Clean Production of Biofuel from Waste Cooking Oil to Reduce Emissions, Fuel Cost, and Respiratory Disease Hospitalizations
Abstract
:1. Introduction
1.1. Advantages and Disadvantages of Diesel Oil
1.2. Pathologies Associated with Air Pollution
2. Materials and Methods
2.1. Questionnaire
- −
- Which region of São Paulo city are you located in?
- −
- Do you use frying oil?
- −
- How much frying oil do you use per month?
- −
- What type of frying oil do you use?
- −
- Do you reuse frying oil?
- −
- How many times do you reuse frying oil?
- −
- Are you aware of the environmental impact caused by improper frying oil disposal?
- −
- Are you aware that frying oil could be used to produce biodiesel?
- −
- What is the least expensive type of fuel?
- −
- Would you be willing to store residual frying oil for free collection?
- −
- Would you be willing to store for donate the residual frying oil?
- −
- What type of company would you want to collect your residual frying oil from?
2.2. Biodiesel Production
2.3. Data Acquisition on Hospitalization and Gaseous Emissions
2.4. Environmental Cost Accounting Strategies
3. Results and Discussion
3.1. Effects of Polluting Gases on Human Health and Healthcare Costs
3.2. Outcome Drawn from the Survey Data
3.3. Environmental Cost Accounting Analysis
- −
- The sale of total pure biodiesel could yield a monthly profit of US $6910,358.46.
- −
- The carbon credits and profit were calculated using Equations (5–7), which demonstrated that it would be possible to reduce the monthly and annual CO2 emissions by 19,976.09 and 239,713.08 t, respectively, and to sell biodiesel at the monthly profit of USD 184,778.90.
- −
- Using Equation (8), the monthly and annual amount of produced glycerine was calculated to be 83,415.72 and 10,012,988.64 kg, respectively, which would yield a monthly profit of USD 4,756,169.61, according to Equation (9).
- −
- The total annual and monthly profits would amount to the US $11.851 and 143.652 million, respectively, which would represent a total decrease of 36.79% in the current fuel costs.
- −
- Pure diesel oil would only be sold by the Brazilian oil company (Petrobras) at 0.6897 US$/L. As the monthly volume of diesel oil would represent 80% of the monthly volume of consumed fuel (26.666 million L), the monthly cost of fuel would be decreased to US $18.393 million.
- −
- Thus, the costs would follow the configuration presented in Table 7, and the difference in fuel outflows and economy with monthly diesel oil purchased of US $13,310,350.88 would be achieved.
- −
- The amount of biodiesel produced would be sufficient to meet the needs of biodiesel (20%) mixed with diesel oil (80%), and an excess of 37.87%pure biodiesel, which would amount to 2,524,269.64 L/month could be sold and generate a monthly profit of US $1,897,971.46.
- −
- Because the profits from the production and sale of glycerine and the carbon credits would be the same, the monthly profit of US $4,776,145.70 should be added.
- −
- The total monthly and annual amounts of US $24.997 million and 300 million, respectively, would translate into the reduction in the total current cost of 78.84%.
- -
- Self-sufficiency in fuel supply;
- -
- Could become a biodiesel supplier;
- -
- Indiscriminate oil disposal would decrease;
- -
- Expenses associated with the cost of the chemicals used for water and sewage treatment would decrease (much of the residual frying oil is currently discarded in inappropriate places that trap the waste into the sewage (Figure 7));
- -
- -
- The worldwide criticism associated with the direct use of cooking oil, such as soybean, olive, and corn oil, for the production of biodiesel would be avoided, the prices of these products would no longer increase, and therefore, they would no longer be inaccessible for the neediest communities;
- -
- Agricultural expansion would decrease, as there would be no need to expand the arable area for soybean (and other oilseed) production for biodiesel fabrication;
- -
- The deforestation of forest reserves to increase arable land for the production of oilseeds for biodiesel production would decrease;
- -
- Water consumption for this agricultural expansion would also decrease;
- -
- A non-food product would be obtained, in this case, oils intended for human consumption;
- -
- The annual number of respiratory disease hospitalizations associated with fossil fuel pollutant gases would decrease by more than 9880 hospitalizations;
- -
- Consequently, alleviating the burden on hospitals, and increasing the number of beds available for hospitalization for other diseases; and
- -
- The annual amount of US $3,518,191.69 that would otherwise be allocated to respiratory disease hospitalizations would be saved.
