rep. 2017, 7, 1–11. [Google Scholar]
- Han, D.; Shen, H.; Duan, W.; Chen, L. A review on particulate matter removal capacity by urban forests at different scales. Urban For. Urban Green. 2020, 48, 126565. [Google Scholar] [CrossRef]
- Xing, Y.; Brimblecombe, P. Role of vegetation in deposition and dispersion of air pollution in urban parks. Atmos. Environ. 2019, 201, 73–83. [Google Scholar] [CrossRef]
- Rahman, K.M.; Zhang, D. Analyzing the level of accessibility of public urban green spaces to different socially vulnerable groups of people. Sustainability 2018, 10, 3917. [Google Scholar] [CrossRef] [Green Version]
- Cho, D.G. Prioritization of species selection criteria for urban fine dust reduction planting. Korean J. Environ. Ecol. 2019, 33, 472–480. [Google Scholar] [CrossRef]
- Aw, J.; Kleeman, M.J. Evaluating the first-order effect of interannual temperature variability on urban air pollution. J. Geophys. Res. 2003, 108, 1–17. [Google Scholar]
- Dawson, J.P.; Adams, P.J.; Pandis, S.N. Sensitivity of ozone to summertime climate in the eastern USA: A modeling case study. Atmos. Environ. 2007, 41, 1494–1511. [Google Scholar] [CrossRef]
- Kleeman, M.J. A preliminary assessment of the sensitivity of air quality in California to global change. Clim. Chang. 2007, 87, 273–292. [Google Scholar] [CrossRef]
- Van Der Wal, J.T.; Janssen, L.H.J.M. Analysis of spatial and temporal variations of PM10 concentrations in the Netherlands using Kalman filtering. Atmos. Environ. 2000, 34, 3675–3687. [Google Scholar] [CrossRef]
- Lou, C.; Liu, H.; Li, Y.; Peng, Y.; Wang, J.; Dai, L. Relationships of relative humidity with PM2.5 and PM10 in the Yangtze River Delta, China. Environ. Monit. Assess. 2017, 189, 1–16. [Google Scholar] [CrossRef]
- Chow, J.C.; Watson, J.G. Fugitive Dust and Other Source Contribution to PM10 in Nevada’s las Vegas Valley- Final Report; Desert Research Institute: Reno, NV, USA, 1997; pp. 68–87. [Google Scholar]
- Shin, M.-K.; Lee, C.-D.; Ha, H.-S.; Choe, C.-S.; Kim, Y.-H. The influence of meteorological factors on PM10 concentration in incheon. J. Korean Soc. Atmos. Environ. 2007, 23, 322–331. [Google Scholar]
- Yang, W. Changes in air pollutant concentrations due to climate change and the health effect of exposure to particulate matter. Health Welfare Policy Forum 2019, 269, 20–31. [Google Scholar]
- Yoo, S.-Y.; Koo, N.; Oh, J.H.; Park, C.-Y. Characteristics of changes in the concentration of fine dust in urban forests. Proc. Korea Environ. Sci. Soc. Conf. 2017, 26, 191. [Google Scholar]
- Ministry of Environment. Available online: https://www.me.go.kr/home/file/readDownloadFile.do?fileId=168738&fileSeq=1 (accessed on 22 July 2021).
- Air Quality Index. Available online: https://en.wikipedia.org/wiki/Air_quality_index (accessed on 22 July 2021).
