Profiling Spanish Prospective Buyers of Electric Vehicles Based on Demographics
Abstract
:1. Introduction
2. New Mobility Trend
2.1. Gender Mobility
2.2. Age and Mobility
2.3. Education and Mobility
2.4. Income and Mobility
3. Sample, Variables, and Methodology
3.1. Sample
3.2. Measurement of Variables
3.2.1. Dependent Variable
3.2.2. Independent Variables
3.3. Methodology
4. Results
5. Discussion
6. Managerial and Policy Implications
7. Limitations and Future Research
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
CLASSIFICATION DATA
- GENDER
| 1 |
| 2 |
- AGE
| Not included |
| 1 |
| 2 |
| 3 |
| Not included |
- CITY
| 1 |
| 2 |
| 3 |
| 4 |
| 5 |
| 6 |
| 7 |
| 8 |
| 9 |
| 10 |
| 11 |
| 12 |
| 13 |
| 14 |
| |
| 15 |
- EDUCATION
- Higher Level of Studies Completed
| 1 |
| 2 |
| 3 |
| 4 |
| 5 |
| 6 |
- INCOME
| 1 |
| 2 |
| 3 |
| 4 |
| 5 |
- ELECTRIC MOBILITY
ELECTRIC VEHICLE understood as (number of charging point networks, information systems on location and availability, public electric vehicle rental systems...).
Appendix B
Men | Women | Total | Total | |||||||
---|---|---|---|---|---|---|---|---|---|---|
18–29 y | 30–45 y | 46–60 y | 18–29 y | 30–45 y | 46–60 y | 18–29 y | 30–45 y | 46–60 y | ||
Barcelona | 26 | 9 | 16 | 18 | 14 | 27 | 44 | 23 | 43 | 110 |
Bilbao | 7 | 13 | 12 | 4 | 16 | 11 | 11 | 29 | 23 | 63 |
A Coruña | 1 | 9 | 7 | 8 | 21 | 13 | 9 | 30 | 20 | 59 |
Girona | 6 | 11 | 13 | 11 | 9 | 17 | 17 | 20 | 30 | 67 |
Guadalajara | 3 | 11 | 7 | 12 | 5 | 13 | 15 | 16 | 20 | 51 |
Las Palmas/Canaria | 15 | 36 | 22 | 18 | 22 | 20 | 33 | 58 | 42 | 133 |
Lleida | 9 | 10 | 12 | 6 | 12 | 16 | 15 | 22 | 28 | 65 |
Logroño | 8 | 11 | 7 | 10 | 18 | 8 | 18 | 29 | 15 | 62 |
Madrid | 45 | 31 | 24 | 21 | 22 | 30 | 66 | 53 | 54 | 173 |
Malaga | 11 | 19 | 9 | 14 | 9 | 9 | 25 | 28 | 18 | 71 |
Santander | 10 | 8 | 10 | 8 | 16 | 5 | 18 | 24 | 15 | 57 |
Sevilla | 37 | 18 | 24 | 37 | 11 | 19 | 74 | 29 | 43 | 146 |
Valencia | 14 | 6 | 15 | 14 | 7 | 14 | 28 | 13 | 29 | 70 |
Vigo | 16 | 15 | 11 | 12 | 13 | 11 | 28 | 28 | 22 | 78 |
Appendix C
References
- González-Sánchez, G.; Olmo-Sánchez, M.I.; Maeso-González, E. Challenges and Strategies for Post-COVID-19 Gender Equity and Sustainable Mobility. Sustainability 2021, 13, 2510. [Google Scholar] [CrossRef]
- Kraemer, M.U.G.; Yang, C.-H.; Gutierrez, B.; Wu, C.-H.; Klein, B.; Pigott, D.M.; du Plessis, L.; Faria, N.R.; Li, R.; Hanage, W.P. The effect of human mobility and control measures on the COVID-19 epidemic in China. Science 2020, 6490, 493–497. [Google Scholar] [CrossRef] [Green Version]
- Xie, J.; Zhu, Y. Association between ambient temperature and COVID-19 infection in 122 cities from China. Sci. Total Environ. 2020, 724, 138201. [Google Scholar] [CrossRef]
- Arribas-Ibar, M.; Nylund, P.A.; Brem, A. The Risk of Dissolution of Sustainable Innovation Ecosystems in Times of Crisis: The Electric Vehicle during the COVID-19 Pandemic. Sustainability 2021, 13, 1319. [Google Scholar] [CrossRef]
- United Nations Department of Economic and Social Affairs. World Population Prospects: The 2018 Revision; UNDESA: New York, NY, USA, 2018. [Google Scholar]
- Feng, S.; An, H.; Li, H.; Qi, Y.; Wang, Z.; Guan, Q.; Li, Y.; Qi, Y. The technology convergence of electric vehicles: Exploring promising and potential technology convergence relationships and topics. J. Clean. Prod. 2020, 260, 120992. [Google Scholar] [CrossRef]
- Shaheen, S.; Chan, N. Mobility and the Sharing Economy: Potential to Facilitate the First- and Last-Mile Public Transit Connections. Built Environ. 2016, 42, 573–588. [Google Scholar] [CrossRef]
- Allied Market Research Electric Vehicle Market by Type. Available online: https://www.alliedmarketresearch.com/electric-vehicle-market (accessed on 30 April 2021).