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- de Oliveira Neto, G.C.; Correia, J.M.F.; Silva, P.C.; Sanches, A.G.O.; Lucato, W.C. Cleaner production in the textile industry and its relationship to sustainable development goals. J. Clean. Prod. 2019, 228, 1514–1525. [Google Scholar] [CrossRef]
- Leite, R.; Amorim, M.; Rodrigues, M.; Oliveira Neto, G. Overcoming barriers for adopting cleaner production: A case study in Brazilian small metal-mechanic companies. Sustainability 2019, 11, 4808. [Google Scholar] [CrossRef] [Green Version]
- de Paoli, F.M.; de Oliveira Neto, G.C.; Lucato, W.C. Economic and environmental gains resulting from the utilization of the design for the environment (DfE). Espacios 2013, 34, 1–11. [Google Scholar]
- Oliveira Neto, G.C.; Chaves, L.E.C.; Pinto, L.F.; Santana, J.C.C.; Amorim, M.P.C.; Rodrigues, M.J.F. Economic, environmental and social benefits of adoption of pyrolysis process of tires: A feasible and ecofriendly mode to reduce the impacts of scrap tires in Brazil. Sustainability 2019, 11, 2076. [Google Scholar] [CrossRef] [Green Version]
- Benvenga, M.A.C.; Librantz, A.F.H.; Santana, J.C.C.; Tambourgi, E.B. Genetic algorithm applied to study of the economic viability of alcohol production from Cassava root from 2002 to 2013. J. Clean. Prod. 2016, 113, 483–494. [Google Scholar] [CrossRef]
- Guerhardt, F.; Silva, T.A.F.; Gamarra, F.M.C.; Ribeiro, S.E.R., Jr.; Llanos, S.A.V.; Quispe, A.P.B.; Vieira, M., Jr.; Tambourgi, E.B.; Santana, J.C.C.; Vanalle, R.M. A smart grid system for reducing energy consumption and energy cost in buildings in São Paulo, Brazil. Energies 2020, 13, 3874. [Google Scholar] [CrossRef]
- Santana, J.C.C.; Miranda, A.C.; Yamamura, C.L.K.; Silva Filho, S.C.; Tambourgi, E.B.; Ho, L.L.; Berssaneti, F.T. Effects of air pollution on human health and costs: Current situation in São Paulo, Brazil. Sustainability 2020, 12, 4875. [Google Scholar] [CrossRef]
- Reşitoğlu, İ.A.; Altinişik, K.; Keskin, A. The pollutant emissions from diesel-engine vehicles and exhaust after treatment systems. Clean Technol. Environ. Policy 2015, 17, 15–27. [Google Scholar] [CrossRef] [Green Version]
- Pereira, R.Q.; Tulcan, O.E.P.; Fellows, C.E.; Lameira, V.J.; Quelhas, O.L.G.; de Aguiar, M.E.; do Espirito Santo Filho, D.M. Sustainability and mitigation of greenhouse gases using ethyl beef tallow biodiesel in energy generation. J. Clean. Prod. 2012, 29–30, 269–276. [Google Scholar] [CrossRef]
- WHO (World Health Organization). Air Quality Guidelines; Global Update 2005. Particulate Matter, Ozone, Nitrogen Dioxide and Sulfur Dioxide; World Health Organization: Copenhagen, Denmark, 2005. [Google Scholar]
- Hajjari, M.; Tabatabaei, M.; Aghbashlo, M.; Ghanavati, H. A review on the prospects of sustainable biodiesel production: A global scenario with an emphasis on waste-oil biodiesel utilization. Renew. Sustain. Energy Rev. 2017, 72, 445–464. [Google Scholar] [CrossRef]
- Selley, L.; Phillips, D.H.; Mudway, I. The potential of omics approaches to elucidate mechanisms of biodiesel-induced pulmonary toxicity. Part. Fibre Toxicol. 2019, 16, 1–16. [Google Scholar] [CrossRef]
- da Silva, M.J.; de Souza, S.N.M.; Souza, A.A.; Martins, G.I.; Secco, D. Engine-generator diesel cycle under five proportions of biodiesel and diesel. Rev. Bras. Eng. Agrícola Ambient. 2012, 16, 320–326. [Google Scholar] [CrossRef] [Green Version]
- Reis, H.; Reis, C.; Sharip, A.; Reis, W.; Zhao, Y.; Sinclair, R.; Beeson, L. Diesel exhaust exposure, its multi-system effects, and the effect of new technology diesel exhaust. Environ. Int. 2018, 114, 252–265. [Google Scholar] [CrossRef] [PubMed]
- Silva Filho, S.C.; Miranda, A.C.; Silva, T.A.F.; Calarge, F.A.; Souza, R.R.; Santana, J.C.C.; Tambourgi, E.B. Environmental and techno-economic considerations on biodiesel production from waste cooking oil in São Paulo city. J. Clean. Prod. 2018, 183, 1034–1043. [Google Scholar] [CrossRef]