- Abd, A.; Hagishima, A.; Ikegaya, N.; Tanimoto, J. Analysis of air fl ow over building arrays for assessment of urban wind environment. Build. Environ. 2013, 59, 56–65. [Google Scholar]
- Kim, J. The effects of obstacle aspect ratio on surrounding flows. Korean Meteorol. Soc. 2007, 17, 381–391. [Google Scholar]
- Cohen, P.; Potchter, O.; Schnell, I. The impact of an urban park on air pollution and noise levels in the Mediterranean city of Tel-Aviv, Israel. Environ. Pollut. 2014, 195, 73–83. [Google Scholar] [CrossRef] [PubMed]
- Qin, H.; Hong, B.; Jiang, R.; Yan, S.; Zhou, Y. The effect of vegetation enhancement on particulate pollution reduction: CFD simulations in an urban park. Forests 2019, 10, 373. [Google Scholar] [CrossRef] [Green Version]
- Um, T.-W.; Kim, G.-T. Correlations between concentrations of negative ions and forest type, and site factors at national forests in Yangyang-gun. Korean J. Environ. Ecol. 2010, 24, 539–546. [Google Scholar]
- Yoon, Y.; Joo, C.; Park, H.; Kim, J. Comparative analysis of anion concentration by the type of roadside buffer green. J. Environ. Sci. Int. 2014, 23, 1339–1347. [Google Scholar] [CrossRef] [Green Version]
- Lovett, G.M. Atmospheric deposition of nutrients and pollutants in North America: An ecological perspective. Ecol. Appl. 1994, 4, 629–650. [Google Scholar] [CrossRef]
- Powe, N.A.; Willis, K.G. Mortality and morbidity benefits of air pollution (SO2 and PM10) absorption attributable to woodland in Britain. J. Environ. Manag. 2004, 70, 119–128. [Google Scholar] [CrossRef] [PubMed]
- Jeong, D.Y.; Choi, Y.E.; Chon, J. Analysis of Importance in Available Space for Creating Urban Forests to Reduce Particulate Matter-Using the Analytic Hierarchy Process. J. Korean Inst. Landsc. Archit. 2019, 47, 103–114. [Google Scholar] [CrossRef]
Division | Symbol | Scientific Name | Size (H:m, R:cm) | No. |
---|---|---|---|---|
Evergreen trees | | Juniperus chinensis ‘Kaizuka’ | H3.5 × R20 | 3 |
Deciduous trees | | Prunus yedoensis Matsum. | H4.0 × R20 | 3 |
Division | Symbol | Scientific Name | Size (H:m, R:cm) | No. |
---|---|---|---|---|
Evergreen trees | | Juniperus chinensis ‘Kaizuka’ | H3.5 × R20 | 7 |
Deciduous trees | | Prunus yedoensis Matsum. | H4.0 × R20 | 3 |
Division | Symbol | Scientific Name | Size 1 | No. |
---|---|---|---|---|
Evergreen trees | | Platycladus orientalis L. | H2.5 × W0.8 | 16 |
Deciduous trees | | Zelkova serrata (Thunb.) Makino | H3.5 × R10 | 5 |
Evergreen shrubs | | Euonymus japonicus Thunb. | H1.5 × W0.5 | 53 |
Deciduous shrubs | | Viburnum erosum Thunb. | H1.0 × W0.4 | 24 |
| Deutzia parviflora Bunge | H1.0 × W0.3 | 42 | |
| Weigela subsessilis (Nakai) L.H.Bailey | H1.0 × W0.4 | 16 | |
Groundcover plants and herbaceous flowers | | Gaura lindheimeri Engelm. and A.Gray | 8 cm | 142 |
| Coreopsis drummondii Torr. and A.Gray | 8 cm | 512 | |
| Liriope platyphylla F.T.Wang and T.Tang | 8 cm | 43 | |
| Iris sanguinea Donn ex Horn | 8 cm | 85 | |
| Pennisetum alopecuroides (L.) Spreng. | 8 cm | 384 | |
| Miscanthus sinensis ‘Green Light’ | 12 cm POT | 48 | |
| Miscanthus sinensis ‘Morning Light’ | 12 cm POT | 48 | |
| Miscanthus sinensis ‘Variegatus’ | 12 cm POT | 48 | |
| Miscanthus sinensis ‘Zebrinus’ | 12 cm POT | 48 | |
| Hosta plantaginea (Lam.) Asch. | 8 cm | 512 | |
| Dianthus chinensis L. | 8 cm | 56 |
Parameters | Unit | Measurement Range | Devices (Model Name) | Images |
---|---|---|---|---|
PM10 | μg/m3 | 0–1000 | Outdoor Air Quality Measuring Device (Smart Aircok Outdoor Type 1) | |