- Caulfield, B.; Farrell, S.; McMahon, B. Examining individuals preferences for hybrid electric and alternatively fuelled vehicles. Transp. Policy 2010, 17, 381–387. [Google Scholar] [CrossRef]
- Ghasri, M.; Ardeshiri, A.; Rashidi, T. Perception towards electric vehicles and the impact on consumers’ preference. Transp. Res. Part D Transp. Environ. 2019, 77, 271–291. [Google Scholar] [CrossRef]
- Liao, F.; Molin, E.; van Wee, B. Consumer preferences for electric vehicles: A literature review. Transp. Rev. 2017, 37, 252–275. [Google Scholar] [CrossRef] [Green Version]
- Diamantopoulos, A.; Schlegelmilch, B.B.; Sinkovics, R.R.; Bohlen, G.M. Can socio-demographics still play a role in profiling green consumers? A review of the evidence and an empirical investigation. J. Bus. Res. 2003, 56, 465–480. [Google Scholar] [CrossRef]
- Oliveira, G.D.; Dias, L.C. Influence of Demographics on Consumer Preferences for Alternative Fuel Vehicles: A Review of Choice Modelling Studies and a Study in Portugal. Energies 2019, 12, 318. [Google Scholar] [CrossRef] [Green Version]
- Moore, G.A.; McKenna, R. Crossing the Chasm; Capstone Oxford: London, UK, 1999. [Google Scholar]
- Stafford, E.R. Bridging the Chasm: An Early Adopter’s Perspectives on How Electric Vehicles Can Go Mainstream. Sustain. J. Rec. 2017, 10, 164–176. [Google Scholar] [CrossRef]
- Hidrue, M.K.; Parsons, G.R.; Kempton, W.; Gardner, M.P. Willingness to pay for electric vehicles and their attributes. Resour. Energy Econ. 2011, 33, 686–705. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.; Liao, H.; Wang, J.-W. Analysis of consumer attitudes towards autonomous, connected, and electric vehicles: A survey in China. Res. Transp. Econ. 2020, 80, 100828. [Google Scholar] [CrossRef]
- Price, D.A.; Wang, Z. Explaining an Industry Cluster: The Case of US Car Makers From 1895-1969. Econ. Brief 2012, EB12-10, 1–5. [Google Scholar]
- Trappey, C.; Trappey, A.; Liu, C.-S.; Lee, W.; Hung, Y. The Design and Evaluation of a Supply Chain Logistic Hub for Automobile and Parts Distribution. Mater. Sci. Forum. Mater. Sci. Forum. 2008, 594, 119–131. [Google Scholar] [CrossRef]
- Morton, C.; Anable, J.; Nelson, J.D. Consumer structure in the emerging market for electric vehicles: Identifying market segments using cluster analysis. Int. J. Sustain. Transp. 2017, 11, 443–459. [Google Scholar] [CrossRef]
- Crozier, C.; Apostolopoulou, D.; McCulloch, M. Mitigating the impact of personal vehicle electrification: A power generation perspective. Energy Policy 2018, 118, 474–481. [Google Scholar] [CrossRef] [Green Version]
- Kubiczek, J.; Hadasik, B. Segmentation of Passenger Electric Cars Market in Poland. World Electr. Veh. J. 2021, 12, 23. [Google Scholar] [CrossRef]
- Christidis, P.; Focas, C. Factors affecting the uptake of hybrid and electric vehicles in the European Union. Energies 2019, 12, 3414. [Google Scholar] [CrossRef] [Green Version]
- Hanson, S. Gender and mobility: New approaches for informing sustainability. Gender Place Cult. 2010, 17, 5–23. [Google Scholar] [CrossRef]
- Jensen, A.F.; Cherchi, E.; Mabit, S.L. On the stability of preferences and attitudes before and after experiencing an electric vehicle. Transp. Res. Part D Transp. Environ. 2013, 25, 24–32. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Rasouli, S.; Timmermans, H. Expanding scope of hybrid choice models allowing for mixture of social influences and latent attitudes: Application to intended purchase of electric cars. Transp. Res. Part A Policy Pract. 2014, 69, 71–85. [Google Scholar] [CrossRef]
- Vassileva, I.; Campillo, J. Adoption barriers for electric vehicles: Experiences from early adopters in Sweden. Energy 2017, 120, 632–641. [Google Scholar] [CrossRef]