- Hasan, M.M.; Rahman, M.M. Homogeneous charge compression ignition combustion: Advantages over compression ignition combustion, challenges and solutions. Renew. Sustain. Energy Rev. 2016, 57, 282–291. [Google Scholar] [CrossRef] [Green Version]
- Hasan, M.M.; Rahman, M.M. Performance and emission characteristics of biodiesel–diesel blend and environmental and economic impacts of biodiesel production: A review. Renew. Sustain. Energy Rev. 2017, 74, 938–948. [Google Scholar] [CrossRef] [Green Version]
- Chua, C.B.H.; Lee, H.M.; Low, J.S.C. Life cycle emissions and energy study of biodiesel derived from waste cooking oil and diesel in Singapore. Int. J. Life Cycle Assess. 2010, 15, 417–423. [Google Scholar] [CrossRef]
- Miranda, A.C.; Silva Filho, S.C.; Tambourgi, E.B.; Santana, J.C.C.; Vanalle, R.M.; Gherhardt, F. Analysis of the costs and logistics of biodiesel production from used cooking oil in the metropolitan region of Campinas (Brazil). Renew. Sustain. Energy Rev. 2018, 88, 373–379. [Google Scholar] [CrossRef]
- Santos, U.P.; Braga, A.L.F.; Garcia, M.L.B.; Pereira, L.A.A.; Lin, C.A.; Chiarelli, P.A.; de André, C.A.S.; de André, P.A.; Singer, J.M.; Saldiva, P.H.N. Exposure to fine particles increases blood pressure of hypertensive outdoor workers: A panel study. Environ. Res. 2019, 174, 88–94. [Google Scholar] [CrossRef]
- Živković, S.B.; Veljković, M.V.; Banković-Ilić, I.B.; Krstić, I.M.; Konstantinović, S.S.; Ilić, S.B.; Avramović, J.M.; Stamenković, O.S.; Veljković, V.B. Technological, technical, economic, environmental, social, human health risk, toxicological and policy considerations of biodiesel production and use. Renew. Sustain. Energy Rev. 2017, 79, 222–247. [Google Scholar] [CrossRef]
- Almeida, P.F.; Araújo, M.G.O.; Santana, J.C.C. Collagen extraction from chicken feet for jelly production. Acta Sci. Technol. 2012, 34, 345–351. [Google Scholar] [CrossRef] [Green Version]
- Rosa, J.M.; Tambourgi, E.B.; Santana, J.C.C.; de Campos Araujo, M.; Ming, W.C.; Trindade, N. Development of colors with sustainability: A comparative study between dyeing of cotton with reactive and vat dyestuffs. Text. Res. J. 2014, 84, 1009–1017. [Google Scholar] [CrossRef]
- Brodny, J.; Tutak, M. Analysis of the diversity in emissions of selected gaseous and particulate pollutants in the European Union countries. J. Environ. Manag. 2019, 231, 582–595. [Google Scholar] [CrossRef]
- De Marco, A.; Proietti, C.; Anav, A.; Ciancarella, C.; D’Elia, I.; Fares, S.; Fornasier, M.F.; Fusaro, L.; Gualtieri, M.; Manes, F.; et al. Impacts of air pollution on human and ecosystem health, and implications for the National Emission Ceilings Directive: Insights from Italy. Environ. Int. 2019, 125, 320–333. [Google Scholar] [CrossRef] [PubMed]
- Yu, T.; Wang, W.; Ciren, P.; Zhu, Y. Assessment of human health impact from exposure to multiple air pollutants in China based on satellite observations. Int. J. Appl. Earth Obs. Geoinf. 2016, 52, 542–553. [Google Scholar] [CrossRef]
- Terra, J.D.R.; Berssaneti, F.T. Application of lean healthcare in hospital services: A review of the literature (2007 to 2017). Production 2018, 28, e20180009. [Google Scholar] [CrossRef] [Green Version]
- Andrade, M.F.; Kumar, P.; Freitas, E.D.; Ynoue, R.Y.; Martins, J.; Nogueira, T.; Martinez, P.P.; Miranda, R.M.; Albuquerque, T.; Gonçalvez, F.L.T.; et al. Air quality in the megacity of São Paulo: Evolution over the last 30 years and future perspectives. Atmos. Environ. 2017, 159, 66. [Google Scholar] [CrossRef] [Green Version]
- Votto, R.; Lee Ho, L.; Berssaneti, F.B. Applying and assessing performance of earned duration management control charts for EPC project duration monitoring. J. Constr. Eng. Manag. 2020, 146, 04020001. [Google Scholar] [CrossRef]
