Reputational Risk Associated with Big Data Research and Development: An Interdisciplinary Perspective
Abstract
:1. Introduction
2. Background
2.1. The Brand of ‘Trust’ in R&D
2.2. Public Perceptions of Technology Risk and Science Innovation
2.3. The Relationship between Big Data and Decisions at a Landscape Scale
3. Case Study
3.1. Sources of Reputational Risk in Agriculture
3.2. Reputational Risk across Phases of Technology Development
4. Recommendations on Reframing the Role of R&D
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Song, M.; Cen, L.; Zheng, Z.; Fisher, R.; Liang, X.; Wang, Y.; Huisingh, D. Improving Natural Resource Management and Human Health to Ensure Sustainable Societal Development Based upon Insights Gained from Working within ‘Big Data Environments’. J. Clean. Prod. 2015, 94, 1–4. [Google Scholar] [CrossRef] [Green Version]
- De Mauro, A.; Greco, M.; Grimaldi, M. A Formal Definition of Big Data Based on Its Essential Features. Libr. Rev. 2016, 65, 122–135. [Google Scholar] [CrossRef]
- Diebold, F.X. On the Origin(s) and Development of the Term ‘Big Data’. PIER Working Paper 12–037, 2012. Available online: https://ssrn.com/abstract=2152421 (accessed on 10 August 2021).
- Izac, A.-M.N.; Sanchez, P.A. Towards a Natural Resource Management Paradigm for International Agriculture: The Example of Agroforestry Research. Agric. Syst. 2001, 69, 5–25. [Google Scholar] [CrossRef]
- Fielke, S.J.; Garrard, R.; Jakku, E.; Fleming, A.; Wiseman, L.; Taylor, B.M. Conceptualising the DAIS: Implications of the ‘Digitalisation of Agricultural Innovation Systems’ on Technology and Policy at Multiple Levels. NJAS Wagening. J. Life Sci. 2019, 90, 100296. [Google Scholar] [CrossRef]
- Hellström, T. Systemic Innovation and Risk: Technology Assessment and the Challenge of Responsible Innovation. Technol. Soc. 2003, 25, 369–384. [Google Scholar] [CrossRef]
- Blackburn, M.; Alexander, J.; Legan, J.D.; Klabjan, D. Big Data and the Future of R&D Management. Res. Manag. 2017, 60, 43–51. [Google Scholar] [CrossRef]
- Stilgoe, J. Machine Learning, Social Learning and the Governance of Self-Driving Cars. Soc. Stud. Sci. 2018, 48, 25–56. [Google Scholar] [CrossRef]
- Carolan, M. Agro-Digital Governance and Life Itself: Food Politics at the Intersection of Code and Affect. Sociol. Rural. 2017, 57, 816–835. [Google Scholar] [CrossRef] [Green Version]
- Coble, K.H.; Mishra, A.K.; Ferrell, S.; Griffin, T. Big Data in Agriculture: A Challenge for the Future. Appl. Econ. Perspect. Policy 2018, 40, 79–96. [Google Scholar] [CrossRef] [Green Version]
- Pielke, R.A., Jr. The Honest Broker: Making Sense of Science in Policy and Politics; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Rantala, L.; Sarkki, S.; Karjalainen, T.P.; Rossi, P.M. How to Earn the Status of Honest Broker? Scientists’ Roles Facilitating the Political Water Supply Decision-Making Process. Soc. Nat. Resour. 2017, 30, 1288–1298. [Google Scholar] [CrossRef]
- Fielke, S.; Taylor, B.; Jakku, E. Digitalisation of Agricultural Knowledge and Advice Networks: A State-of-the-Art Review. Agric. Syst. 2020, 180, 102763. [Google Scholar] [CrossRef]
- Leviäkangas, P. Digitalisation of Finland’s Transport Sector. Technol. Soc. 2016, 47, 1–15. [Google Scholar] [CrossRef]
- Enkel, E.; Gassmann, O. Creative Imitation: Exploring the Case of Cross-Industry Innovation. R D Manag. 2010, 40, 256–270. [Google Scholar] [CrossRef]
- Moellers, T.; Visini, C.; Haldimann, M. Complementing Open Innovation in Multi-Business Firms: Practices for Promoting Knowledge Flows across Internal Units. R D Manag. 2020, 50, 96–115. [Google Scholar] [CrossRef]
- Elias, A.A. Analysing the Stakes of Stakeholders in Research and Development Project Management: A Systems Approach. R D Manag. 2016, 46, 749–760. [Google Scholar] [CrossRef]