- Cresswell, T.; Priya Uteng, T. Gendered Mobilities: Towards an Holistic Understanding. In Gendered Mobilities; Ashgate: Aldershot, UK, 2008; pp. 47–64. [Google Scholar]
- Mouter, N.; van Cranenburgh, S.; van Wee, B. An empirical assessment of Dutch citizens’ preferences for spatial equality in the context of a national transport investment plan. J. Transp. Geogr. 2017, 60, 217–230. [Google Scholar] [CrossRef] [Green Version]
- Simmons, G.; Giraldo, J.E.D.; Truong, Y.; Palmer, M. Uncovering the link between governance as an innovation process and socio-economic regime transition in cities. Res. Policy 2018, 47, 241–251. [Google Scholar] [CrossRef] [Green Version]
- Straughan, R.D.; Roberts, J.A. Environmental segmentation alternatives: A look at green consumer behavior in the new millennium. J. Consum. Mark. 1999, 16, 558–575. [Google Scholar] [CrossRef]
- Canepa, K.; Hardman, S.; Tal, G. An early look at plug-in electric vehicle adoption in disadvantaged communities in California. Transp. Policy 2019, 78, 19–30. [Google Scholar] [CrossRef]
- Higueras-Castillo, E.; Molinillo, S.; Coca-Stefaniak, J.A.; Liébana-Cabanillas, F. Potential Early Adopters of Hybrid and Electric Vehicles in Spain—Towards a Customer Profile. Sustainability 2020, 12, 4345. [Google Scholar] [CrossRef]
- Trommer, S.; Jarass, J.; Kolarova, V. Early adopters of electric vehicles in Germany unveiled. World Electr. Veh. J. 2015, 7, 722–732. [Google Scholar] [CrossRef] [Green Version]
- Xue, C.; Zhou, H.; Wu, Q.; Wu, X.; Xu, X. Impact of Incentive Policies and Other Socio-economic Factors on Electric Vehicle Market Share: A Panel Data Analysis from the 20 Countries. Sustainability 2021, 13, 2928. [Google Scholar] [CrossRef]
- Costa Pinto, D.; Herter, M.M.; Rossi, P.; Borges, A. Going green for self or for others? Gender and identity salience effects on sustainable consumption. Int. J. Consum. Stud. 2014, 38, 540–549. [Google Scholar] [CrossRef]
- Daziano, R.A.; Bolduc, D. Incorporating pro-environmental preferences towards green automobile technologies through a Bayesian hybrid choice model. Transp. A Transp. Sci. 2013, 9, 74–106. [Google Scholar] [CrossRef]
- Hackbarth, A.; Madlener, R. Consumer preferences for alternative fuel vehicles: A discrete choice analysis. Transp. Res. Part D Transp. Environ. 2013, 25, 5–17. [Google Scholar] [CrossRef] [Green Version]
- Tanaka, M.; Ida, T.; Murakami, K.; Friedman, L. Consumers’ willingness to pay for alternative fuel vehicles: A comparative discrete choice analysis between the US and Japan. Transp. Res. Part A Policy Pract. 2014, 70, 194–209. [Google Scholar] [CrossRef]
- Shin, J.; Bhat, C.R.; You, D.; Garikapati, V.M.; Pendyala, R.M. Consumer preferences and willingness to pay for advanced vehicle technology options and fuel types. Transp. Res. Part C Emerg. Technol. 2015, 60, 511–524. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Yu, Y.; Zou, B. Analysing public awareness and acceptance of alternative fuel vehicles in China: The case of EV. Energy Policy 2011, 39, 7015–7024. [Google Scholar] [CrossRef]
- Hwang, J.; Griffiths, M. Share more, drive less: Millennials value perception and behavioral intent in using collaborative consumption services. J. Consum. Mark. 2017, 34, 132–146. [Google Scholar] [CrossRef]
- Dempsey, A. Why Are Millennials Buying Fewer Cars. Ph.D. Thesis, The Ohio State University, Columbus, OH, USA, 2016. [Google Scholar]
- Anderson, J.; Rainie, L.; Vogels, E. Experts Say the ‘New Normal’ in 2025 Will Be Far More Tech-Driven, Presenting More Big Challenges. 2021. Available online: https//www.pewresearch.org/internet/2021/02/18/experts-say-the-new-normal-in-2025-will-be-far-more-tech-driven-presenting-more-big-challenges (accessed on 30 April 2021).