- Miranda, R.M.; Lopes, F.; Rosario, N.E.; Yamasoe, M.A.; Landulfo, E.; Andrade, M.F. The relationship between aerosol particles chemical composition and optical properties to identify the biomass burning contribution to fine particles concentration: A case study for Sao Paulo city, Brazil. Environ. Monit. Assess. 2017, 189, 9–15. [Google Scholar] [CrossRef] [PubMed]
- Vanalle, R.M.; Lucato, W.C.; Ganga, G.M.D.; Alves Filho, A.G. Risk management in the automotive supply chain: An exploratory study in Brazil. Int. J. Prod. Res. 2020, 58, 783–799. [Google Scholar] [CrossRef]
- Fajersztajn, L.; Veras, M.; Saldiva, P.H.N. Como as cidades podem favorecer ou dificultar a promoção da saúde de seus moradores? Estud. Avançados 2016, 30, 7–27. [Google Scholar] [CrossRef] [Green Version]
- Santana, J.C.C.; Gardim, R.B.; Almeida, P.F.; Borini, G.B.; Quispe, A.P.B.; Llanos, S.A.V.; Heredia, J.A.; Zamuner, S.; Gamarra, F.M.C.; Farias, T.M.B.; et al. Valorization of chicken feet by-product of the poultry industry: High qualities of gelatin and biofilm from extraction of collagen. Polymers 2020, 12, 529. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mantovani, K.C.C.; Nascimento, L.F.C.; Moreira, D.S.; Vargas, N.P.; da Silva Vieira, L.C.P.F. Poluentes do ar e internações devido a doenças cardiovasculares em São José do Rio Preto, Brasil. Ciência Saúde Coletiva 2016, 21, 509–516. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paiva, R.F.P.S. Hospital morbidity due to diseases associated with air pollution in the city of Volta Redonda, Rio de Janeiro: Cases and economic cost. Cad. Saúde Coletiva 2014, 22, 127–133. [Google Scholar] [CrossRef] [Green Version]
- Liaquat, A.M.; Kalam, M.A.; Masjuki, M.H. Potential emissions reduction in road transport sector using biofuel in developing countries. Atmos. Environ. 2010, 44, 3869–3877. [Google Scholar] [CrossRef]
- Vilas Boas, D.S.; Matsuda, M.; Toffoletto, O.; Garcia, M.L.B.; Saldiva, P.H.N.; Marquezini, M.V. Workers of São Paulo city, Brazil, exposed to air pollution: Assessment of genotoxicity. Mutat. Res. Genet. Toxicol. Environ. Mutagenesis 2018, 834, 18–24. [Google Scholar] [CrossRef]
- Vormittag, E.M.P.A.; Rodrigues, C.G.; de André, P.A.; Saldiva, P.H.N. Assessment and valuation of public health impacts from gradual biodiesel implementation in the transport energy matrix in Brazil. Aerosol Air Qual. Res. 2018, 18, 2375–2382. [Google Scholar] [CrossRef] [Green Version]
- ANP (National Agency of Petroleum). ANP Resolution—2004. Available online: http://www.anp.gov.br/petro/legis_biodiesel (accessed on 20 February 2020).
- Arbex, M.A.; Santos, U.P.; Martins, L.C.; Saldiva, P.H.N.; Pereira, L.A.A.; Braga, A.L.F. Air pollution and the respiratory system. J. Bras. Pneumol. 2012, 38, 643–655. [Google Scholar] [CrossRef] [Green Version]
- Kunzli, N.; Perez, L.; Rapp, R. Air quality and health. Eur. Respir. Soc. 2014, 44, 614–626. [Google Scholar]
- Costa, R.G.R.; Silva, C.G.T.; Cohen, S.C. A origem do caos—A crise de mobilidade no Rio de Janeiro e a ameaça à saúde urbana. Cad. Metrópole 2013, 15, 411–431. [Google Scholar] [CrossRef] [Green Version]
- Gehring, U.; Wijga, A.H.; Brauer, M.; Fischer, P.; Jongste, J.C.; Kerkhof, M.; Oldenwening, M.; Smit, H.A.; Brunekreef, B. Traffic-related air pollution and the development of asthma and allergies during the first 8 years of life. Am. J. Respir. Crit. Care Med. 2010, 181, 596–603. [Google Scholar] [CrossRef] [Green Version]
- Ko, F.W.; Tam, W.; Wong, T.W.; Chan, D.P.; Tung, A.H.; Lai, C.K.; Hui, D.S. Temporal relationship between air pollutants and hospital admissions for chronic obstructive pulmonary disease in Hong Kong. Thorax 2007, 62, 780–785. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andersen, Z.J.; Hvidberg, M.; Jensen, S.S.; Ketzel, M.; Loft, S.; Sørensen, M.; Tjønneland, A.; Overvad, K.; Raaschou-Nielsen, O. Chronic obstructive pulmonary disease and long-term exposure to traffic-related air pollution: A cohort study. Am. J. Respir. Crit. Med. 2011, 183, 455–461. [Google Scholar] [CrossRef] [PubMed]