- Shin, D.; Park, Y.J. Role of Fairness, Accountability, and Transparency in Algorithmic Affordance. Comput. Hum. Behav. 2019, 98, 277–284. [Google Scholar] [CrossRef]
- Pink, S.; Lanzeni, D.; Horst, H. Data Anxieties: Finding Trust in Everyday Digital Mess. Big Data Soc. 2018, 5, 2053951718756685. [Google Scholar] [CrossRef] [Green Version]
- Parsons, R.; Lacey, J.; Moffat, K. Maintaining Legitimacy of a Contested Practice: How the Minerals Industry Understands Its “Social Licence to Operate”. Resour. Policy 2014, 41, 83–90. [Google Scholar] [CrossRef]
- Slovic, P.; Weber, E.U. Perception of Risk Posed by Extreme Events. In Proceedings of the Risk Management strategies in an Uncertain World, Palisades, NY, USA, 12–13 April 2002. [Google Scholar]
- Slovic, P. Perception of Risk. Science 1987, 236, 280–285. [Google Scholar] [CrossRef]
- Lee, M.K. Understanding Perception of Algorithmic Decisions: Fairness, Trust, and Emotion in Response to Algorithmic Management. Big Data Soc. 2018, 5. [Google Scholar] [CrossRef]
- Leith, P.; O’Toole, K.; Haward, M.; Coffey, B. Enhancing Science Impact; CSIRO Publishing: Sydney, Australia, 2019. [Google Scholar] [CrossRef]
- Rose, D.C.; Chilvers, J. Agriculture 4.0: Broadening Responsible Innovation in an Era of Smart Farming. Front. Sustain. Food Syst. 2018, 2, 87. [Google Scholar] [CrossRef] [Green Version]
- Calder, I.R. Forests and Hydrological Services: Reconciling Public and Science Perceptions. Land Use Water Resour. Res. 2002, 2, 1–12. [Google Scholar]
- Mayeda, A.M.; Boyd, A.D. Factors Influencing Public Perceptions of Hydropower Projects: A Systematic Literature Review. Renew. Sustain. Energy Rev. 2020, 121, 109713. [Google Scholar] [CrossRef]
- Keenan, S.P.; Krannich, R.S.; Walker, M.S. Public Perceptions of Water Transfers and Markets: Describing Differences in Water Use Communities. Soc. Nat. Resour. 1999, 12, 279–292. [Google Scholar] [CrossRef]
- Rowley, J. The Wisdom Hierarchy: Representations of the DIKW Hierarchy. J. Inf. Sci. 2007, 33, 163–180. [Google Scholar] [CrossRef] [Green Version]
- Lokers, R.; Knapen, R.; Janssen, S.; van Randen, Y.; Jansen, J. Analysis of Big Data Technologies for Use in Agro-Environmental Science. Environ. Model. Softw. 2016, 84, 494–504. [Google Scholar] [CrossRef] [Green Version]
- Klerkx, L.; Rose, D. Dealing with the Game-Changing Technologies of Agriculture 4.0: How Do We Manage Diversity and Responsibility in Food System Transition Pathways? Glob. Food Secur. 2020, 2, 100347. [Google Scholar] [CrossRef]
- Sanderson, T.; Reeson, A.; Box, P. Cultivating Trust: Towards an Australian Agricultural Data Market; CSIRO Publishing: Sydney, Australia, 2017. [Google Scholar] [CrossRef]
- Löfgren, K.; Webster, C.W.R. The Value of Big Data in Government: The Case of ‘Smart Cities’. Big Data Soc. 2020, 7, 2053951720912775. [Google Scholar] [CrossRef] [Green Version]
- Schiederig, T.; Tietze, F.; Herstatt, C. Green Innovation in Technology and Innovation Management—An Exploratory Literature Review. R D Manag. 2012, 42, 180–192. [Google Scholar] [CrossRef]
- Bramley, R.G.V.; Ouzman, J. Farmer Attitudes to the Use of Sensors and Automation in Fertilizer Decision-Making: Nitrogen Fertilization in the Australian Grains Sector. Precis. Agric. 2019, 20, 157–175. [Google Scholar] [CrossRef]
- Miles, C. The Combine Will Tell the Truth: On Precision Agriculture and Algorithmic Rationality. Big Data Soc. 2019, 6, 2053951719849444. [Google Scholar] [CrossRef]
- Chen, M.; Mao, S.; Liu, Y. Big Data: A Survey. Mob. Netw. Appl. 2014, 19, 171–209. [Google Scholar] [CrossRef]
- Gilpin, L. How Big Data Is Going to Help Feed Nine Billion People by 2050. TechRepublic. 2015. Available online: https://fli.institute/2014/11/11/how-big-data-is-going-to-help-feed-nine-billion-people-by-2050/ (accessed on 10 August 2021).