- Fry, R. Young adults after the recession: Fewer homes, fewer cars, less debt. PEW Res. Center 2013, 21, 1–41. [Google Scholar]
- Kampman, B.E.; Verbeek, R.; Grinsven, A.H.; van Mensch, P.; Croezen, H.J.; Patuleia, A. Bringing Biofuels on the Market: Options to Increase EU Biofuels Volumes Beyond the Current Blending Limits; CE Delft: Delft, The Netherlands, 2013. [Google Scholar]
- WHO. Global Status Report on Road Safety 2018. Available online: https://www.who.int/news-room/fact-sheets/detail/road-traffic-injuries (accessed on 21 June 2021).
- Cecere, G.; Corrocher, N.; Gossart, C.; Ozman, M. Technological pervasiveness and variety of innovators in Green ICT: A patent-based analysis. Res. Policy 2014, 43, 1827–1839. [Google Scholar] [CrossRef]
- Helmers, E.; Marx, P. Electric cars: Technical characteristics and environmental impacts. Environ. Sci. Eur. 2012, 24, 14. [Google Scholar] [CrossRef] [Green Version]
- Larminie, J.; Lowry, J. Electric Vehicle Technology Explained; John Wiley & Sons: Hoboken, NJ, USA, 2012; ISBN 111994273X. [Google Scholar]
- De Hoog, J.; Handberg, K.; Jegatheesan, R. Demonstrating demand management: How intelligent EV charging can benefit everyone. World Electr. Veh. J. 2013, 6, 881–892. [Google Scholar] [CrossRef] [Green Version]
- Lieven, T. Policy measures to promote electric mobility—A global perspective. Transp. Res. Part A Policy Pract. 2015, 82, 78–93. [Google Scholar] [CrossRef] [Green Version]
- van der Steen, M.; Van Schelven, R.M.; Kotter, R.; Van Twist, M.J.W.; Peter van Deventer, M.P.A. EV policy compared: An international comparison of governments’ policy strategy towards e-mobility. In E-Mobility in Europe; Springer: Berlin/Heidelberg, Germany, 2015; pp. 27–53. [Google Scholar]
- Chekima, B.; Wafa, S.A.; Igau, O.A.; Chekima, S.; Sondoh, S.L. Examining green consumerism motivational drivers: Does premium price and demographics matter to green purchasing? J. Clean. Prod. 2016, 112, 3436–3450. [Google Scholar] [CrossRef]
- Gatignon, H.; Robertson, T.S. A Propositional Inventory for New Diffusion Research. J. Consum. Res. 1985, 11, 849–867. [Google Scholar] [CrossRef]
- Hardman, S.; Lee, J.H.; Tal, G. How do drivers use automation? Insights from a survey of partially automated vehicle owners in the United States. Transp. Res. Part A Policy Pract. 2019, 129, 246–256. [Google Scholar] [CrossRef]
- Crane, R. Is there a quiet revolution in women’s travel? Revisiting the gender gap in commuting. J. Am. Plan. Assoc. 2007, 73, 298–316. [Google Scholar] [CrossRef] [Green Version]
- Kawgan-Kagan, I. Early adopters of carsharing with and without BEVs with respect to gender preferences. Eur. Transp. Res. Rev. 2015, 7, 33. [Google Scholar] [CrossRef] [Green Version]
- Sánchez, M.I.O.; González, E.M. Gender Differences in Commuting Behavior: Women’s Greater Sensitivity. Transp. Res. Procedia 2016, 18, 66–72. [Google Scholar] [CrossRef]
- Räty, R.; Carlsson, K.A. Energy consumption by gender in some European countries. Energy Policy 2010, 38, 646–649. [Google Scholar] [CrossRef]
- European Union. Treaty of Amsterdam Amending the Treaty on European Union, the Treaties Establishing the European Communities and Certain Related Acts; European Union: Luxembourg, 1997. [Google Scholar]
- Davis, J.D.; Papandonatos, G.D.; Miller, L.A.; Hewitt, S.D.; Festa, E.K.; Heindel, W.C.; Ott, B.R. Road Test and Naturalistic Driving Performance in Healthy and Cognitively Impaired Older Adults: Does Environment Matter? J. Am. Geriatr. Soc. 2012, 60, 2056–2062. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Musti, S.; Kockelman, K.M. Evolution of the household vehicle fleet: Anticipating fleet composition, PHEV adoption and GHG emissions in Austin, Texas. Transp. Res. Part A Policy Pract. 2011, 45, 707–720. [Google Scholar] [CrossRef]
- Burrows, A.; Bradburn, J.; Cohen, T. Journeys of the future: Introducing Mobility as a Service. Atkins Mobil. 2015, 1–36. Available online: https://exploreconsulting.careers/uploads/Atkins-Journeys-of-the-future_300315.pdf (accessed on 30 April 2021).