- Hu, G.; Zhou, Y.; Tian, J.; Yao, W.; Li, J.; Li, B.; Ran, P. Risk of COPD from exposure to biomass smoke: A metaanalysis. Chem. Rev. 2010, 138, 20–31. [Google Scholar]
- Pandya, R.J.; Solomon, G.; Kinner, A.; Balmes, J.R. Diesel exhaust and asthma: Hypotheses and molecular mechanism of action. Environ. Health Perspect. 2002, 110 (Suppl. 1), 103–112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xia, B.; Zhou, Y.; QingyangZhu, O.; Zhao, Y.; Wang, Y.; Ge, W.; Yang, Q.; Zhao, Y.; Wang, P.; Si, J.; et al. Personal exposure to PM2.5 constituents associated with gestational blood pressure and endothelial dysfunction. Environ. Pollut. 2019, 250, 346–356. [Google Scholar] [CrossRef]
- Erickson, A.C.; Brauer, M.; Christidis, T.; Pinault, L.; Crouse, D.L.; Donkelaar, A.; Weichenthal, S.; Pappin, A.; Tiepkema, M.; Martin, R.V.; et al. Evaluation of a method to indirectly adjust for unmeasured covariates in the association between fine particulate matter and mortality. Environ. Res. 2019, 175, 108–116. [Google Scholar] [CrossRef]
- Polezer, G.; Tadano, Y.; Siqueira, H.V.; Godoi, A.F.L.; Yamamoto, C.I.; De André, P.A.; Pauliquevis, T.; Andrade, M.F.; Oliveira, A.; Saldiva, P.H.N.; et al. Assessing the impact of PM 2.5 on respiratory disease using artificial neural networks. Environ. Pollut. 2018, 235, 394–403. [Google Scholar] [CrossRef]
- Pinheiro, S.L.L.A.; Saldiva, P.H.N.; Schwartz, J.; Zanobetti, A. Isolated and synergistic effects of PM10 and average temperature on cardiovascular and respiratory mortality. Rev. Saude Publica 2014, 12, 756–765. [Google Scholar] [CrossRef] [Green Version]
- Freitas, C.U.; Leon, A.P.; Juger, W.; Gouveia, N. Poluição do ar e impactos na saúde em Vitória, Espírito Santo. Rev. Saude Publica 2016, 50, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Mascarenhas, M.D.M.; Vieira, L.C.; Lanzieri, T.M.; Leal, A.P.P.R.; Duarte, A.F.; Hatch, D.L. Poluição atmosférica devida à queima de biomassa florestal e atendimentos de emergência por doença respiratória em Rio Branco, Brasil—Setembro, 2005. J. Bras. Pneumol. 2008, 34, 42–46. [Google Scholar] [CrossRef] [PubMed]
- Berssaneti, F.T.; Assumpção, A.; Nakao, O.S. Engineering, procurement and construction (EPC): What are the variables that impact the success of the projects currently running in Brazil? Gest. Prod. 2014, 21, 95–109. [Google Scholar] [CrossRef] [Green Version]
- Santana, J.C.C.; Guerhardt, F.; Franzini, C.E.; Lee Ho, L.; Ribeiro Junior, S.E.R.; Canovas, G.; Yamamura, C.L.K.; Vanalle, R.M.; Berssaneti, F.T. Refurbishing and recycling of cell phones as a sustainable process of reverse logistics: A case study in Brazil. J. Clean. Prod. 2021, 283, 124585. [Google Scholar] [CrossRef]
- Berssaneti, F.T.; Berger, S.; Saut, A.M.; Vanalle, R.M.; Santana, J.C.C. Value generation of remanufactured products: Multi-case study of third-party companies. Sustainability 2019, 11, 584. [Google Scholar] [CrossRef] [Green Version]
- IBGE (Brazilian Institute of Geography and Statistic). Panorama over the City of São Paulo. Available online: https://cidades.ibge.gov.br/brasil/sp/sao-paulo/panorama (accessed on 10 November 2020).
- SP City Hall. Data on the City of São Paulo. Available online: http://www.capital.sp.gov.br/ (accessed on 8 March 2020).
- Severo, J.B., Jr.; Almeida, S.S.; Narain, N.; Souza, R.R.; Santana, J.C.C.; Tambourgi, E.B. Wine clarification from Spondias mombin L. pulp by hollow fiber membrane system. Process. Biochem. 2007, 42, 1516–1520. [Google Scholar] [CrossRef]
- Lucato, W.C.; Vieira, M., Jr.; Vanalle, R.M.; Salles, J.A.A. Model to measure the degree of competitiveness for auto parts manufacturing companies. Int. J. Prod. Res. 2012, 50, 5508–5522. [Google Scholar] [CrossRef]
- CETESB. Environmental Sanitation Technology Company. Available online: http://www.cetesb.gov.br (accessed on 5 July 2020).