- Antwi-Agyei, P.; Dougill, A.J.; Agyekum, T.P.; Stringer, L.C. Alignment between Nationally Determined Contributions and the Sustainable Development Goals for West Africa. Clim. Policy 2018, 18, 1296–1312. [Google Scholar] [CrossRef]
- Nyasimi, M.; Kimeli, P.; Sayula, G.; Radeny, M.; Kinyangi, J.; Mungai, C. Adoption and Dissemination Pathways for Climate-Smart Agriculture Technologies and Practices for Climate-Resilient Livelihoods in Lushoto, Northeast Tanzania. Climate 2017, 5, 63. [Google Scholar] [CrossRef]
- KPMG. Talking 2030: Growing Agriculture into a $100 Billion Industry. 2018. Available online: https://home.kpmg/au/en/home/insights/2018/03/talking-2030-growing-australian-agriculture-industry.html (accessed on 10 August 2021).
- Duncan, R.; Robson-Williams, M.; Nicholas, G.; Turner, J.A.; Smith, R.; Diprose, D. Transformation Is “Experienced, Not Delivered”: Insights from Grounding the Discourse in Practice to Inform Policy and Theory. Sustainability 2018, 10, 3177. [Google Scholar] [CrossRef] [Green Version]
- Jakku, E.; Taylor, B.; Fleming, A.; Mason, C.; Fielke, S.; Sounness, C.; Thorburn, P. “If They Don’t Tell Us What They Do with It, Why Would We Trust Them?” Trust, Transparency and Benefit-Sharing in Smart Farming. NJAS Wagening. J. Life Sci. 2019, 90, 100285. [Google Scholar] [CrossRef]
- Wiseman, L.; Sanderson, J.; Zhang, A.; Jakku, E. Farmers and Their Data: An Examination of Farmers’ Reluctance to Share Their Data through the Lens of the Laws Impacting Smart Farming. NJAS Wagening. J. Life Sci. 2019, 90, 100301. [Google Scholar] [CrossRef]
- Regan, Á. ‘Smart Farming’ in Ireland: A Risk Perception Study with Key Governance Actors. NJAS Wagening. J. Life Sci. 2019, 90, 100292. [Google Scholar] [CrossRef]
- Rotz, S.; Duncan, E.; Small, M.; Botschner, J.; Dara, R.; Mosby, I.; Reed, M.; Fraser, E.D.G. The Politics of Digital Agricultural Technologies: A Preliminary Review. Sociol. Rural. 2019, 59, 203–229. [Google Scholar] [CrossRef]
- Carolan, M. ‘Smart’ Farming Techniques as Political Ontology: Access, Sovereignty and the Performance of Neoliberal and Not-So-Neoliberal Worlds. Sociol. Rural. 2018, 58, 745–764. [Google Scholar] [CrossRef] [Green Version]
- Berthet, E.T.; Hickey, G.M.; Klerkx, L. Opening Design and Innovation Processes in Agriculture: Insights from Design and Management Sciences and Future Directions. Agric. Syst. 2018, 165, 111–115. [Google Scholar] [CrossRef]
- Glover, D.; Sumberg, J.; Ton, G.; Andersson, J.; Badstue, L. Rethinking Technological Change in Smallholder Agriculture. Outlook Agric. 2019, 48, 169–180. [Google Scholar] [CrossRef] [Green Version]
- Australia Privacy Act 1988, Federal Register of Legislation; Attorney-General’s Department. 2017. Available online: https://www.legislation.gov.au/Details/C2016C00979 (accessed on 10 August 2021).