- Johanson, J.; Vahlne, J.-E. The Uppsala internationalisation process model revisited: From liability of foreignness to liability of outsidership. J. Int. Bus. Stud. 2009, 40, 1411–1431. [Google Scholar] [CrossRef]
- Su, F.; Bell, M.G.H. Travel differences by gender for older people in London. Res. Transp. Econ. 2012, 34, 35–38. [Google Scholar] [CrossRef]
- U.S. Department of Transportation. National Household Travel Survey; Federal Highway Administration and Bureau of Transportation Statistics: Washington, DC, USA, 2009.
- Banister, D.; Bowling, A. Quality of life for the elderly: The transport dimension. Transp. Policy 2004, 11, 105–115. [Google Scholar] [CrossRef]
- Zhu, Y.; Xie, J.; Huang, F.; Cao, L. Association between short-term exposure to air pollution and COVID-19 infection: Evidence from China. Sci. Total Environ. 2020, 727, 138704. [Google Scholar] [CrossRef]
- KPMG Over 55s Reluctant to Join Electric Vehicle Revolution, KPMG Survey Finds. Available online: https://home.kpmg/uk/en/home/media/press-releases/2019/11/over-55-s-reluctant-to-join-electric-vehicle-revolution-kpmg-survey-finds.html (accessed on 30 April 2021).
- Almeida Neves, S.; Marques, A.C.; Fuinhas, J.A. Technological progress and other factors behind the adoption of electric vehicles: Empirical evidence for EU countries. Res. Transp. Econ. 2019, 74, 28–39. [Google Scholar] [CrossRef]
- Axsen, J.; Goldberg, S.; Bailey, J. How might potential future plug-in electric vehicle buyers differ from current “Pioneer” owners? Transp. Res. Part D Transp. Environ. 2016, 47, 357–370. [Google Scholar] [CrossRef]
- Sovacool, B.K.; Kester, J.; Noel, L.; de Rubens, G.Z. The demographics of decarbonising transport: The influence of gender, education, occupation, age, and household size on electric mobility preferences in the Nordic region. Glob. Environ. Chang. 2018, 52, 86–100. [Google Scholar] [CrossRef]
- Li, X.; Chen, P.; Wang, X. Impacts of renewables and socio-economic factors on electric vehicle demands—Panel data studies across 14 countries. Energy Policy 2017, 109, 473–478. [Google Scholar] [CrossRef]
- Sierzchula, W.; Bakker, S.; Maat, K.; van Wee, B. The influence of financial incentives and other socio-economic factors on electric vehicle adoption. Energy Policy 2014, 68, 183–194. [Google Scholar] [CrossRef]
- Conrads, J.; Rasmussen, M.; Winters, N.; Geniet, A.; Langer, L. Digital Education Policies in Europe and Beyond: Key Design Principles for More Effective Policies; Joint Research Centre (Seville Site): Luxembourg, 2017. [Google Scholar]
- Lytras, M.D.; Visvizi, A. Who uses smart city services and what to make of it: Toward interdisciplinary smart cities research. Sustainability 2018, 10, 1998. [Google Scholar] [CrossRef] [Green Version]
- Jin, L.; Slowik, P. Literature Review of Electric Vehicle Consumer Awareness and Outreach Activities; International Council on Clean Transportation: San Francisco, CA, USA, 2017; Available online: https//www.theicct.org/sites/default/files/publications/Consumer-EV-Awareness_ICCT_Working-Paper_23032017_vF.pdf (accessed on 22 March 2021).
- Docherty, I.; Marsden, G.; Anable, J. The governance of smart mobility. Transp. Res. Part A Policy Pract. 2018, 115, 114–125. [Google Scholar] [CrossRef]
- Bjerkan, K.Y.; Nørbech, T.E.; Nordtømme, M.E. Incentives for promoting Battery Electric Vehicle (BEV) adoption in Norway. Transp. Res. Part D Transp. Environ. 2016, 43, 169–180. [Google Scholar] [CrossRef] [Green Version]
- Financial Times Electric Car Costs to Remain Higher Than Traditional Engines. Available online: https://www.ft.com/content/a7e58ce7-4fab-424a-b1fa-f833ce948cb7 (accessed on 23 May 2021).