- CONAMA (National Council of Environment). Brazilian Environmental Policies. Available online: http://www.mma.gov.br/conama (accessed on 9 July 2020).
- Solé, D.; Camelo-Nunes, I.C.; Wandalsen, G.F.; Pastorino, A.C.; Jacob, C.M.A.; Gonzalez, C.; Wandalsen, N.F.; Rosário Filho, N.A.; Fischer, G.B.; Naspitz, C.K. Prevalence of symptoms of asthma, rhinitis, and atopic eczema in Brazilian adolescents related to exposure to gaseous air pollutants and socioeconomic status. J. Investig. Allergol. Clin. Immunol. 2007, 17, 6–13. [Google Scholar] [PubMed]
- Locosselli, G.M.; Camargo, E.P.; Moreira, T.C.L.; EnzoTodesco, E.; Andrade, M.F.; de André, C.D.S.; de André, P.A.; Singer, J.M.; Ferreira, L.S.; Saldiva, P.N.H.; et al. The role of air pollution and climate on the growth of urban trees. Sci. Total Environ. 2019, 666, 652–661. [Google Scholar] [CrossRef]
- Sera, F.; Ben Armstrong, A.T.; Vicedo-Cabrera, A.M.; Åström, C.; Bell, M.L.; Chen, B.Y.; Coelho, M.S.Z.S.; Correa, P.M.; Cruz, J.C.; Dang, T.N.; et al. How urban characteristics affect vulnerability to heat and cold: A multi-country analysis. Int. J. Epidemiol. 2019, 48, 1101–1112. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Q.; Li, S.; Coelho, M.S.Z.S.; Saldiva, P.H.N.; Hu, K.; Abramson, M.J.; Huxley, R.R.; Guo, Y. Assessment of intraseasonal variation in hospitalization associated with heat exposure in Brazil. JAMA Netw. Open 2019, 2, e187901. [Google Scholar] [CrossRef]
- Gao, J.; Kovats, S.; Vardoulakis, S.; Wilkinson, P.; Woodward, A.; Li, J.; Gu, S.; Liu, X.; Wu, H.; Wang, J.; et al. Public health co-benefits of greenhouse gas emissions reduction: A systematic review. Sci. Total Environ. 2018, 627, 388–402. [Google Scholar] [CrossRef] [PubMed]
- Ravina, M.; Panepinto, D.; Zanetti, M.C. DIDEM—An integrated model for comparative health damage costs calculation of air pollution. Atmos. Environ. 2018, 173, 81–95. [Google Scholar] [CrossRef]
- Natali, R.M.T.; Santos, D.D.P.S.; Fonseca, A.M.C.; Filomeno, G.C.M.; Figueiredo, A.H.A.; Terrivel, P.M.; Massoni, K.M.; Braga, A.L.F. Perfil de internações hospitalares por doenças respiratórias em crianças e adolescentes da cidade de São Paulo, 2000–2004. Rev. Paul. Pediatr. 2011, 29, 584–590. [Google Scholar] [CrossRef] [Green Version]
- Duhanyan, N.; Roustan, Y. Below-cloud scavenging by rain of atmospheric gases and particulates. Atmos. Environ. 2011, 45, 7201–7217. [Google Scholar] [CrossRef]
- Xu, D.; Ge, B.; Chen, X.; Sun, Y.; Cheng, N.; Li, M.; Pan, X.; Ma, Z.; Pan, Y.; Wang, Z. Multimethod determination of the below-cloud wet scavenging coefficients of aerosols in Beijing, China. Atmos. Chem. Phys. 2019, 19, 15569–15581. [Google Scholar] [CrossRef] [Green Version]
- Gonçalves, F.L.T.; Coelho, M.S.Z.S. Variação da morbidade de doenças respiratórias em função da variação da temperatura entre os meses de abril e maio em São Paulo. Ciência Nat. 2010, 32, 103–118. [Google Scholar]
- Giraçol, J.; Passarini, K.C.; Silva Filho, S.C.; Calarge, F.A.; Tambourgi, E.B.; Santana, J.C.C. Reduction in ecological cost through biofuel production from cooking oils: An ecological solution for the city of Campinas, Brazil. J. Clean. Prod. 2011, 19, 1324–1329. [Google Scholar] [CrossRef]
- Jorge, H.; Lopes, M.R.V. Avaliação de óleos e gorduras de frituras coletados no comércio de São José do Rio Preto-SP. Aliment. Nutr. Araraquara 2009, 14, 149–156. [Google Scholar]
- Tavares, M.; Gonzalez, E.; da Silva, M.L.P.; Barsotti, R.C.F.; Kumagai, E.E.; Caruso, M.S.F.; Aued-Pimentel, S.; Ruvieri, V.; de Souza, D.L. Assessment of food frying-oils and-fats marketed in Santos metropolitan area, São Paulo state. Rev. Inst. Adolfo Lutz 2007, 66, 40–44. [Google Scholar]
- Rabelo, R.A.; Ferreira, M.O. Coleta Seletiva de Óleo Residual de Fritura para Aproveitamento Industrial. Universidade Católica de Goiás. 2008. Available online: http://www.pucgoias.edu.br/ucg (accessed on 2 October 2019).