- Otto, M. Regulation (EU) 2016/679 on the Protection of Natural Persons with Regard to the Processing of Personal Data and on the Free Movement of Such Data (General Data Protection Regulation—GDPR). Int. Eur. Labour Law 2018, 2014, 958–981. [Google Scholar] [CrossRef]
- Democracy, Data and Dirty Tricks, 2018. Four Courners Episode. Available online: http://www.abc.net.au/4corners/democracy,-data-and-dirty-tricks:-cambridge/9642090 (accessed on 10 August 2021).
- Lesser, A. Big Data and Big Agriculture. 2014. Available online: https://gigaom.com/report/big-data-and-big-agriculture/ (accessed on 10 August 2021).
- Sonka, S. Big Data and the Ag Sector: More than Lots of Numbers. Int. Food Agribus. Manag. Rev. 2014, 17, 163351. [Google Scholar]
- Orts, E.; Spigonardo, J. Sustainability in the Age of Big Data; IGEL/Wharton, University of Pennsylvania: Philadelphia, PA, USA, 2014; Available online: http://d1c25a6gwz7q5e.cloudfront.net/reports/2014-09-12-Sustainability-in-the-Age-of-Big-Data.pdf (accessed on 10 August 2021).
- Darnell, R.; Robertson, M.; Brown, J.; Moore, A.; Barry, S.; Bramley, R.; Grundy, M.; George, A. The Current and Future State of Australian Agricultural Data. Farm Policy J. 2018, 15, 41–49. [Google Scholar]
- Open Algorithms for Better Decisions. Available online: www.opalproject:about-opal (accessed on 20 June 2021).
- Calude, C.S.; Dinneen, M.J.; Pǎun, G.; Pérez Jiménez, M.J.; Rozenberg, G. Lecture Notes in Computer Science: Preface. In Lecture Notes in Computer Science; Springer: London, UK, 2005. [Google Scholar]
- De Montjoye, Y.A.; Hidalgo, C.A.; Verleysen, M.; Blondel, V.D. Unique in the Crowd: The Privacy Bounds of Human Mobility. Sci. Rep. 2013, 3, 1376. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Green, B.P. Ethical Reflections on Artificial Intelligence. Sci. Fides 2018, 6, 9–31. [Google Scholar] [CrossRef]
- Song, H.; Kim, M.; Park, D.; Shin, Y.; Lee, J.-G. Learning from Noisy Labels with Deep Neural Networks: A Survey. arXiv 2020, arXiv:2007.08199. [Google Scholar]
- Kompa, B.; Snoek, J.; Beam, A.L. Second Opinion Needed: Communicating Uncertainty in Medical Machine Learning. Npj. Digit. Med. 2021, 4, 4. [Google Scholar] [CrossRef]
- Amershi, S.; Cakmak, M.; Knox, W.B.; Kulesza, T. Power to the People: The Role of Humans in Interactive Machine Learning. Artif. Intell. Mag. 2014, 35, 105–120. [Google Scholar] [CrossRef] [Green Version]
- Kendall, A.; Badrinarayanan, V.; Cipolla, R. Bayesian SegNet: Model Uncertainty in Deep Convolutional Encoder-Decoder Architectures for Scene Understanding. 2017. Available online: http://www.bmva.org/bmvc/2017/papers/paper057/paper057.pdf (accessed on 10 August 2021).