- Coffman, M.; Bernstein, P.; Wee, S. Electric vehicles revisited: A review of factors that affect adoption. Transp. Rev. 2017, 37, 79–93. [Google Scholar] [CrossRef]
- Cledou, G.; Estevez, E.; Soares Barbosa, L. A taxonomy for planning and designing smart mobility services. Gov. Inf. Q. 2018, 35, 61–76. [Google Scholar] [CrossRef]
- Fang, Y.; Wei, W.; Mei, S.; Chen, L.; Zhang, X.; Huang, S. Promoting electric vehicle charging infrastructure considering policy incentives and user preferences: An evolutionary game model in a small-world network. J. Clean. Prod. 2020, 258, 120753. [Google Scholar] [CrossRef]
- Moscholidou, I.; Pangbourne, K. A preliminary assessment of regulatory efforts to steer smart mobility in London and Seattle. Transp. Policy 2019, 98, 170–177. [Google Scholar] [CrossRef]
- Ge, Y.; Knittel, C.R.; MacKenzie, D.; Zoepf, S. Racial and Gender Discrimination in Transportation Network Companies. Natl. Bur. Econ. Res. 2016, 22776. [Google Scholar] [CrossRef]
- Seisdedos, G. Smart Cities: La Transformación Digital de las Ciudades; Instituto de Empresa-PwC, Ed.; Centro de Innovación del Sector Público de PWC e IE Business School: Madrid, Spain, 2015. [Google Scholar]
- Sorrell, S. Reducing energy demand: A review of issues, challenges and approaches. Renew. Sustain. Energy Rev. 2015, 47, 74–82. [Google Scholar] [CrossRef] [Green Version]
- Arundel, A.; Casali, L.; Hollanders, H. How European public sector agencies innovate: The use of bottom-up, policy-dependent and knowledge-scanning innovation methods. Res. Policy 2015, 44, 1271–1282. [Google Scholar] [CrossRef] [Green Version]
- de Jong, J.P.J.; von Hippel, E.; Gault, F.; Kuusisto, J.; Raasch, C. Market failure in the diffusion of consumer-developed innovations: Patterns in Finland. Res. Policy 2015, 44, 1856–1865. [Google Scholar] [CrossRef] [Green Version]
- Guan, J.C.; Yan, Y. Technological proximity and recombinative innovation in the alternative energy field. Res. Policy 2016, 45, 1460–1473. [Google Scholar] [CrossRef]
- Ward, J.H. Hierarchical Grouping to Optimise an Objective Function. J. Am. Stat. Assoc. 1963, 58, 236–244. [Google Scholar] [CrossRef]
- Sarle, W.S. Cubic Clustering Criterion; SAS Institute Inc.: Cary, NC, USA, 1983. [Google Scholar]
- Homburg, C.; Jensen, O.; Krohmer, H. Configurations of Marketing and Sales: A Taxonomy. J. Mark. 2008, 72, 133–154. [Google Scholar] [CrossRef]
- McIntyre, R.M.; Blashfield, R.K. A nearest-centroid technique for evaluating the minimum-variance clustering procedure. Multivar. Behav. Res. 1980, 15, 225–238. [Google Scholar] [CrossRef]
- Rich, P. The Organizational Taxonomy: Definition and Design. Acad. Manag. Rev. 1992, 17, 758–781. [Google Scholar] [CrossRef]
- ClosinGap ClosinGap. Available online: https://closingap.com/ (accessed on 22 April 2021).
- Anfinsen, M.; Lagesen, V.A.; Ryghaug, M. Green and gendered? Cultural perspectives on the road towards electric vehicles in Norway. Transp. Res. Part D Transp. Environ. 2019, 71, 37–46. [Google Scholar] [CrossRef]
- Organisation for Economic Co-operation and Development. Gender and Sustainable Development: Maximising the Economic, Social and Environmental Role of Women; OECD Publishing: Paris, France, 2008; ISBN 9264049908. [Google Scholar]
- Lashari, Z.A.; Ko, J.; Jang, J. Consumers’ Intention to Purchase Electric Vehicles: Influences of User Attitude and Perception. Sustainability 2021, 13, 6778. [Google Scholar] [CrossRef]
- DGT. Driver’s License in Spain. Available online: http://www.dgt.es/es/seguridad-vial/estadisticas-e-indicadores/permisos-conduccion/series-historicas/ (accessed on 15 May 2021).