PM2.5 | μg/m3 | 0–1000 | ||
Temperature | °C | −10–60 | ||
Relative humidity | % | 0–99 | ||
Wind speed | mph | 0–170 | Davis® Wind Speed and Direction Smart Sensor (S-WCF-M003), HOBO® Micro Station Logger (H21-USB) | |
Wind direction | ø | 0–355 | |
PM2.5 (μg/m3) (Grade) | PM10 (μg/m3) (Grade) | ||||
---|---|---|---|---|---|
US | UK | KOR | US | UK | KOR |
0.0–12.0 (Good) | 0–35 (Low) | 0–15 (Good) | 0–54 (Good) | 0–50 (Low) | 0–30 (Good) |
12.1–35.4 (Moderate) | 36–53 (Moderate) | 16–35 (Moderate) | 55–154 (Moderate) | 51–75 (Moderate) | 31–80 (Moderate) |
35.5–55.4 (Unhealthy for sensitive groups) | 54–70 (High) | 36–75 (Unhealthy) | 155–254 (Unhealthy for sensitive groups) | 76–100 (High) | 81–150 (Unhealthy) |
55.5–150.4 (Unhealthy) | ≥71 (Very high) | 76–500 (Very unhealthy) | 255–354 (Unhealthy) | ≥101 (Very high) | 151–600 (Very unhealthy) |
150.5–250.4 (Very unhealthy) | - | - | 355–424 (Very Unhealthy) | - | - |
250.5–500.4 (Hazardous) | - | - | 425–604 (Hazardous) | - | - |
Hypothesis No. | Subject | N | Mean (μg/m3) (SD) | Difference (μg/m3) | t-Value | p-Value 1 | |
---|---|---|---|---|---|---|---|
Outside | Inside | ||||||
H1-1 | C_ PM10 | 88 | 32.83 (17.93) | 30.55 (18.12) | 2.28 | 3.11 | 0.003 |
C_ PM2.5 | 88 | 22.97 (12.57) | 21.72 (13.03) | 1.24 | 2.63 | 0.010 | |
H1-2 | E_Pre_ PM10 | 132 | 29.78 (14.86) | 32.34 (18.28) | −2.55 | −5.27 | 0.000 |
E_Pre_ PM2.5 | 132 | 21.27 (10.78) | 22.71 (13.27) | −1.44 | −3.83 | 0.000 | |
H1-3 | E_Post_ PM10 | 179 | 33.67 (24.15) | 25.29 (14.62) | 8.38 | 5.89 | 0.000 |
E_Post_PM2.5 | 179 | 24.44 (18.04) | 17.12 (9.68) | 7.32 | 6.70 | 0.000 |
Hypothesis No. | Subject | N | Mean (μg/m3) (SD) | Difference (μg/m3) | t-Value | p-Value 1 | |
---|---|---|---|---|---|---|---|
Control Site | Pre-Experimental Site | ||||||
H2 | Pre_PM10 reduction | 73 | 2.21 (6.78) | −3.01 (4.91) | 5.23 | 6.13 | 0.000 |
Pre_PM2.5 reduction | 73 | 1.16 (4.34) | −1.80 (3.65) | 2.96 | 5.24 | 0.000 |
Hypothesis No. | Subject | N | Mean (μg/m3) (SD) | Difference (μg/m3) | t-Value | p-Value 1 | |
---|---|---|---|---|---|---|---|
Pre | Post | ||||||
H3-1 | In_PM10 | 146 | 32.31 (17.82) | 24.39 (13.12) | 7.91 | 4.26 | 0.000 |
In_PM2.5 | 146 | 22.67 (12.91) | 16.52 (8.69) | 6.15 | 4.71 | 0.000 | |
H3-2 | Out_PM10 | 136 | 29.71 (15.08) | 31.06 (20.73) | −1.34 | −0.62 | 0.531 |
Out_PM2.5 | 136 | 21.23 (10.93) | 22.49 (15.43) | −1.25 | −0.79 | 0.426 | |
H3-3 | PM10 reduction | 128 | −2.51 (5.63) | 7.21 (15.49) | −9.72 | −6.96 | 0.000 |
PM2.5 reduction | 128 | −1.40 (4.36) | 6.37 (11.98) | −7.78 | −7.33 | 0.000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, Y.; Ji, E.; Chon, J. Development and Verification of the Effectiveness of a Fine Dust Reduction Planting Model for Socially Vulnerable Area. Sustainability 2021, 13, 8820. https://doi.org/10.3390/su13168820
Choi Y, Ji E, Chon J. Development and Verification of the Effectiveness of a Fine Dust Reduction Planting Model for Socially Vulnerable Area. Sustainability. 2021; 13(16):8820. https://doi.org/10.3390/su13168820
Chicago/Turabian StyleChoi, YunEui, Eunhye Ji, and Jinhyung Chon. 2021. "Development and Verification of the Effectiveness of a Fine Dust Reduction Planting Model for Socially Vulnerable Area" Sustainability 13, no. 16: 8820. https://doi.org/10.3390/su13168820
APA StyleChoi, Y., Ji, E., & Chon, J. (2021). Development and Verification of the Effectiveness of a Fine Dust Reduction Planting Model for Socially Vulnerable Area. Sustainability, 13(16), 8820. https://doi.org/10.3390/su13168820