- Thode Filho, S.; Santo, A.S.S.; Almeida, T.M.; Silva, E.R. Technology applied to environmental management and processing of vegetable oil residual in the state of Rio de Janeiro. Rev. Eletrônica Gestão Educ. Tecnol. Ambient. 2013, 15, 3026–3035. [Google Scholar] [CrossRef]
- Castro, E.R.; Fernandes, F.C.; Ramos, M.V. Desconhecimento é a maior barreira na produção de biocombustível oriundo de óleo reutilizado em Mogi das Cruzes/SP. In Proceedings of the IX Sintagro—Simpósio Nacional de Tecnologia em Agronegócio, Botucatu, Brazil, 22–24 June 2017. [Google Scholar]
- Gouveia, N.; Corallo, F.P.; Leon, A.C.P.; Junger, W.; Freitas, C.U. Air pollution and hospitalizations in the largest Brazilian metropolis. Rev. Saude Publica 2017, 51. [Google Scholar] [CrossRef] [Green Version]
WHO Standard | PM10 50 µg/m3 per 24 h or 20 µg/m3 per Year | PM2.5 25 µg/m3 per 24 h or 10 µg/m3 per Year | CO 10 mg/m3 per 8 h | NO2 200 µg/m3 per 24 h or 40 µg/m3 per Year | SO2 20 µg/m3 per 24 h | O3 100 µg/m3 per 8 h |
---|---|---|---|---|---|---|
Effects on human health |
|
|
|
|
|
|
City Area | Population (Million) | Distribution (%) | Survey Participants (%) |
---|---|---|---|
Eastern | 3.6 | 33 | 32 |
Southern | 3.1 | 28.5 | 26.3 |
Western | 1.3 | 11.9 | 12.7 |
Northern | 2.3 | 21.1 | 23.4 |
Central | 0.6 | 5.5 | 5.6 |
Total | 10.9 | 100 | 100 |
Month | World Health Organization Standards | Rainfall (mm) | Hospitalizations | Cost (US$) * | |||||
---|---|---|---|---|---|---|---|---|---|
PM10 | PM2.5 | SO2 | O3 | CO | NO2 | ||||
50 µg/m3 per 24 h | 25 µg/m3 per 24 h | 20 µg/m3 per 24 h | 100 µg/m3 per 8 h | 10 µg/m3 per 8 h | 200 µg/m3 per 24 h | ||||
January | 59 | 33 | 7 | 94 | 1.2 | 60 | 237 | 1789 | 725,735.73 |
February | 67 | 37 | 8 | 108 | 1.4 | 71 | 222 | 1846 | 696,734.12 |
March | 61 | 36 | 9 | 82 | 1.2 | 62 | 161 | 2724 | 901,933.37 |
April | 64 | 41 | 9 | 81 | 1.3 | 67 | 73 | 3422 | 1,099,880.71 |
May | 70 | 40 | 10 | 62 | 1.5 | 67 | 71 | 3363 | 1,213,888.22 |
June | 81 | 51 | 10 | 61 | 2 | 76 | 50 | 3146 | 1,103,469.08 |
July | 84 | 53 | 11 | 68 | 2 | 86 | 44 | 3150 | 1,063,217.16 |
August | 94 | 55 | 12 | 87 | 2 | 87 | 40 | 2936 | 1,096,727.15 |
September | 83 | 48 | 11 | 102 | 1.5 | 76 | 71 | 2835 | 1,057,459.77 |
October | 74 | 41 | 9 | 103 | 1.2 | 70 | 127 | 2788 | 995,815.47 |
November | 59 | 35 | 7 | 93 | 1 | 58 | 146 | 2672 | 948,320.17 |
December | 61 | 36 | 7 | 97 | 1.1 | 63 | 201 | 2264 | 824,124.69 |
Correlation coefficient | |||||||||
Cost | 0.6 | 0.7 | 0.7 | −0.7 | 0.5 | 0.5 | −0.9 | 1 | - |
Hospitalizations | 0.5 | 0.6 | 0.7 | −0.7 | 0.5 | 0.4 | −0.9 | 1 |
Source | Yield (%) | Density (g/mL) | Acid Value (g/100 g) | Moisture (g/100 g) | Flash Point (°C) | Viscosity (mm2/s) |
---|---|---|---|---|---|---|
Biodiesel | 93.84 ± 1.06 | 0.8834 ± 0.0251 | 0.3627 ± 0.2517 | 0.023 ± 0.002 | 51.0 ± 0.4 | 4.0 ± 0.5 |
ANP | - | 0.875–0.900 | <0.8 | <0.5 | >38 | 3.0–6.0 |
Description | Quantity (Unit/Month) | Price (US$) | Unit Cost (US$/Month) |
---|---|---|---|