- She, Z.-Y.; Sun, Q.; Ma, J.-J.; Xie, B.-C. What are the barriers to widespread adoption of battery electric vehicles? A survey of public perception in Tianjin, China. Transp. Policy 2017, 56, 29–40. [Google Scholar] [CrossRef]
- Kahlen, M.T.; Ketter, W.; van Dalen, J. Electric Vehicle Virtual Power Plant Dilemma: Grid Balancing Versus Customer Mobility. Prod. Oper. Manag. 2018, 27, 2054–2070. [Google Scholar] [CrossRef]
- Axsen, J.; TyreeHageman, J.; Lentz, A. Lifestyle practices and pro-environmental technology. Ecol. Econ. 2012, 82, 64–74. [Google Scholar] [CrossRef]
- Bailey, J.; Miele, A.; Axsen, J. Is awareness of public charging associated with consumer interest in plug-in electric vehicles? Transp. Res. Part D Transp. Environ. 2015, 36, 1–9. [Google Scholar] [CrossRef]
- Rezvani, Z.; Jansson, J.; Bengtsson, M. Consumer motivations for sustainable consumption: The interaction of gain, normative and hedonic motivations on electric vehicle adoption. Bus. Strateg. Environ. 2018, 27, 1272–1283. [Google Scholar] [CrossRef]
- Sundström, A. Women’s local political representation within 30 European countries. QoG Work. Pap. Ser. 2013, 2013, 18. [Google Scholar]
- Hall, D.; Lutsey, N. Charging Infrastructure in Cities: Metrics for Evaluating Future Needs. Working Paper 2020-17, 2020, International Council on Clean Transportation. Available online: https://theicct.org/sites/default/files/publications/EV-charging-metrics-aug2020.pdf (accessed on 15 April 2021).
Men | Women | Total | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Age | N | Mean | Std | N | Mean | Std | N | Mean | Std | |
EV | 18–29 y.o | 208 | 3.92 | 1.021 | 193 | 3.96 | 1.020 | 401 | 3.94 | 1.019 |
30–45 y.o | 207 | 4.07 | 0.973 | 195 | 3.83 | 1.014 | 402 | 3.95 | 0.999 | |
46–60 y.o | 189 | 4.06 | 1.003 | 213 | 3.95 | 1.015 | 402 | 4.00 | 1.010 | |
Education | ||||||||||
EV | “1” No studies certificated | 7 | 3.43 | 0.780 | 2 | 3 | 1.410 | 9 | 3.33 | 0.866 |
“2” Basic studies | 14 | 3.79 | 1.360 | 16 | 4 | 0.816 | 30 | 3.9 | 1.094 | |
“3” Middle diploma | 57 | 4.21 | 0.970 | 45 | 4.2 | 0.967 | 102 | 4.21 | 0.968 | |
“4” Secondary school | 263 | 4.10 | 0.960 | 246 | 3.88 | 0.996 | 509 | 3.99 | 0.980 | |
“5” Advanced studies or a degree | 114 | 3.96 | 0.950 | 114 | 3.88 | 1.011 | 228 | 3.93 | 0.979 | |
“6” Bachelor degree, master or PhD | 149 | 3.87 | 1.060 | 178 | 3.89 | 1.069 | 327 | 3.89 | 1.060 | |
Income | ||||||||||
EV | “1” High purchasing power | 77 | 3.76 | 1.11 | 71 | 3.90 | 1.07 | 148 | 3.83 | 1.09 |
“2” High-Medium purchasing power | 190 | 4.06 | 0.95 | 223 | 3.98 | 0.99 | 413 | 4.01 | 0.98 | |
“3” Medium purchasing power | 251 | 4.07 | 0.95 | 238 | 3.84 | 1.03 | 489 | 3.96 | 0.99 | |
“4” Medium-low purchasing power | 78 | 4 | 1.14 | 62 | 3.97 | 0.94 | 140 | 3.99 | 1.05 | |
“5” Low purchasing power | 8 | 3.75 | 0.88 | 7 | 3.71 | 1.25 | 15 | 3.73 | 1.03 | |
Total: | 604 | 4.01 | 1.000 | 601 | 3.91 | 1.016 | 1205 | 3.96 | 1.009 |
Variable | Mean/Frequencies (%) | Standard Deviation | Min. | Max. |
---|---|---|---|---|
Ev | 0.96 | 1.009 | 1 | 5 |
Gender | 0–0.51 | 0 | 1 | |
1–0.49 | ||||
Age | 1–0.33 | 1 | 3 | |
2–0.34 | ||||
3–0.33 | ||||
Education | 1–0.01 | 1 | 6 | |
2–0.03 | ||||
3–0.08 | ||||
4–0.42 | ||||
5–0.19 | ||||