- Ghosh, S.; Liao, Q.V.; Ramamurthy, K.N.; Navratil, J.; Sattigeri, P.; Varshney, K.R.; Zhang, Y. Uncertainty Quantification 360: A Holistic Toolkit for Quantifying and Communicating the Uncertainty of AI. arXiv 2021, arXiv:2106.01410. [Google Scholar]
- Crawford, K. Can an Algorithm Be Agonistic? Ten Scenes from Life in Calculated Publics. Sci. Technol. Hum. Values 2015, 41, 77–92. [Google Scholar] [CrossRef] [Green Version]
- Carbonell, I.M. The Ethics of Big Data in Big Agriculture. Internet Policy Rev. 2016, 5, 1–13. [Google Scholar] [CrossRef]
- Barocas, S.; Selbst, A.D. Big Data’s Disparate Impact. Calif. Law Rev. 2016, 104, 671. [Google Scholar] [CrossRef]
- Veale, M.; Van Kleek, M.; Binns, R. Fairness and Accountability Design Needs for Algorithmic Support in High-Stakes Public Sector Decision-Making. Conf. Hum. Factors Comput. Syst. Proc. 2018, 2018, 440. [Google Scholar] [CrossRef] [Green Version]
- Wolf, S.A.; Buttel, F.H. The Political Economy of Precision Farming. Am. J. Agric. Econ. 1996, 78, 1269–1274. [Google Scholar] [CrossRef]
- Eastwood, C.; Klerkx, L.; Ayre, M.; Dela Rue, B. Managing Socio-Ethical Challenges in the Development of Smart Farming: From a Fragmented to a Comprehensive Approach for Responsible Research and Innovation. J. Agric. Environ. Ethics 2019, 32, 741–768. [Google Scholar] [CrossRef] [Green Version]
- Owen, R.; Bessant, J.; Heintz, M. Responsible Innovation; John Wiley & Sons, Ltd.: West Sussex, UK, 2013. [Google Scholar] [CrossRef]
- Gurzawska, A.; Mäkinen, M.; Brey, P. Implementation of Responsible Research and Innovation (RRI) Practices in Industry: Providing the Right Incentives. Sustainability 2017, 9, 1759. [Google Scholar] [CrossRef] [Green Version]
- Lioutas, E.D.; Charatsari, C.; La Rocca, G.; De Rosa, M. Key Questions on the Use of Big Data in Farming: An Activity Theory Approach. NJAS Wagening. J. Life Sci. 2019, 90, 100297. [Google Scholar] [CrossRef]
- Gorissen, L.; Vrancken, K.; Manshoven, S. Transition Thinking and Business Model Innovation-towards a Transformative Business Model and New Role for the Reuse Centers of Limburg, Belgium. Sustainability 2016, 8, 112. [Google Scholar] [CrossRef] [Green Version]
- Owen, R.; Stilgoe, J.; Macnaghten, P.; Gorman, M.; Fisher, E.; Guston, D. A Framework for Responsible Innovation. Responsible Innov. Manag. Responsible Emerg. Sci. Innov. Soc. 2013, 42, 27–50. [Google Scholar] [CrossRef]
- Beers, P.J.; Hermans, F.; Veldkamp, T.; Hinssen, J. Social Learning inside and Outside Transition Projects: Playing Free Jazz for a Heavy Metal Audience. NJAS Wagening. J. Life Sci. 2014, 69, 5–13. [Google Scholar] [CrossRef] [Green Version]
- OS, E. Risk Mitigation Checklist. 2018. Available online: https://ethicalos.org/wp-content/uploads/2018/08/EthicalOS_Check-List_080618.pdf (accessed on 10 August 2021).
- Zook, M.; Barocas, S.; Boyd, D.; Crawford, K.; Keller, E.; Gangadharan, S.P.; Goodman, A.; Hollander, R.; Koenig, B.A.; Metcalf, J.; et al. Ten Simple Rules for Responsible Big Data Research. PLoS Comput. Biol. 2017, 13, e1005399. [Google Scholar] [CrossRef] [Green Version]
- Leslie, D. Understanding Artificial Intelligence Ethics and Safety: A Guide for the Responsible Design and Implementation of AI Systems in the Public Sector. SSRN 2019. [Google Scholar] [CrossRef]
- Standards Australia. An Artificial Intelligence Standards Roadmap: Making Australia’s Voice Heard. 2020. Available online: https://www.standards.org.au/getmedia/ede81912-55a2-4d8e-849f-9844993c3b9d/R_1515-An-Artificial-Intelligence-Standards-Roadmap-soft.aspx (accessed on 10 August 2021).