Biodiesel plant | 1/120 * | 1,000,000.00 | 8333.33 |
Maintenance (%) | 4.00 | 8333.33 | 333.33 |
Oil fuel (L) | 33,333,333.33 | 0.9511 | 31,703,333.34 |
Ethanol (L) | 1,001,299 | 0.5047 | 505,392.43 |
Monthly total cost (US$) | 32,217,392.44 | ||
Annual total cost (US$) | 386,608,709.25 |
Description | Quantity (Unit/Month) | Price (US$) | Profit (US$/Month) |
---|---|---|---|
Biodiesel (L) | 9,191,236.31 | 0.7518 | 6,910,358.46 |
Carbon Credit (t CO2) | 19,976.09 | 9.25 | 184,778.90 |
Glycerine (kg) | 834,415.72 | 5.70 | 4,756,169.61 |
Monthly total profit (USD) | 11,851,306.93 | ||
Annual total profit (USD) | 142,215,683.22 |
Description | Quantity (Unit/Month) | Price (US$) | Unit Cost (US$/Month) |
---|---|---|---|
Biodiesel plant | 1/120 * | 1,000,000.00 | 8333.33 |
Maintenance (%) | 4.00 | 8333.33 | 333.33 |
Pure diesel (L) | 26,666,666.68 | 0.6897 | 18,392,982.46 |
Ethanol (L) | 1,001,299 | 0.5047 | 505,392.43 |
Monthly total cost (US$) | 18,907,041.55 | ||
Profit for this scenario (US$) | 13,310,350.88 |
Description | Quantity (Unit/Month) | Price (US$) | Profit (US$/Month) |
---|---|---|---|
Biodiesel excess (L) | 2,524,269.64 | 0.7518 | 1,897,971.46 |
Carbon Credit (t CO2) | 19,976.09 | 9.25 | 184,778.90 |
Glycerine (kg) | 834,415.72 | 5.70 | 4,756,169.61 |
Monthly total profit (US$) | 11,686,504.16 | ||
Monthly total saving (US$) | 24,996,855.04 | ||
Annual total saving (US$) | 299,962,260.48 |
Field | Stage 1 | Stage 2 | Stage 3 | Stage 4 |
---|---|---|---|---|
Unsustainable | Sustainable | Fully Sustainable | ||
Environmental |
|
|
|
|
Economic |
|
|
|
|
Social |
|
|
|
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santana, J.C.C.; Miranda, A.C.; Souza, L.; Yamamura, C.L.K.; Coelho, D.d.F.; Tambourgi, E.B.; Berssaneti, F.T.; Ho, L.L. Clean Production of Biofuel from Waste Cooking Oil to Reduce Emissions, Fuel Cost, and Respiratory Disease Hospitalizations. Sustainability 2021, 13, 9185. https://doi.org/10.3390/su13169185
Santana JCC, Miranda AC, Souza L, Yamamura CLK, Coelho DdF, Tambourgi EB, Berssaneti FT, Ho LL. Clean Production of Biofuel from Waste Cooking Oil to Reduce Emissions, Fuel Cost, and Respiratory Disease Hospitalizations. Sustainability. 2021; 13(16):9185. https://doi.org/10.3390/su13169185
Chicago/Turabian StyleSantana, José Carlos Curvelo, Amanda Carvalho Miranda, Luane Souza, Charles Lincoln Kenji Yamamura, Diego de Freitas Coelho, Elias Basile Tambourgi, Fernando Tobal Berssaneti, and Linda Lee Ho. 2021. "Clean Production of Biofuel from Waste Cooking Oil to Reduce Emissions, Fuel Cost, and Respiratory Disease Hospitalizations" Sustainability 13, no. 16: 9185. https://doi.org/10.3390/su13169185
APA StyleSantana, J. C. C., Miranda, A. C., Souza, L., Yamamura, C. L. K., Coelho, D. d. F., Tambourgi, E. B., Berssaneti, F. T., & Ho, L. L. (2021). Clean Production of Biofuel from Waste Cooking Oil to Reduce Emissions, Fuel Cost, and Respiratory Disease Hospitalizations. Sustainability, 13(16), 9185. https://doi.org/10.3390/su13169185