6–0.27 | ||||
Income | 1–0.12 | 1 | 5 | |
2–0.34 | ||||
3–0.41 | ||||
4–0.12 | ||||
5–0.01 |
Cluster | Citizens | % of the Total |
---|---|---|
Cluster 1 | 159 | 13.20% |
Cluster 2 | 386 | 32.03% |
Cluster 3 | 288 | 23.90% |
Cluster 4 | 372 | 30.87% |
Total Sample | 1205 | 100% |
Cluster Analysis | Electric Vehicle Infrastructure | |
---|---|---|
Cluster 1 | N | 159 |
Mean | 2.67 | |
Standard Deviation | 0.590 | |
Cluster 2 | N | 386 |
Mean | 3.52 | |
Standard Deviation | 0.965 | |
Cluster 3 | N | 288 |
Mean | 4.47 | |
Standard Deviation | 0.612 | |
Cluster 4 | N | 372 |
Mean | 4.59 | |
Standard Deviation | 0.623 | |
Total | N | 1205 |
Mean | 3.96 | |
Standard Deviation | 1.009 |
Spain | ||||
---|---|---|---|---|
Ind. Variable | Value | F | p | Observed Power |
Gender | ||||
Pillai | 0.025 | 6.032 | 0.000 | 0.996 |
Wilks | 0.975 | 6.032 | 0.000 | 0.996 |
Hoteling | 0.025 | 6.032 | 0.000 | 0.996 |
Roy | 0.025 | 6.032 | 0.000 | 0.996 |
Age | ||||
Pillai | 0.041 | 5.065 | 0.000 | 1.000 |
Wilks | 0.959 | 5.098 | 0.000 | 1.000 |
Hoteling | 0.043 | 5.132 | 0.000 | 1.000 |
Roy | 0.039 | 9.445 | 0.000 | 1.000 |
Gender | Age | Educational Level | Income | Electric Vehicles | ||
---|---|---|---|---|---|---|
Cluster Analysis | ||||||
Cluster 1 | N | 159 | 159 | 159 | 159 | 159 |
Mean/Frequencies | 0–104 1–55 | 1–54 2–52 3–53 | 1–0 2–0 3–0 4–0 5–52 6–107 | 1–33 2–83 3–37 4–6 5–0 | 2.67 | |
Cluster 2 | N | 386 | 386 | 386 | 386 | 386 |
Mean/Frequencies | 0–168 1–218 | 1–148 2–138 3–100 | 1–9 2–20 3–52 4–269 5–36 6–0 | 1–26 2–75 3–210 4–63 5–12 | 3.52 | |
Cluster 3 | N | 288 | 288 | 288 | 288 | 288 |
Mean/Frequencies | 0–167 1–121 | 1–120 2–106 3–62 | 1–0 2–0 3–0 4–0 5–68 6–220 | 1–67 2–152 3–63 4–6 5–0 | 4.47 | |
Cluster 4 | N | 372 | 372 | 372 | 372 | 372 |
Mean/Frequencies | 0–208 1–164 | 1–79 2–106 3–187 | 1–0 2–10 3–50 4–240 5–72 6–0 | 1–22 2–103 3–179 4–65 5–3 | 4.59 | |
Cluster Comparisons | ||||||
Cluster 1–2 | 21.58 *** | 3.09 | 442.05 *** | 105.19 *** | −10.28 *** | |
Cluster 1–3 | 22.43 *** | 7.59 ** | 4.31 ** | 1.47 | −30.00 *** | |
Cluster 1–4 | 4.14 * | 14.93 *** | 387.06 *** | 76.62 *** | −33.02 *** | |
Cluster 2–3 | 0.153 | 1.82 | 577.81 *** | 171.82 *** | −14.61 *** | |
Cluster 2–4 | 11.63 *** | 51.30 *** | 25.78 *** | 12.38 ** | −18.12 *** | |
Cluster 3–4 | 12.54 *** | 61.50 *** | 517.81 *** | 131.24 *** | −2.60 *** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Esteves, J.; Alonso-Martínez, D.; de Haro, G. Profiling Spanish Prospective Buyers of Electric Vehicles Based on Demographics. Sustainability 2021, 13, 9223. https://doi.org/10.3390/su13169223
Esteves J, Alonso-Martínez D, de Haro G. Profiling Spanish Prospective Buyers of Electric Vehicles Based on Demographics. Sustainability. 2021; 13(16):9223. https://doi.org/10.3390/su13169223
Chicago/Turabian StyleEsteves, Jose, Daniel Alonso-Martínez, and Guillermo de Haro. 2021. "Profiling Spanish Prospective Buyers of Electric Vehicles Based on Demographics" Sustainability 13, no. 16: 9223. https://doi.org/10.3390/su13169223
APA StyleEsteves, J., Alonso-Martínez, D., & de Haro, G. (2021). Profiling Spanish Prospective Buyers of Electric Vehicles Based on Demographics. Sustainability, 13(16), 9223. https://doi.org/10.3390/su13169223