- Farm Data Code (Edition 1). National Farmers’ Federation 2020. Available online: https://nff.org.au/wp-content/uploads/2020/02/Farm_Data_Code_Edition_1_WEB_FINAL.pdf (accessed on 10 August 2021).
- Robinson, C.J.; Kong, T.; Coates, R.; Watson, I.; Stokes, C.; Pert, P.; McConnell, A.; Chen, C. Caring for Indigenous Data to Evaluate the Benefits of Indigenous Environmental Programs. Environ. Manag. 2021, 68, 160–169. [Google Scholar] [CrossRef] [PubMed]
- Linkov, I.; Trump, B.D.; Poinsatte-Jones, K.; Florin, M.V. Governance Strategies for a Sustainable Digital World. Sustainability 2018, 10, 440. [Google Scholar] [CrossRef] [Green Version]
- Bronson, K.; Knezevic, I. Look Twice at the Digital Agricultural Revolution. Policy Options 2017. Available online: https://policyoptions.irpp.org/magazines/september-2017/look-twice-at-the-digital-agricultural-revolution/ (accessed on 10 August 2021).
- Bronson, K. Looking through a Responsible Innovation Lens at Uneven Engagements with Digital Farming. NJAS Wagening. J. Life Sci. 2019, 90, 100294. [Google Scholar] [CrossRef]
- Pant, L.P.; Hambly Odame, H. Broadband for a Sustainable Digital Future of Rural Communities: A Reflexive Interactive Assessment. J. Rural Stud. 2017, 54, 435–450. [Google Scholar] [CrossRef]
- Roberts, E.; Anderson, B.A.; Skerratt, S.; Farrington, J. A Review of the Rural-Digital Policy Agenda from a Community Resilience Perspective. J. Rural Stud. 2017, 54, 372–385. [Google Scholar] [CrossRef] [Green Version]
- Klerkx, L.; Jakku, E.; Labarthe, P. A Review of Social Science on Digital Agriculture, Smart Farming and Agriculture 4.0: New Contributions and a Future Research Agenda. NJAS Wagening. J. Life Sci. 2019, 90, 100315. [Google Scholar] [CrossRef]
- Gremmen, B.; Blok, V.; Bovenkerk, B. Responsible Innovation for Life: Five Challenges Agriculture Offers for Responsible Innovation in Agriculture and Food, and the Necessity of an Ethics of Innovation. J. Agric. Environ. Ethics 2019, 32, 673–679. [Google Scholar] [CrossRef] [Green Version]
- Wiseman, L.; Sanderson, J.; Robb, L. Rethinking Ag Data Ownership. Farm Policy J. 2018, 15, 71–77. [Google Scholar]
- Blundell-Wignall, A.; Wehinger, G.; Slovik, P. The Elephant in the Room: The Need to Deal with What Banks Do. Cap. Mark. Reform Asia Towar. Dev. Integr. Mark. Times Chang. 2012, 2009, 231–268. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stitzlein, C.; Fielke, S.; Waldner, F.; Sanderson, T. Reputational Risk Associated with Big Data Research and Development: An Interdisciplinary Perspective. Sustainability 2021, 13, 9280. https://doi.org/10.3390/su13169280
Stitzlein C, Fielke S, Waldner F, Sanderson T. Reputational Risk Associated with Big Data Research and Development: An Interdisciplinary Perspective. Sustainability. 2021; 13(16):9280. https://doi.org/10.3390/su13169280
Chicago/Turabian StyleStitzlein, Cara, Simon Fielke, François Waldner, and Todd Sanderson. 2021. "Reputational Risk Associated with Big Data Research and Development: An Interdisciplinary Perspective" Sustainability 13, no. 16: 9280. https://doi.org/10.3390/su13169280
APA StyleStitzlein, C., Fielke, S., Waldner, F., & Sanderson, T. (2021). Reputational Risk Associated with Big Data Research and Development: An Interdisciplinary Perspective. Sustainability, 13(16), 9280. https://doi.org/10.3390/su13169280